
Chapter 4

Monodromy data of quantum cohomology

4.1 Topological-enumerative solution

For ˇ D 0; : : : ; N and k 2 N, introduce the functions

�ˇ;k.t/ WD hh�kTˇ ; 1ii0
ˇ̌
QD1; �ˇ .z; t/ WD

1X
kD0

�ˇ;k.t/z
k :

Define the matrix ‚.z; t/ by

‚.z; t/˛ˇ WD

NX
�D0

�˛�
@�ˇ .z; t/

@t�
; ˛; ˇ D 0; : : : ; N:

Denote by R the matrix associated with the morphism

c1.X/[WH
�.X;C/! H �.X;C/; x 7! c1.X/ [ x;

with respect to the basis .T0; : : : ; TN /.
Let us consider the joint system (2.7.1)–(2.7.2) attached to the Frobenius manifold

QH �.X/.

Theorem 4.1.1 ([23, 32]). The matrix Ztop.z; t/ WD ‚.z; t/z
�zR is a fundamental

system of solutions of the joint system (2.7.1)–(2.7.2).

The fundamental system of solutionsZtop.z; t/ is called topological-enumerative
solution of the joint system (2.7.1)–(2.7.2).

Let M0.t/ be the monodromy matrix defined by

Ztop.e
2�
p
�1z; t/ D Ztop.z; t/M0.t/; z 2 fC�:

Lemma 4.1.2. We have

M0.t/ D exp.2�
p
�1�/ exp.2�

p
�1R/:

In particular, M0 does not depend on t.

4.2 Stokes rays and `-chamber decomposition

Definition 4.2.1. We call Stokes rays at a point p 2 � the oriented rays Rij .p/ in C
defined by

Rij .p/ WD
®
�
p
�1.ui .p/ � uj .p//� W � 2 RC

¯
;
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where .u1.p/; : : : ; un.p// is the spectrum of the operator U.p/ (with a fixed arbitrary
order).

Fix an oriented ray ` in the universal cover fC�.
Definition 4.2.2. We say that ` is admissible at p 2 � if the projection of the ray `
on C� does not coincide with any Stokes ray Rij .p/.

Definition 4.2.3. Define the open subsetO` of points p 2 � by the following condi-
tions:

(1) the eigenvalues ui .p/ are pairwise distinct,

(2) ` is admissible at p.

We call `-chamber of � any connected component of O`.

4.3 Stokes fundamental solutions at z D1

Fix an oriented ray ` � ¹arg z D 'º in fC�. For m 2 Z, define the following sectors
in fC�:

…L;m.'/ WD ¹z 2 fC� W ' C 2�m < arg z < ' C � C 2�mº;

…R;m.'/ WD ¹z 2 fC� W ' � � C 2�m < arg z < ' C 2�mº:

Denote by BX the bifurcation diagram of the quantum cohomology of X .

Theorem 4.3.1 ([30, 32]). There exists a unique formal solution Zform.z; t/ of the
joint system (2.7.1)–(2.7.2) of the form

Zform.z; t/ D ‰.t/
�1G.z; t/ exp.zU.t//;

G.z; t/ D I C

1X
kD1

1

zk
Gk.t/;

where the matrices Gk.t/ are holomorphic on � nBX .

Theorem 4.3.2 ([30, 32]). Let m 2 Z. There exist unique fundamental systems of
solutionsZL;m.z; t/ andZR;m.z; t/ of the joint system (2.7.1)–(2.7.2) with respective
asymptotic expansion

ZL;m.z; t/ � Zform.z; t/; jzj ! 1; z 2 …L;m.'/;

ZR;m.z; t/ � Zform.z; t/; jzj ! 1; z 2 …R;m.'/:

Definition 4.3.3. The solutions ZL;m.z; t/ and ZR;m.z; t/ are called Stokes fun-
damental solutions of the joint system (2.7.1), (2.7.2) on the sectors …L;m.'/ and
…R;m.'/, respectively.
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4.4 Monodromy data

Let ` � ¹arg z D 'º be an oriented ray in fC� and consider the corresponding Stokes
fundamental systems of solutions ZL;m.z; t/, ZR;m.z; t/ for m 2 Z.

Definition 4.4.1. We define the Stokes and central connection matrices S .m/.p/,
C .m/.p/, with m 2 Z, at the point p 2 O` by the identities

ZL;m.z; t.p// D ZR;m.z; t.p//S
.m/.p/; z 2 fC�;

ZR;m.z; t.p// D Ztop.z; t.p//C
.m/.p/; z 2 fC�:

Set S.p/ WD S .0/.p/ and C.p/ WD C .0/.p/.

Definition 4.4.2. The monodromy data at the point p 2 O` are defined as the 4-tuple
of matrices .�;R; S.p/; C.p//, where

• � is the matrix associated to the grading operator,

• R is the matrix associated to the operator c1.X/ [ WH �.X;C/! H �.X;C/,

• S.p/; C.p/ are the Stokes and central connection matrices at p, respectively.

