Chapter 5

J-function and quantum Lefschetz theorem

5.1 J-function and master functions

Definition 5.1.1. The J-function of X is the $H^{\bullet}(X, \Lambda_Y)[\hbar^{-1}]$ -valued function of $\tau \in H^{\bullet}(X, \mathbb{C})$ defined by

$$
J_X(\tau) := 1 + \sum_{\alpha,\lambda=0}^N \sum_{n=0}^\infty \hbar^{-(n+1)} \langle \langle \tau_n T_\alpha, 1 \rangle \rangle_0 \eta^{\alpha \lambda} T_\lambda.
$$

The following result will be crucial for us. For its proof see Appendix A.

Theorem 5.1.2. Let $\alpha = 0, ..., N$ and $\delta \in H^2(X, \mathbb{C})$. The $(1, \alpha)$ -entry of the matrix $\eta Z_{\text{top}}(z,\delta)$ equals

$$
z^{\frac{\dim X}{2}} \int_X T_{\alpha} \cup J_X(\delta + \log z \cdot c_1(X)) \Big|_{\substack{\mathbf{Q} = 1 \\ \hbar = 1}}.
$$

Corollary 5.1.3. Let $\delta \in H^2(X, \mathbb{C})$. The components of the function

$$
J(\delta + \log z \cdot c_1(X))\Big|_{\substack{\mathbf{Q}=1\\h=1}},
$$

with respect to any basis of $H^{\bullet}(X, \mathbb{C})$, span the space of master functions $S_{\delta}(X)$.

Proof. The functions $z^{-\frac{dim X}{2}}[\eta Z_{top}(z, \delta)]_{\alpha}^{1}$ define a generating set of the space of master functions $S_{\delta}(X)$. The claim follows by Theorem 5.1.2.

In the notations of Section 3.1 , set

$$
\delta = \sum_{i=1}^r t^i T_i.
$$

Any formal differential operator $P \in \mathbb{C}[\![\hbar \frac{\partial}{\partial t^1}, \ldots, \hbar \frac{\partial}{\partial t^r}, e^{t^1}, \ldots, e^{t^r}, \hbar]]$ such that

$$
PJ_X(\delta)=0
$$

is called a *quantum differential operator*. The equation $PY = 0$ is called a *quantum* differential equation, see e.g. [27, Section 10.3]. By Corollary 5.1.3, the master differential equation, defined as in Section 2.7 at a point δ of the complement of the \mathcal{A}_{Λ} -stratum of $OH^{\bullet}(X)$, is equivalent to a differential equation for master functions

$$
\widetilde{P}_{\delta}(\vartheta, z)\Phi = 0, \quad \vartheta := z\frac{d}{dz}
$$

for a suitable differentiable operator \widetilde{P}_δ .

5.2 Twisted Gromov–Witten invariants

Given a holomorphic vector bundle $E \to X$ and an invertible multiplicative^{[1](#page-1-0)} characteristic class c, one can introduce a (E, c) -*twisted* version of the Gromov–Witten theory of X .

Given E , there exists a complex

$$
0 \to E_{g,n,\beta}^0 \to E_{g,n,\beta}^1 \to 0
$$

of locally free orbi-sheaves on $\overline{\mathcal{M}}_{g,n}(X,\beta)$ whose cohomology sheaves are

$$
R^{0} \text{ft}_{n+1,*}(ev_{n+1}^{*} E) \text{ and } R^{1} \text{ft}_{n+1,*}(ev_{n+1}^{*} E),
$$

respectively. Here, the forgetful and evaluation morphisms ft_{n+1} , ev_{n+1} at the last marked point fit in the diagram

Let us introduce an *obstruction* K*-class*

$$
E_{g,n,\beta} \in K^0(\overline{\mathcal{M}}_{g,n}(X,\beta)),
$$

defined as the K -theoretic difference

$$
E_{g,n,\beta} := [E^0_{g,n,\beta}] - [E^1_{g,n,\beta}].
$$

It is possible to show that such a difference does not depend on the choice of the complex.

Definition 5.2.1. The (E, c) -twisted Gromov–Witten invariants (with descendants) of X are the intersection numbers

$$
\langle \tau_1^{d_1}\alpha_1 \otimes \cdots \otimes \tau_n^{d_n}\alpha_n \rangle_{g,n,\beta}^{X,E,c} := \int_{\substack{\overline{[M]}_{g,n}(X,\beta) \text{ with}}} c(E_{g,n,\beta}) \cup \prod_{j=1}^n \psi_j^{d_j} \cup \text{ev}_j^*(\alpha_j),
$$

where $\alpha_1, \ldots, \alpha_n \in H^{\bullet}(X, \mathbb{C}).$

Remark 5.2.2. If c is the trivial characteristic class, then we recover the untwisted Gromov–Witten invariants of X.

