Chapter 3

Gromov–Witten theory

3.1 Notations and conventions

Let X be a smooth projective variety over \mathbb{C} . In order not to introduce superstructures, in what follows we assume that $H^{\text{odd}}(X,\mathbb{C})=0$. Denote by $b_k(X)$ the k-th Betti number of X.

Attached to X there is an infinite-dimensional \mathbb{C} -vector space \mathcal{P}_X , called the *big phase space*, defined as the infinite product of countable many copies of the classical cohomology space of X, that is,

$$\mathscr{P}_X := \prod_{n \in \mathbb{N}} H^{\bullet}(X, \mathbb{C}).$$

Let us fix a homogeneous basis (T_0, \ldots, T_N) of $H^{\bullet}(X, \mathbb{C})$ such that

- $T_0 = 1$,
- T_1, \ldots, T_r is a nef integral basis of $H^2(X, \mathbb{Z})$.

In particular, $b_2(X) = r$. Set $t = (t^0, \dots, t^N)$, the dual coordinates of $H^{\bullet}(X, \mathbb{C})$.

We denote by $(\tau_p T_0, \dots, \tau_p T_N)$ the corresponding basis of the p-th copy of $H^{\bullet}(X, \mathbb{C})$ in \mathcal{P}_X . The element $\tau_p T_{\alpha}$ will be called a *descendant* of T_{α} with level p. The coordinate of a point $\boldsymbol{\gamma} \in \mathcal{P}_X$ with respect to the basis $(\tau_p T_{\alpha})_{\alpha,p}$ will be denoted by $\boldsymbol{t}^{\bullet} = (t^{\alpha,p})_{\alpha,p}$. Instead of denoting by $\boldsymbol{\gamma} = (t^{\alpha,p}\tau_p T_{\alpha})_{\alpha,p}$ a generic element of \mathcal{P}_X we will usually write this as a formal series

$$\gamma = \sum_{\alpha=1}^{m} \sum_{p=0}^{\infty} t^{\alpha,p} \tau_p T_{\alpha}.$$

We identify $H^{\bullet}(X, \mathbb{C})$ with the 0-th factor of \mathcal{P}_X , called the *small phase space*. This allow us to identify $t^{\alpha} \equiv t^{\alpha,0}$ for $\alpha = 0, \ldots, N$.

Denote by $\eta: H^{\bullet}(X, \mathbb{C}) \times H^{\bullet}(X, \mathbb{C}) \to H^{\bullet}(X, \mathbb{C})$ the Poincaré pairing defined by

$$\eta(u,v) := \int_X u \cup v,$$

and we set $\eta_{\alpha\beta} := \eta(T_{\alpha}, T_{\beta})$ for $\alpha, \beta = 0, ..., N$. The numbers $\eta_{\alpha\beta}$ will be collected in the Gram¹ matrix $\eta = (\eta_{\alpha\beta})_{\alpha,\beta=0}^N$, with inverse matrix $\eta^{-1} = (\eta^{\alpha\beta})_{\alpha,\beta=0}^N$. We also

¹We denote the metric tensor and its Gram matrix by the same symbol η . This is a standard abuse of notation.

introduce the dual basis (T^0, \ldots, T^N) of $H^{\bullet}(X, \mathbb{C})$, by setting

$$T^{\alpha} := \sum_{\lambda=0}^{N} T_{\lambda} \eta^{\lambda \alpha}, \quad \alpha = 0, \dots, N.$$

Define the *Novikov ring* Λ_X as the ring of formal sums

$$\sum_{\beta \in H_2(X,\mathbb{Z})} a_{\beta} \mathbf{Q}^{\beta}, \quad a_{\beta} \in \mathbb{Q},$$

such that

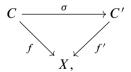
$$\operatorname{card} \left\{ \beta : a_{\beta} \neq 0 \text{ and } \int_{\beta} \omega < C \right\} < \infty \quad \text{for any } C \in \mathbb{R},$$

where ω is the Kähler form of X.