Definition 4.4.3. Fix a point p 2 O` with canonical coordinates .ui .p//niD1. Define
the oriented rays Lj .p; '/, j D 1; : : : ; n, in the complex plane by the equations

Lj .p; '/ WD
®
uj .p/C �e

p
�1.�2 �'/ W � 2 RC

¯
:

The ray Lj .p; '/ is oriented from uj .p/ to1. We say that .ui .p//niD1 are in `-lexi-
cographical order if Lj .p; '/ is on the left of Lk.p; '/ for 1 6 j < k 6 n.

In what follows, it is assumed that the `-lexicographical order of canonical coor-
dinates is fixed at all points of `-chambers.

Lemma 4.4.4 ([21, 32]). If the canonical coordinates .ui .p//niD1 are in `-lexicogra-
phical order at p 2 O`, then the Stokes matrices S .m/.p/, m 2 Z, are upper trian-
gular with ones along the diagonal.

By Lemma 4.1.2, the matrices � and R determine the monodromy of solutions of
the qDE,

M0 WD exp.2�
p
�1�/ exp.2�

p
�1R/:

Moreover, � and R do not depend on the point p. The following theorem furnishes
a refinement of this property.

Theorem 4.4.5 ([21,30,32]). The monodromy data .�;R; S; C / are constant in each
`-chamber. Moreover, they satisfy the following identities:

CSTS�1C�1 DM0; (4.4.1)

S D C�1 exp.��
p
�1R/ exp.��

p
�1�/��1.C T /�1; (4.4.2)

ST D C�1 exp.�
p
�1R/ exp.�

p
�1�/��1.C T /�1: (4.4.3)
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Theorem 4.4.6 ([21]). The Stokes and central connection matrices Sm; Cm, with
m 2 Z, can be reconstructed from the monodromy data .�;R; S; C /:

S .m/ D S; C .m/ DM�m0 C; m 2 Z: (4.4.4)

Remark 4.4.7. Points ofO` are semisimple. The results of [21,22,24,25] imply that
the monodromy data .�;R; S; C / are well defined also at points p 2 �ss \B�, and
that Theorem 4.4.5 still holds true.

Remark 4.4.8. Note that from the knowledge of the monodromy data .�;R; S; C /
the Gromov–Witten potential FX0 .t/ can be reconstructed via a Riemann–Hilbert
boundary value problem, see [21, 23, 32, 47]. Hence, the monodromy data may be
interpreted as a system of coordinates in the space of solutions of WDVV equations.

4.5 Natural transformations of monodromy data

The definition of the Stokes and central connection matrices is subordinate to several
non-canonical choices:

(1) the choice of an oriented ray ` in fC�,
(2) the choice of an ordering of canonical coordinates u1; : : : ; un on each

`-chamber,

(3) the choice of signs in (2.2.1), and hence of the branch of the ‰-matrix on
each `-chamber.

Different choices affect the numerical values of the data .S; C /.
For different choices of the oriented ray `, the transformation of S and C can be

described in terms of an action of the braid group Bn, described in Section 4.6.
For different choices of ordering of canonical coordinates, the Stokes and central
connection matrices transform as follows:

S 7! …S…�1; C 7! C…�1; … permutation matrix:

For different choices of the branch of the ‰-matrix, we have a transformation of the
following type:

S 7! ISI; C 7! CI; I D diag.˙1; : : : ;˙1/:

See [21, 23] for more details.
Moreover, let us also add that the value of all the monodromy data is affected by

different choices of the system of flat coordinates t.

Proposition 4.5.1. Let .zt 0; : : : ; zt N / be a system of flat coordinates on � related to
.t0; : : : ; tN / by the transformations

zt ˛ D A˛ˇ t
ˇ
C c˛; A˛ˇ ; c

˛
2 C; ˛; ˇ D 0; : : : ; N:
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The monodromy data .z�; zR; zS; zC/, computed with respect to the coordinateset, are
related to the data .�;R; S; C /, computed with respect to t, as follows:

z� D A�A�1; zR D ARA�1; zS D S; zC D AC:

Proof. The transformation of �;R is due to their tensorial nature: they are (1,1)-
tensors on �. Notice that z‰ D ‰A�1, zZR;0 D AZR;0 and zZtop D AZtopA

�1 so that

zC D zZ�1top
zZR;0 D AZ

�1
topA

�1AZR;0 D AC:

Equation (4.4.2), together with z� D .A�1/T �A�1, shows that zS D S:

Remark 4.5.2. In particular, Proposition 4.5.1 applies in the case of deformations
of the complex structures of X . Consider a smooth proper map f WF ! B with
a connected base space B , and set Xb WD f �1.b/ with b 2 B . Given b1; b2 2 B ,
there exists a diffeomorphism 'WXb1 ! Xb2 , which allows to identify (co)homology
groups:

'�WH�.Xb1 ;Z/! H�.Xb2 ;Z/

and
'�WH �.Xb2 ;Z/! H �.Xb1 ;Z/:

By using the isomorphisms '�; '�, and by invoking the deformation axiom of
Gromov–Witten invariants (see e.g. [27, Section 7.3]), we can identify the quantum
cohomologies QH �.Xb1/ and QH �.Xb2/: the deformation of the complex structure
just represents a change of flat coordinates on the same Frobenius manifold.