¹A characteristic class c is said to be *multiplicative* if $c(E_1 \oplus E_2) = c(E_1)c(E_2)$. It is *invertible* if $c(E)$ is invertible in $H^{\bullet}(Y, \mathbb{C})$ for any vector bundle E on a manifold Y.

5.3 Quantum Lefschetz theorem

Introduce a \mathbb{C}^* -action on the total space E defined by fiberwise multiplication. Note that the \mathbb{C}^* -equivariant Euler class e is invertible over the field of fractions $\mathbb{Q}(\lambda)$ of $H_{\mathbb{C}^*}^{\bullet}(\text{pt}) \cong \mathbb{Q}[\lambda]$. Taking $c = e$ we refer to the twisted Gromov–Witten invariants as *Euler-twisted Gromov–Witten invariants*.

Exactly as in the untwisted case, (E, c) -twisted Gromov–Witten invariants can be collected in generating functions. In particular, we can introduce the *Euler-twisted J*-function as the $H^{\bullet}(X, \Lambda_X[\lambda])[[\hbar^{-1}]]$ -valued function on $H^{\bullet}(X, \mathbb{C})$ by

$$
J_{E,e}(\tau)=1+\sum_{\alpha,k,n,\beta}\hbar^{-n-1}\frac{\mathbf{Q}^{\beta}}{k!}\langle\tau_nT_{\alpha},1,\tau,\ldots,\tau\rangle_{0,k+2,\beta}^{X,E,e}T^{\alpha}.
$$

Assume now that the vector bundle E is convex,^{[2](#page-2-0)} i.e. $H^1(C, f^*E) = 0$ for all stable maps $f: C \to X$ with C of genus zero. Let Y be a smooth subvariety of X defined by the zero locus of a regular section of E .

Theorem 5.3.1 ([\[15,](#page--1-4)[17\]](#page--1-5)). *The non-equivariant limit* $J_{E,e}|_{\lambda=0}$ *exists. Moreover, it is related to the function* J^Y *by the equation*

$$
\iota^* J_{E,e} |_{\lambda=0}(\tau) \stackrel{\iota_*}{=} J_Y(\iota^* \tau), \quad \tau \in H^\bullet(X, \mathbb{C}), \tag{5.3.1}
$$

where $\iota: Y \hookrightarrow X$ *is the inclusion.*

Remark 5.3.2. The symbol $\stackrel{l_{*}}{=}$ means that identity [\(5.3.1\)](#page-2-1) holds true after application of the morphism $\iota_*: \Lambda_X \to \Lambda_Y$ defined by $\mathbf{Q}^{\beta} \mapsto \mathbf{Q}^{\iota_*\beta}$.

Remark 5.3.3. If dim_C $X > 3$, then ι^* is an isomorphism, by the hyperplane Lefschetz theorem.

Assume that

$$
E=\bigoplus_{i=1}^s L_i,
$$

where L_i are nef line bundles on X such that $c_1(E) \le c_1(X)$. In such a case, the quantum Lefschetz theorem prescribes how to compute the non-equivariant limit $J_{E,e}(\delta)|_{\lambda=0}$ at points of the small quantum locus $\delta \in H^2(X,\mathbb{C})$.

Introduce the *hypergeometric modification* $I_{X,Y}$ of the function J_X as follows: write $J_X = \sum_{\beta} J_{\beta} \mathbf{Q}^{\beta}$, and for $\delta \in H^2(X, \mathbb{C})$ define

$$
I_{X,Y}(\delta) := \sum_{\beta} J_{\beta}(\delta) \mathbf{Q}^{\beta} \prod_{i=1}^{s} \prod_{m=1}^{\langle c_1(L_i), \beta \rangle} (c_1(L_i) + m\hbar). \tag{5.3.2}
$$

²Globally generated vector bundles and direct sums of nef line bundles are automatically convex.

Theorem 5.3.4 ([\[17\]](#page--1-5)). *The function* $I_{X,Y}$ *admits an expansion of the form*

$$
I_{X,Y}(\delta) = F(\delta) + \frac{1}{\hbar}G(\delta) + O\left(\frac{1}{\hbar^2}\right), \quad \delta \in H^2(X,\mathbb{C}),
$$

where *F* is $H^0(X, \Lambda_X)$ -valued and *G* takes values in $H^0(X, \Lambda_X) \oplus H^2(X, \Lambda_X)$. *Moreover, we have*

$$
J_{E,e}(\varphi(\delta))|_{\lambda=0}=\frac{I_{X,Y}(\delta)}{F(\delta)}, \quad \varphi(\delta):=\frac{G(\delta)}{F(\delta)}.
$$