3.2 Descendant Gromov–Witten invariants

For any given $g, n \in \mathbb{N}$ and $\beta \in H_2(X, \mathbb{Z})$, denote by $\overline{\mathcal{M}}_{g,n}(X, \beta)$ the Kontsevich–Manin moduli stack of genus g, n-pointed stable maps of degree β with target X: it parametrizes isomorphism classes of pairs ((C, x), f), where

- C is a genus g nodal connected projective curve,
- $x = (x_1, ..., x_n)$ is an *n*-tuple of pairwise distinct points of the smooth locus of C,
- $f: C \to X$ is a morphism with $f_*[C] = \beta$,
- a morphism between two pairs ((C, x), f) and ((C', x'), f') is a morphism $\sigma: C \to C'$ such that $\sigma(x_i) = x_i'$ for all i, and making commutative the diagram



• the group of automorphisms of ((C, x), f) is finite.

The moduli space $\overline{\mathcal{M}}_{g,n}(X,\beta)$ is a proper Deligne–Mumford stack of virtual dimension

vir dim
$$_{\mathbb{C}} \overline{\mathcal{M}}_{g,n}(X,\beta) := (1-g)(\dim_{\mathbb{C}} X - 3) + \int_{\beta} c_1(X) + n.$$

We denote by \mathcal{L}_i , with $i=1,\ldots,n$, the i-th tautological line bundle on $\overline{\mathcal{M}}_{g,n}(X,\beta)$ whose fiber at the point $[((C,x),f)] \in \overline{\mathcal{M}}_{g,n}(X,\beta)$ is the cotangent space $T_{x_i}^*C$. Set $\psi_j := c_1(\mathcal{L}_j)$ for $j=1,\ldots,n$.

We have naturally defined evaluation morphisms

$$\operatorname{ev}_i : \overline{\mathcal{M}}_{g,n}(X,\beta) \to X, \quad [((C,x),f)] \mapsto f(x_i)$$

for i = 1, ..., n.

Definition 3.2.1. Let d_1, \ldots, d_n be non-negative integers. The *genus* g *descendant Gromov–Witten invariants* (or *genus* g *gravitational correlators*) are the rational numbers defined by the integrals

$$\langle \tau_{d_1} \alpha_1, \dots, \tau_{d_n} \alpha_n \rangle_{g,n,\beta}^X := \int_{[\overline{\mathcal{M}}_{g,n}(X,\beta)]^{\text{virt}}} \prod_{j=1}^n \psi_j^{d_j} \cup \text{ev}_j^*(\alpha_j),$$

where $\alpha_1, \ldots, \alpha_n \in H^{\bullet}(X, \mathbb{C})$, and the class

$$[\overline{\mathcal{M}}_{g,n}(X,\beta)]^{\text{virt}} \in \mathrm{CH}_D(\overline{\mathcal{M}}_{g,n}(X,\beta)), \quad D = \mathrm{vir} \dim_{\mathbb{C}} \overline{\mathcal{M}}_{g,n}(X,\beta),$$

denotes the virtual fundamental class of $\overline{\mathcal{M}}_{g,n}(X,\beta)$.

Definition 3.2.2. The *genus g total descendant potential* of X is the generating function $\mathcal{F}_g^X \in \Lambda_X[t^{\bullet}]$ of descendant GW-invariants of X defined by

$$\mathcal{F}_{g}^{X}(t^{\bullet}, \mathbf{Q}) := \sum_{n=0}^{\infty} \sum_{\beta \in \text{Eff}(X)} \frac{\mathbf{Q}^{\beta}}{n!} \langle \boldsymbol{\gamma}, \dots, \boldsymbol{\gamma} \rangle_{g,n,\beta}^{X}$$

$$= \sum_{n=0}^{\infty} \sum_{\beta} \sum_{\alpha_{1}, \dots, \alpha_{n}=0}^{N} \sum_{p_{1}, \dots, p_{n}=0}^{\infty} \frac{t^{\alpha_{1}, p_{1}} \dots t^{\alpha_{n}, p_{n}}}{n!} \cdot \langle \tau_{p_{1}} T_{\alpha_{1}}, \dots, \tau_{p_{n}} T_{\alpha_{n}} \rangle_{g,n,\beta}^{X} \mathbf{Q}^{\beta}.$$

Setting $t^{\alpha,0} = t^{\alpha}$ and $t^{\alpha,p} = 0$ for p > 0, we obtain the *genus g Gromov–Witten* potential of X

$$F_g^X(t,\mathbf{Q}) := \sum_{n=0}^{\infty} \sum_{\beta} \sum_{\alpha_1,\ldots,\alpha_n=0}^{N} \frac{t^{\alpha_1} \ldots t^{\alpha_n}}{n!} \langle T_{\alpha_1},\ldots,T_{\alpha_n} \rangle_{g,n,\beta}^X \mathbf{Q}^{\beta}.$$

