Chapter 4

Monodromy data of quantum cohomology

4.1 Topological-enumerative solution

For $\beta = 0, \ldots, N$ and $k \in \mathbb{N}$, introduce the functions

$$
\theta_{\beta,k}(t) := \langle \! \langle \tau_k T_\beta, 1 \rangle \! \rangle_0 \big|_{\mathbf{Q} = 1}, \quad \theta_{\beta}(z,t) := \sum_{k=0}^{\infty} \theta_{\beta,k}(t) z^k.
$$

Define the matrix $\Theta(z, t)$ by

$$
\Theta(z,t)_\beta^\alpha := \sum_{\lambda=0}^N \eta^{\alpha\lambda} \frac{\partial \theta_\beta(z,t)}{\partial t^\lambda}, \quad \alpha, \beta = 0, \ldots, N.
$$

Denote by R the matrix associated with the morphism

$$
c_1(X)\cup: H^{\bullet}(X,\mathbb{C})\to H^{\bullet}(X,\mathbb{C}), \quad x\mapsto c_1(X)\cup x,
$$

with respect to the basis (T_0, \ldots, T_N) .

Let us consider the joint system $(2.7.1)$ – $(2.7.2)$ attached to the Frobenius manifold $QH^{\bullet}(X)$.

Theorem 4.1.1 ([\[23,](#page--1-2) [32\]](#page--1-3)). *The matrix* $Z_{top}(z, t) := \Theta(z, t)z^{\mu}z^{R}$ *is a fundamental system of solutions of the joint system* [\(2.7.1\)](#page--1-0)*–*[\(2.7.2\)](#page--1-1)*.*

The fundamental system of solutions $Z_{\text{top}}(z,t)$ is called *topological-enumerative solution* of the joint system [\(2.7.1\)](#page--1-0)–[\(2.7.2\)](#page--1-1).

Let $M_0(t)$ be the monodromy matrix defined by

$$
Z_{\text{top}}(e^{2\pi\sqrt{-1}}z,t)=Z_{\text{top}}(z,t)M_0(t), \quad z\in\widetilde{\mathbb{C}^*}.
$$

Lemma 4.1.2. *We have*

$$
M_0(t) = \exp(2\pi\sqrt{-1}\mu)\exp(2\pi\sqrt{-1}R).
$$

In particular, M_0 *does not depend on t.*

4.2 Stokes rays and ℓ -chamber decomposition

Definition 4.2.1. We call *Stokes rays* at a point $p \in \Omega$ the oriented rays $R_{ij}(p)$ in C defined by p

$$
R_{ij}(p) := \{-\sqrt{-1}(\overline{u_i(p)} - \overline{u_j(p)})\rho : \rho \in \mathbb{R}_+\},\
$$

where $(u_1(p), \ldots, u_n(p))$ is the spectrum of the operator $\mathcal{U}(p)$ (with a fixed arbitrary order).

Fix an oriented ray ℓ in the universal cover \widetilde{C}^* .

Definition 4.2.2. We say that ℓ is *admissible* at $p \in \Omega$ if the projection of the ray ℓ on \mathbb{C}^* does not coincide with any Stokes ray $R_{ij}(p)$.

Definition 4.2.3. Define the open subset O_ℓ of points $p \in \Omega$ by the following conditions:

- (1) the eigenvalues $u_i(p)$ are pairwise distinct,
- (2) ℓ is admissible at p.

We call ℓ -*chamber* of Ω any connected component of O_ℓ .

4.3 Stokes fundamental solutions at $z = \infty$

Fix an oriented ray $\ell \equiv \{ \arg z = \varphi \}$ in $\widetilde{C^*}$. For $m \in \mathbb{Z}$, define the following sectors in $\widetilde{\mathbb{C}^*}$:

$$
\Pi_{L,m}(\varphi) := \{ z \in \widetilde{\mathbb{C}^*} : \varphi + 2\pi m < \arg z < \varphi + \pi + 2\pi m \},\
$$
\n
$$
\Pi_{R,m}(\varphi) := \{ z \in \widetilde{\mathbb{C}^*} : \varphi - \pi + 2\pi m < \arg z < \varphi + 2\pi m \}.
$$

Denote by \mathcal{B}_X the bifurcation diagram of the quantum cohomology of X.

