Chapter 5

J -function and quantum Lefschetz theorem

5.1 J-function and master functions

Definition 5.1.1. The J-function of X is the H*(X, Ax)[#~']-valued function of
T € H*(X, C) defined by

N 00
Tx(@) =14 Y Y (g, T, 1)y ;.
a,A=0n=0

The following result will be crucial for us. For its proof see Appendix A.
Theorem 5.1.2. Leta =0,...,N and§ € H*(X,C). The (1, a)-entry of the matrix
NZop(z,8) equals

dim X

z 2 /TaUJX(8+logz-cl(X))‘Q=1.
X h=1

Corollary 5.1.3. Let § € H?(X, C). The components of the function

J(§ +logz - e1(X))|or.
h=1
with respect to any basis of H®(X, C), span the space of master functions Sg(X).

Proof. The functions z_%mztop(z, 8)]L define a generating set of the space of

master functions $5(X ). The claim follows by Theorem 5.1.2. ]

In the notations of Section 3.1, set

SZZHTi.

i=1

Any formal differential operator P € (C[[ha%, .. ,hati,, et e, e’r,h]] such that

PJx(8) =0

is called a quantum differential operator. The equation PY = 0 is called a quantum
differential equation, see e.g. [27, Section 10.3]. By Corollary 5.1.3, the master dif-
ferential equation, defined as in Section 2.7 at a point § of the complement of the
A p-stratum of Q H*(X), is equivalent to a differential equation for master functions

ﬁg(ﬂ, z2)® =0, ¢:= zi,
dz

for a suitable differentiable operator 155.
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5.2 Twisted Gromov—Witten invariants

Given a holomorphic vector bundle E — X and an invertible multiplicative' char-
acteristic class ¢, one can introduce a (E, ¢)-twisted version of the Gromov—Witten
theory of X.

Given E, there exists a complex

0 1
0—>E;,p>E;np—0
of locally free orbi-sheaves on ﬂg,n (X, B) whose cohomology sheaves are

R%ftyt14(evi E) and R'ftyy1(evii E),

respectively. Here, the forgetful and evaluation morphisms ft,+1, ev,4+1 at the last
marked point fit in the diagram

ﬂg,n—i—l(Xv ﬂ)

y X—HJ

Mg n(X.B) X.
Let us introduce an obstruction K-class
Egnp € K*(Mgn(X.B)).
defined as the K-theoretic difference
Egnp = [Ego,n,ﬁ] - [E;,n,ﬂ]‘

It is possible to show that such a difference does not depend on the choice of the
complex.

Definition 5.2.1. The (E, ¢)-twisted Gromov-Witten invariants (with descendants)
of X are the intersection numbers

n
d X.Ec . dj
(a1 ®---® r,‘f”oen)gn ﬁ" = / c¢(Egpnp) U 1_[ v Uevi(e)),
" (M (X, B i

where o1, ...,0, € H*(X,C).

Remark 5.2.2. If ¢ is the trivial characteristic class, then we recover the untwisted
Gromov—Witten invariants of X .

YA characteristic class ¢ is said to be multiplicative if ¢(E1 ® E2) = c¢(E1)c(E>). It is
invertible if ¢ (E) is invertible in H®(Y, C) for any vector bundle £ on a manifold Y.
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5.3 Quantum Lefschetz theorem

Introduce a C*-action on the total space E defined by fiberwise multiplication. Note
that the C*-equivariant Euler class e is invertible over the field of fractions Q(X)
of He. (pt) = Q[A]. Taking ¢ = e we refer to the twisted Gromov-Witten invariants
as Euler-twisted Gromov—Witten invariants.

Exactly as in the untwisted case, (E, ¢)-twisted Gromov—Witten invariants can
be collected in generating functions. In particular, we can introduce the Euler-twisted
J -function as the H*(X, Ax[A])[#~']-valued function on H*(X, C) by

B
JEe(r) =1+ Z h_”_l%(tnTa, 1,7,.. .,t)(}){’lg’g,ﬂT“.
a.k,n,B

Assume now that the vector bundle E is convex,” i.e. H'(C, f*E) = 0 for all
stable maps f:C — X with C of genus zero. Let Y be a smooth subvariety of X
defined by the zero locus of a regular section of E.

Theorem 5.3.1 ([15, 17]). The non-equivariant limit Jg ¢ | =0 exists. Moreover, it is
related to the function Jy by the equation

e lr=0(t) 2 Jy (1), T HY(X,C), (53.1)
where 1. Y — X is the inclusion.