Proposition 5.3.5 ([\[16,](#page--1-6) [17\]](#page--1-5)). *Moreover, if* $c_1(X) > c_1(E)$ *, then we have*

$$
F(\delta) \equiv 1,
$$

\n
$$
G(\delta) = \delta + H(\delta) \cdot 1,
$$

\n
$$
H(\delta) = \sum_{\beta} (w_{\beta} \mathbf{Q}^{\beta} e^{\int_{\beta} \delta}) \cdot \delta_{1, \langle \beta, c_1(X) - c_1(E) \rangle}
$$

for suitable rational coefficients $w_{\beta} \in \mathbb{Q}$ *.*

Proof. The function $I_{X,Y}(\delta)$ is homogeneous of degree 0 with respect to the gradings

$$
\deg \mathbf{Q}^{\beta} = \int_{\beta} c_1(X) - \int_{\beta} c_1(E),
$$

deg $\hbar = 1$,

$$
\deg T_{\alpha} = k \quad \text{if } T_{\alpha} \in H^{2k}(X, \mathbb{C}).
$$

This is easily seen from the expansion of J_X given in Lemma [A.2.](#page--1-7) Hence, $F(\delta)$ is given from the only contribution of the term $J_0(\delta) = 1 + \frac{\delta}{\hbar} + \cdots$ and $H(\delta)$ from the terms for which deg $\mathbf{Q}^{\beta} = 1$.

5.4 Inequality for dimensions of spaces of master functions

Let $Y \subseteq X$ be the zero locus of a regular section of a vector bundle $E \to X$, sum of nef line bundles, with $c_1(E) < c_1(X)$. Denote by $\iota: Y \to X$ the inclusion. We always assume that both X and Y have vanishing odd cohomology.

For a point $\tau \in QH^{\bullet}(X)$, denote by $S_{\tau}(X) := S_{\tau}(QH^{\bullet}(X))$ the space of master functions as τ .

Theorem 5.4.1. Let $\delta \in H^2(X, \mathbb{C})$. We have

$$
\dim_{\mathbb{C}} S_{\iota^*\delta}(Y) \le \dim_{\mathbb{C}} S_{\delta+c}(X),\tag{5.4.1}
$$

where $c := c_1(X) - c_1(E)$ *.*

Proof. By the adjunction formula, we have

$$
\iota^*c = c_1(Y).
$$

The components of the function $J_X(\delta + c \log z)|_{\mathbf{Q} = 1, h=1}$, with respect to any basis of $H^{\bullet}(X, \mathbb{C})$, span the space $S_{\delta+c}(X)$. Analogously, the components of the function $J_Y(\ell^* \delta + c_1(Y) \log z)|_{Q=1, h=1}$, with respect to any basis of $H^{\bullet}(Y, \mathbb{C})$, span the space $S_{\iota^* \delta}(Y)$.

By Theorems [5.3.1,](#page-2-2) [5.3.4](#page-3-0) and Proposition [5.3.5,](#page-3-1) we have

$$
J_Y(\iota^*\delta + c_1(Y) \log z)|_{\substack{\mathbf{Q} = 1 \\ \hbar = 1}} = e^{-zH(\delta)} \cdot \iota^* I_{X,Y}(\delta + c \log z)|_{\substack{\mathbf{Q} = 1 \\ \hbar = 1}}.
$$

The components of the right side are obtained by linear combinations and rescaling of the components of $J_X(\delta + c \log z)|_{\Omega=1, h=1}$: such a linear combination is due to the hypergeometric modification [\(5.3.2\)](#page-2-3), namely the \cup -multiplication by an invertible class. The claim follows.

Theorem 5.4.2. Let Y be a hyperplane section of X. Assume that $d := \dim_{\mathbb{C}} X$ is *odd, and that the following inequalities of Betti numbers hold true:*

$$
b_{d-1}(X) < \frac{1}{2}b_{d-1}(Y). \tag{5.4.2}
$$

Then $\iota^*(H^2(X,{\mathbb C}))$ is contained in the A_Λ -stratum of the Frobenius manifold $QH^{\bullet}(Y)$. In particular, along $\iota^{*}(H^{2}(X,\mathbb{C}))$ the canonical coordinates of $QH^{\bullet}(Y)$ *coalesce.*

Proof. From the hyperplane Lefschetz theorem we deduce that [\(5.4.2\)](#page-4-0) holds true if and only if dim_C $H^{\bullet}(X, \mathbb{C}) <$ dim_C $H^{\bullet}(Y, \mathbb{C})$. Then for any $\delta \in H^2(X, \mathbb{C})$ we have $\dim_{\mathbb{C}} S_{\iota^* \delta}(Y) < \dim_{\mathbb{C}} H^{\bullet}(Y, \mathbb{C})$, by [\(5.4.1\)](#page-3-2). Hence, the master differential equation of $QH^{\bullet}(Y)$ at $\iota^*\delta$ is not of order dim_C $H^{\bullet}(Y, \mathbb{C})$. This implies that the denominator of det Λ is identically zero at $\iota^*\delta$. The last statement follows from Lemma [2.6.1](#page--1-8) and Theorem [2.6.2.](#page--1-9)