Theorem 4.3.1 ([\[30,](#page--1-4) [32\]](#page--1-3)). *There exists a unique formal solution* $Z_{\text{form}}(z, t)$ *of the joint system* [\(2.7.1\)](#page--1-0)*–*[\(2.7.2\)](#page--1-1) *of the form*

$$
Z_{\text{form}}(z,t) = \Psi(t)^{-1} G(z,t) \exp(z U(t)),
$$

$$
G(z,t) = I + \sum_{k=1}^{\infty} \frac{1}{z^k} G_k(t),
$$

where the matrices $G_k(t)$ *are holomorphic on* $\Omega \setminus \mathcal{B}_X$ *.*

Theorem 4.3.2 ([\[30,](#page--1-4) [32\]](#page--1-3)). Let $m \in \mathbb{Z}$. There exist unique fundamental systems of *solutions* $Z_{L,m}(z,t)$ *and* $Z_{R,m}(z,t)$ *of the joint system* [\(2.7.1\)](#page--1-0)–[\(2.7.2\)](#page--1-1) *with respective asymptotic expansion*

$$
Z_{L,m}(z,t) \sim Z_{\text{form}}(z,t), \quad |z| \to \infty, \, z \in \Pi_{L,m}(\varphi),
$$

$$
Z_{R,m}(z,t) \sim Z_{\text{form}}(z,t), \quad |z| \to \infty, \, z \in \Pi_{R,m}(\varphi).
$$

Definition 4.3.3. The solutions $Z_{L,m}(z,t)$ and $Z_{R,m}(z,t)$ are called *Stokes fundamental solutions* of the joint system [\(2.7.1\)](#page--1-0), [\(2.7.2\)](#page--1-1) on the sectors $\Pi_{L,m}(\varphi)$ and $\Pi_{R,m}(\varphi)$, respectively.

4.4 Monodromy data

Let $\ell \equiv \{\arg z = \varphi\}$ be an oriented ray in $\widetilde{C^*}$ and consider the corresponding Stokes fundamental systems of solutions $Z_{L,m}(z,t)$, $Z_{R,m}(z,t)$ for $m \in \mathbb{Z}$.

Definition 4.4.1. We define the *Stokes* and *central connection* matrices $S^{(m)}(p)$, $C^{(m)}(p)$, with $m \in \mathbb{Z}$, at the point $p \in O_{\ell}$ by the identities

$$
Z_{L,m}(z,t(p)) = Z_{R,m}(z,t(p))S^{(m)}(p), \quad z \in \widetilde{\mathbb{C}}^*,
$$

$$
Z_{R,m}(z,t(p)) = Z_{top}(z,t(p))C^{(m)}(p), \quad z \in \widetilde{\mathbb{C}}^*.
$$

Set $S(p) := S^{(0)}(p)$ and $C(p) := C^{(0)}(p)$.

Definition 4.4.2. The *monodromy data* at the point $p \in O_\ell$ are defined as the 4-tuple of matrices $(\mu, R, S(p), C(p))$, where

- \bullet μ is the matrix associated to the grading operator,
- R is the matrix associated to the operator $c_1(X) \cup H^{\bullet}(X, \mathbb{C}) \to H^{\bullet}(X, \mathbb{C}),$
- $S(p)$, $C(p)$ are the Stokes and central connection matrices at p, respectively.

Definition 4.4.3. Fix a point $p \in O_\ell$ with canonical coordinates $(u_i(p))_{i=1}^n$. Define the oriented rays $L_j(p, \varphi)$, $j = 1, ..., n$, in the complex plane by the equations

$$
L_j(p,\varphi) := \{u_j(p) + \rho e^{\sqrt{-1}(\frac{\pi}{2}-\varphi)} : \rho \in \mathbb{R}_+\}.
$$

The ray $L_j(p, \varphi)$ is oriented from $u_j(p)$ to ∞ . We say that $(u_i(p))_{i=1}^n$ are in ℓ -lexi*cographical order* if $L_j(p, \varphi)$ is on the left of $L_k(p, \varphi)$ for $1 \leq j \leq k \leq n$.

In what follows, it is assumed that the ℓ -lexicographical order of canonical coordinates is fixed at all points of ℓ -chambers.