4.6 Action of the braid group Bn

Consider the braid group Bn with generators ˇ1; : : : ; ˇn�1 satisfying the relations

ˇi ǰ D ǰˇi ; ji � j j > 1;

ˇiˇiC1ˇi D ˇiC1ˇiˇiC1:

Let Un be the set of upper triangular .n � n/-matrices with ones along the diagonal.

Definition 4.6.1. GivenU 2 Un, define the matricesAˇi .U /, with i D 1; : : : ; n � 1,
as follows: �

Aˇi .U /
�
hh
WD 1; h D 1; : : : ; n; h ¤ i; i C 1;�

Aˇi .U /
�
iC1;iC1

WD �Ui;iC1;�
Aˇi .U /

�
i;iC1

WD
�
Aˇi .U /

�
iC1;i

D 1;

and all other entries of Aˇi .U / are equal to zero.
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Lemma 4.6.2 ([30, 32]). The braid group Bn acts on Un � GL.n;C/ as follows:

Bn �Un � GL.n;C/! Un � GL.n;C/;

.ˇi ; U; C / 7! .Aˇi .U / � U � Aˇi .U /; C � Aˇi .U /�1/:

We denote by .U; C /ˇi the action of ˇi on .U; C /.

Fix an oriented ray `o � ¹arg z D 'oº in fC�, and denote by `o its projection
on fC�. Let po 2 O`o , and let .S0; C0/ be the Stokes and central connection matrices
computed at po with respect to `o, the `o-lexicographical order of canonical coordi-
nates ui .po/, and a suitable determination of the‰-matrix at po. If we let the oriented
ray rotate, so that it crosses some Stokes rays Rij .po/, the values of .S0; C0/ will
change. We can describe this difference of values in terms of the braid group action
of Lemma 4.6.2.

Theorem 4.6.3 ([21,30,32]). Consider a continuous map 'W Œ0; 1�! R, with '.0/D
'o, and set `.t/ WD ¹arg z D '.t/º for any t 2 Œ0; 1�. Assume that

• the rays `.0/ and `.1/ are admissible at po,

• there exists a unique to 2 �0; 1Œ such that `.to/ is not admissible at po,

• there exist i1; : : : ; ik 2 ¹1; : : : ; nº, with jia � ibj > 1 for a ¤ b, such that the pro-
jected ray `.t/ � C crosses the rays .Rij ;ijC1/

k
jD1 in the counterclockwise (resp.

clockwise) direction, as t ! t�o .

Denote by .Si ; Ci /, with i D 0; 1, the Stokes and central connection matrices at po
with respect to the oriented ray `.i/, with i D 0; 1. We have

.S1; C1/ D .S0; C0/
ˇ ; ˇ D

kY
jD1

ˇij

 
resp. ˇ D

 
kY

jD1

ˇij

!�1!
:

Remark 4.6.4. An arbitrary rotation of ` can be decomposed into the composition
of elementary rotations satisfying the assumptions of Theorem 4.6.3.

Furthermore, the braid group action also describes how the values of Stokes and
central connection matrices in different `-chambers (for a fixed oriented rays `) are
related to each other.

Fix an oriented ray ` � ¹arg z D 'º in fC�, and denote by ` its projection on C�.
Let �`;1; �`;2 be two `-chambers and let pi 2 �`;i for i D 1; 2. The difference
of values of the Stokes and central connection matrices .S1; C1/ and .S2; C2/, at
p1 and p2, respectively, can be described by the action of the braid group Bn of
Lemma 4.6.2.

Theorem 4.6.5 ([21, 30, 32]). Consider a continuous path 
 W Œ0; 1�! � such that

• 
.0/ D p1 and 
.1/ D p2,

• there exists a unique to 2 Œ0; 1� such that ` is not admissible at 
.to/,
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• there exist i1; : : : ; ik 2 ¹1; : : : ; nº, with jia � ibj > 1 for a ¤ b, such that the
rays1 .Rij ;ijC1.t//

r
jD1 (resp. .Rij ;ijC1.t//

k
jDrC1) cross the ray ` in the clock-

wise (resp. counterclockwise) direction, as t ! t�o .

Then we have

.S2; C2/ D .S1; C1/
ˇ ; ˇ WD

 
rY

jD1

ˇij

!
�

 
kY

hDrC1

ˇih

!�1
:

Remark 4.6.6. In the general case, the points p1 and p2 can be connected by con-
catenations of paths 
 satisfying the assumptions of Theorem 4.6.5.

Remark 4.6.7. The action of Bn on .S; C / also describes the analytic continuation
of the Frobenius manifold structure on �, see [32, Lecture 4].

1Here the labeling of Stokes rays is the one prolonged from the initial point t D 0.