Remark 5.3.2. The symbol & means that identity (5.3.1) holds true after application
of the morphism t4: Ax — Ay defined by Qf > Q5.

Remark 5.3.3. If dim¢c X > 3, then (* is an isomorphism, by the hyperplane Lef-
schetz theorem.

Assume that s
E=L.
i=1

where L; are nef line bundles on X such that ¢1(E) < ¢1(X). In such a case, the
quantum Lefschetz theorem prescribes how to compute the non-equivariant limit
JE.e (8)|1=0 at points of the small quantum locus § € H?(X, C).

Introduce the hypergeometric modification Iy y of the function Jy as follows:
write Jy = Y 4 JgQP, and for § € H?(X, C) define

s {c1(Li),B)
Ixy® :=> J@Q[] [I (cr(Li)+mn). (5.3.2)
B i=1 m=1

2Globally generated vector bundles and direct sums of nef line bundles are automatically
convex.
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Theorem 5.3.4 ([17]). The function Ixy admits an expansion of the form

Ixy () = F(§) + %G(S) + o(hiz), § e H*(X,C),

where F is H°(X, Ax)-valued and G takes values in H°(X,Ax) @ H?*(X, Ax).
Moreover, we have

Ixy (8)
F@6)

_G()

JE.e (9(8))[1=0 = 9(8)

Proposition 5.3.5 ([16, 17]). Moreover, if c1(X) > c1(E), then we have
F($) =1,
G@O)=6+H(®) -1,

H($) = Z(W/sQﬂefﬁs) “81,(B.c1(X)—c1 (E))
B

for suitable rational coefficients wg € Q.

Proof. The function Iy, y (§) is homogeneous of degree O with respect to the gradings

de @ = [ 1)~ [ )
B B
degh =1,
deg T, =k if T, € H**(X,C).
This is easily seen from the expansion of Jy given in Lemma A.2. Hence, F(§) is

given from the only contribution of the term Jo(§) = 1 + % + ---and H(4) from the
terms for which deg Qf =1. |

5.4 Inequality for dimensions of spaces of master functions

Let Y € X be the zero locus of a regular section of a vector bundle £ — X, sum of
nef line bundles, with ¢; (E) < ¢1(X). Denote by : Y — X the inclusion. We always
assume that both X and Y have vanishing odd cohomology.

Forapointt € QH*(X), denote by $;(X) := §; (QH *(X)) the space of master
functions as .

Theorem 5.4.1. Let § € H*(X, C). We have
dimg Si+5(Y) < dime Ss_e(X), (5.4.1)

where ¢ := c1(X) —c1(E).
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Proof. By the adjunction formula, we have
t*¢ = c1(Y).

The components of the function Jx (6 + ¢ log z)|qg=1, =1, With respect to any basis
of H*(X,C), span the space S54.(X). Analogously, the components of the func-
tion Jy (t*6 + ¢1(Y) log z)|g=1, =1, With respect to any basis of H*(Y, C), span the
space S,x5(Y).

By Theorems 5.3.1, 5.3.4 and Proposition 5.3.5, we have

Jy((*8 + c1(Y)logz)|g=1 = e ZH®) Cxy (8 + clogz)|g=1-
h=1 h=1
The components of the right side are obtained by linear combinations and rescaling
of the components of Jx(§ 4+ c¢logz)|g=1,s=1: such a linear combination is due to
the hypergeometric modification (5.3.2), namely the U-multiplication by an invertible
class. The claim follows. |

Theorem 5.4.2. Let Y be a hyperplane section of X. Assume that d := dim¢ X is
odd, and that the following inequalities of Betti numbers hold true:

1
bg—1(X) < Ebd_l(Y). (5.4.2)

Then *(H?*(X,C)) is contained in the 4Ap-stratum of the Frobenius manifold
QH®*(Y). In particular, along 1*(H?*(X, C)) the canonical coordinates of QH®*(Y)
coalesce.

Proof. From the hyperplane Lefschetz theorem we deduce that (5.4.2) holds true if
and only if dim¢c H*(X,C) < dimc H*(Y,C). Then for any § € H?(X, C) we have
dimc $,x5(Y) < dimc H*(Y, C), by (5.4.1). Hence, the master differential equation
of QH*®(Y) at t*§ is not of order dimc H*(Y, C). This implies that the denominator
of det A is identically zero at (*§. The last statement follows from Lemma 2.6.1 and
Theorem 2.6.2. L