Lemma 4.4.4 ([\[21,](#page--1-5)[32\]](#page--1-3)). If the canonical coordinates $(u_i(p))_{i=1}^n$ are in ℓ -lexicographical order at $p \in O_\ell$, then the Stokes matrices $S^{(m)}(p)$, $m \in \mathbb{Z}$, are upper trian*gular with ones along the diagonal.*

By Lemma [4.1.2,](#page-0-0) the matrices μ and R determine the monodromy of solutions of the qDE,

$$
M_0 := \exp(2\pi \sqrt{-1}\mu) \exp(2\pi \sqrt{-1}R).
$$

Moreover, μ and R do not depend on the point p. The following theorem furnishes a refinement of this property.

Theorem 4.4.5 ([\[21,](#page--1-5)[30,](#page--1-4)[32\]](#page--1-3)). *The monodromy data* (μ , R, S, C) are constant in each `*-chamber. Moreover, they satisfy the following identities:*

$$
CS^T S^{-1} C^{-1} = M_0,\t\t(4.4.1)
$$

$$
S = C^{-1} \exp(-\pi \sqrt{-1}R) \exp(-\pi \sqrt{-1}\mu) \eta^{-1} (C^T)^{-1}, \qquad (4.4.2)
$$

$$
ST = C-1 exp(π \sqrt{-1}R) exp(π \sqrt{-1}μ)η-1(CT)-1.
$$
 (4.4.3)

Theorem 4.4.6 ([\[21\]](#page--1-5)). *The Stokes and central connection matrices* S_m , C_m , with $m \in \mathbb{Z}$, can be reconstructed from the monodromy data (μ, R, S, C) :

$$
S^{(m)} = S, \quad C^{(m)} = M_0^{-m}C, \quad m \in \mathbb{Z}.
$$
 (4.4.4)

Remark 4.4.7. Points of O_ℓ are semisimple. The results of [\[21,](#page--1-5)[22,](#page--1-6)[24,](#page--1-7)[25\]](#page--1-8) imply that the monodromy data (μ, R, S, C) are well defined also at points $p \in \Omega_{ss} \cap \mathcal{B}_{\Omega}$, and that Theorem [4.4.5](#page-2-0) still holds true.

Remark 4.4.8. Note that from the knowledge of the monodromy data (μ, R, S, C) the Gromov–Witten potential $F_0^X(t)$ can be reconstructed via a Riemann–Hilbert boundary value problem, see [\[21,](#page--1-5) [23,](#page--1-2) [32,](#page--1-3) [47\]](#page--1-9). Hence, the monodromy data may be interpreted as a *system of coordinates* in the space of solutions of WDVV equations.

4.5 Natural transformations of monodromy data

The definition of the Stokes and central connection matrices is subordinate to several non-canonical choices:

- (1) the choice of an oriented ray ℓ in $\widetilde{\mathbb{C}}^*$,
- (2) the choice of an ordering of canonical coordinates u_1, \ldots, u_n on each ℓ -chamber.
- (3) the choice of signs in [\(2.2.1\)](#page--1-10), and hence of the branch of the Ψ -matrix on each ℓ -chamber.

Different choices affect the numerical values of the data (S, C) .

For different choices of the oriented ray ℓ , the transformation of S and C can be described in terms of an action of the braid group \mathcal{B}_n , described in Section [4.6.](#page-4-0) For different choices of ordering of canonical coordinates, the Stokes and central connection matrices transform as follows:

 $S \mapsto \Pi S \Pi^{-1}$, $C \mapsto C \Pi^{-1}$, Π permutation matrix.

For different choices of the branch of the Ψ -matrix, we have a transformation of the following type:

$$
S \mapsto ISI, \quad C \mapsto CI, \quad I = \text{diag}(\pm 1, \dots, \pm 1).
$$

See [\[21,](#page--1-5) [23\]](#page--1-2) for more details.

Moreover, let us also add that the value of all the monodromy data is affected by different choices of the system of flat coordinates t .

Proposition 4.5.1. Let $(\tilde{t}^0, \ldots, \tilde{t}^N)$ be a system of flat coordinates on Ω related to (t^0, \ldots, t^N) by the transformations

$$
\tilde{t}^{\alpha} = A^{\alpha}_{\beta} t^{\beta} + c^{\alpha}, \quad A^{\alpha}_{\beta}, c^{\alpha} \in \mathbb{C}, \quad \alpha, \beta = 0, \dots, N.
$$

The monodromy data $(\tilde{\mu}, \tilde{R}, \tilde{S}, \tilde{C})$, *computed with respect to the coordinates* \tilde{t} *, are related to the data* (μ, R, S, C) *, computed with respect to t, as follows:*

$$
\widetilde{\mu} = A\mu A^{-1}, \quad \widetilde{R} = A R A^{-1}, \quad \widetilde{S} = S, \quad \widetilde{C} = A C.
$$