It will also be convenient to introduce the *genus g correlation functions* defined by the derivatives

$$\langle \langle \tau_{d_1} T_{\alpha_1}, \dots, \tau_{d_n} T_{\alpha_n} \rangle \rangle_g := \frac{\partial}{\partial t^{\alpha_1, d_1}} \dots \frac{\partial}{\partial t^{\alpha_n, d_n}} \mathcal{F}_g^X(t^{\bullet}, \mathbf{Q}) \Big|_{\substack{t^{\alpha, p} = 0 \text{ for } p > 0}}.$$

3.3 Quantum cohomology

Let $\beta_1, \ldots, \beta_r \in H_2(X, \mathbb{Z})$ be the homology classes dual to T_1, \ldots, T_r . By the divisor axiom, the genus 0 Gromov–Witten potential $F_0^X(t, \mathbf{Q})$ can be seen as an element

of the ring $\mathbb{C}[t^0, \mathbf{Q}^{\beta_1}e^{t^1}, \dots, \mathbf{Q}^{\beta_r}e^{t^r}, t^{r+1}, \dots, t^N]$. In what follows we will be interested in the cases when F_0^X is a convergent series expansion

$$F_0^X \in \mathbb{C}\{t^0, \mathbf{Q}^{\beta_1}e^{t^1}, \dots, \mathbf{Q}^{\beta_r}e^{t^r}, t^{r+1}, \dots, t^N\}.$$
 (3.3.1)

Without loss of generality we can put $\mathbf{Q} = 1$. Under assumption (3.3.1), $F_0^X(t)$ defines an analytic function in an open neighborhood $\Omega \subseteq H^{\bullet}(X, \mathbb{C})$ of the point

$$t^{i} = 0, \quad i = 0, r + 1, \dots, N, \quad \text{Re } t^{i} \to -\infty, \quad i = 1, 3, \dots, r.$$

The function F_0^X is a solution of WDVV equations [58,61,76,78], and thus it defines an analytic Frobenius manifold structure on Ω . Using the canonical identifications of tangent spaces $T_p\Omega \cong H^{\bullet}(X;\mathbb{C})$: $\partial_{t^{\alpha}} \mapsto T_{\alpha}$, the unit vector field is $e = \partial_{t^0} \equiv 1$, and the Euler vector field is

$$E := c_1(X) + \sum_{\alpha=0}^{N} \left(1 - \frac{1}{2} \operatorname{deg} T_{\alpha}\right) t^{\alpha} T_{\alpha},$$

which satisfies

$$\mathfrak{L}_E F_0^X = (3 - \dim_{\mathbb{C}} X) F_0^X.$$

The Frobenius manifold structure on Ω can be extended by analytic continuation. The resulting maximal Frobenius structure is called quantum cohomology of X, denoted $QH^{\bullet}(X)$.

In the recent paper [18], a useful convergence criterion for formal power series solutions of WDVV equations is given. In the case of quantum cohomologies of Fano varieties, we have the following result.

Assume that X is Fano, and let us consider the finite-dimensional \mathbb{C} -algebra $(H^{\bullet}(X,\mathbb{C}), \circ_0)$, where the product \circ_0 is defined by

$$T_{\alpha} \circ_0 T_{\gamma} = \sum_{\lambda=0}^{N} c_{\alpha\gamma}^{\lambda} T_{\lambda}, \quad \alpha, \gamma = 0, \dots, N,$$

where

$$c_{\alpha\gamma}^{\lambda} := \sum_{\varepsilon=0}^{N} \sum_{\beta \in \text{Eff}(X)} \langle T_{\alpha}, T_{\gamma}, T_{\varepsilon} \rangle_{0,3,\beta}^{X} \eta^{\varepsilon\lambda}, \quad \alpha, \gamma = 0, \dots, N.$$

Notice that the sums defining the structure constants $c_{\alpha\beta}^{\lambda}$ are finite, due to the Fano assumption.

Theorem 3.3.1 ([18]). If $(H^{\bullet}(X,\mathbb{C}), \circ_0)$ is semisimple, then the Gromov–Witten potential $F_0^X(t, \mathbf{Q})$ is convergent. That is, condition (3.3.1) holds.

For a further convergence result, beyond the Fano case, see [18, Sec. 6]. See also [19], where the convergence criteria of [18] have been generalized to solutions of the more general "oriented associativity equations" [62].