Proof. The transformation of μ , R is due to their tensorial nature: they are (1,1)tensors on Ω . Notice that $\tilde{\Psi} = \Psi A^{-1}$, $\tilde{Z}_{R,0} = AZ_{R,0}$ and $\tilde{Z}_{top} = AZ_{top}A^{-1}$ so that

$$
\widetilde{C} = \widetilde{Z}_{\text{top}}^{-1} \widetilde{Z}_{R,0} = A Z_{\text{top}}^{-1} A^{-1} A Z_{R,0} = A C.
$$

Equation [\(4.4.2\)](#page-2-1), together with $\tilde{\eta} = (A^{-1})^T \eta A^{-1}$, shows that $\tilde{S} = S$.

Remark 4.5.2. In particular, Proposition [4.5.1](#page-3-0) applies in the case of deformations of the complex structures of X. Consider a smooth proper map $f : \mathcal{F} \to B$ with a connected base space B, and set $X_b := f^{-1}(b)$ with $b \in B$. Given $b_1, b_2 \in B$, there exists a diffeomorphism $\varphi: X_{b_1} \to X_{b_2}$, which allows to identify (co)homology groups:

$$
\varphi_*\colon H_\bullet(X_{b_1},\mathbb{Z})\to H_\bullet(X_{b_2},\mathbb{Z})
$$

and

$$
\varphi^* \colon H^{\bullet}(X_{b_2}, \mathbb{Z}) \to H^{\bullet}(X_{b_1}, \mathbb{Z}).
$$

By using the isomorphisms φ_*, φ^* , and by invoking the deformation axiom of Gromov–Witten invariants (see e.g. [\[27,](#page--1-11) Section 7.3]), we can identify the quantum cohomologies $QH^{\bullet}(X_{b_1})$ and $QH^{\bullet}(X_{b_2})$: the deformation of the complex structure just represents a change of flat coordinates on the same Frobenius manifold.

4.6 Action of the braid group \mathcal{B}_n

Consider the braid group \mathcal{B}_n with generators $\beta_1, \ldots, \beta_{n-1}$ satisfying the relations

$$
\beta_i \beta_j = \beta_j \beta_i, \quad |i - j| > 1,
$$

$$
\beta_i \beta_{i+1} \beta_i = \beta_{i+1} \beta_i \beta_{i+1}.
$$

Let \mathcal{U}_n be the set of upper triangular $(n \times n)$ -matrices with ones along the diagonal.

Definition 4.6.1. Given $U \in \mathcal{U}_n$, define the matrices $A^{\beta_i}(U)$, with $i = 1, ..., n - 1$, as follows:

$$
(A^{\beta_i}(U))_{hh} := 1, \quad h = 1, \dots, n, \ h \neq i, i+1,
$$

$$
(A^{\beta_i}(U))_{i+1, i+1} := -U_{i, i+1},
$$

$$
(A^{\beta_i}(U))_{i, i+1} := (A^{\beta_i}(U))_{i+1, i} = 1,
$$

and all other entries of $A^{\beta_i}(U)$ are equal to zero.

Lemma 4.6.2 ([\[30,](#page--1-4) [32\]](#page--1-3)). *The braid group* \mathcal{B}_n *acts on* $\mathcal{U}_n \times GL(n, \mathbb{C})$ *as follows:* $\mathcal{B}_n \times \mathcal{U}_n \times \mathrm{GL}(n,\mathbb{C}) \to \mathcal{U}_n \times \mathrm{GL}(n,\mathbb{C}),$ $(\beta_i, U, C) \mapsto (A^{\beta_i}(U) \cdot U \cdot A^{\beta_i}(U), C \cdot A^{\beta_i}(U)^{-1}).$

We denote by $(U, C)^{\beta_i}$ *the action of* β_i *on* (U, C) *.*

Fix an oriented ray $\ell_o \equiv \{\arg z = \varphi_o\}$ in $\widetilde{C^*}$, and denote by $\overline{\ell_o}$ its projection on $\widetilde{\mathbb{C}}^*$. Let $p_o \in O_{\ell_o}$, and let (S_0, C_0) be the Stokes and central connection matrices computed at p_o with respect to ℓ_o , the ℓ_o -lexicographical order of canonical coordinates $u_i(p_o)$, and a suitable determination of the Ψ -matrix at p_o . If we let the oriented ray rotate, so that it crosses some Stokes rays $R_{ij}(p_o)$, the values of (S_0, C_0) will change. We can describe this difference of values in terms of the braid group action of Lemma [4.6.2.](#page-5-0)

Theorem 4.6.3 ([\[21,](#page--1-5)[30,](#page--1-4)[32\]](#page--1-3)). *Consider a continuous map* φ : [0, 1] $\rightarrow \mathbb{R}$ *, with* φ (0) = φ_o , and set $\ell(t) := \{ \arg z = \varphi(t) \}$ for any $t \in [0, 1]$. Assume that

- *the rays* $\ell(0)$ *and* $\ell(1)$ *are admissible at* p_o *,*
- *there exists a unique* $t_o \in [0, 1]$ *such that* $\ell(t_o)$ *is not admissible at* p_o ,
- *there exist* $i_1, \ldots, i_k \in \{1, \ldots, n\}$, with $|i_a i_b| > 1$ *for* $a \neq b$, such that the projected ray $\overline{\ell}(t) \subseteq \mathbb{C}$ crosses the rays $(R_{i_j,i_j+1})_{j=1}^k$ in the counterclockwise (resp. *clockwise)* direction, as $t \rightarrow t_o^$ o *.*

Denote by (S_i, C_i) *, with* $i = 0, 1$ *, the Stokes and central connection matrices at* p_o *with respect to the oriented ray* $\ell(i)$ *, with* $i = 0, 1$ *. We have*

$$
(S_1, C_1) = (S_0, C_0)^{\beta}, \quad \beta = \prod_{j=1}^k \beta_{ij} \quad \left(\text{resp. } \beta = \left(\prod_{j=1}^k \beta_{ij}\right)^{-1}\right).
$$

Remark 4.6.4. An arbitrary rotation of ℓ can be decomposed into the composition of elementary rotations satisfying the assumptions of Theorem [4.6.3.](#page-5-1)

Furthermore, the braid group action also describes how the values of Stokes and central connection matrices in different ℓ -chambers (for a fixed oriented rays ℓ) are related to each other.

Fix an oriented ray $\ell \equiv \{ \arg z = \varphi \}$ in $\widetilde{C^*}$, and denote by $\overline{\ell}$ its projection on \mathbb{C}^* . Let $\Omega_{\ell,1}$, $\Omega_{\ell,2}$ be two ℓ -chambers and let $p_i \in \Omega_{\ell,i}$ for $i = 1, 2$. The difference of values of the Stokes and central connection matrices (S_1, C_1) and (S_2, C_2) , at p_1 and p_2 , respectively, can be described by the action of the braid group \mathcal{B}_n of Lemma [4.6.2.](#page-5-0)

Theorem 4.6.5 ([\[21,](#page--1-5) [30,](#page--1-4) [32\]](#page--1-3)). *Consider a continuous path* γ : [0, 1] $\rightarrow \Omega$ *such that*

•
$$
\gamma(0) = p_1 \text{ and } \gamma(1) = p_2,
$$

there exists a unique $t_0 \in [0, 1]$ *such that* ℓ *is not admissible at* $\gamma(t_0)$ *,*

• *there exist* $i_1, \ldots, i_k \in \{1, \ldots, n\}$, with $|i_a - i_b| > 1$ *for* $a \neq b$, such that the $rays^1$ $rays^1$ $(R_{i_j,i_j+1}(t))_{j=1}^r$ (resp. $(R_{i_j,i_j+1}(t))_{j=r+1}^k$) cross the ray $\overline{\ell}$ in the clock*wise (resp. counterclockwise) direction, as* $t \rightarrow t_o^$ o *.*

Then we have

$$
(S_2, C_2) = (S_1, C_1)^{\beta}, \quad \beta := \left(\prod_{j=1}^r \beta_{i_j}\right) \cdot \left(\prod_{h=r+1}^k \beta_{i_h}\right)^{-1}.
$$

Remark 4.6.6. In the general case, the points p_1 and p_2 can be connected by concatenations of paths γ satisfying the assumptions of Theorem [4.6.5.](#page-5-2)

Remark 4.6.7. The action of \mathcal{B}_n on (S, C) also describes the analytic continuation of the Frobenius manifold structure on Ω , see [\[32,](#page--1-3) Lecture 4].

¹Here the labeling of Stokes rays is the one prolonged from the initial point $t = 0$.