Chapter 5

J-function and quantum Lefschetz theorem

5.1 *J*-function and master functions

Definition 5.1.1. The *J*-function of *X* is the $H^{\bullet}(X, \Lambda_X)[[\hbar^{-1}]]$ -valued function of $\tau \in H^{\bullet}(X, \mathbb{C})$ defined by

$$J_X(\tau) := 1 + \sum_{\alpha,\lambda=0}^N \sum_{n=0}^\infty \hbar^{-(n+1)} \langle\!\langle \tau_n T_\alpha, 1 \rangle\!\rangle_0 \eta^{\alpha \lambda} T_\lambda.$$

The following result will be crucial for us. For its proof see Appendix A.

Theorem 5.1.2. Let $\alpha = 0, ..., N$ and $\delta \in H^2(X, \mathbb{C})$. The $(1, \alpha)$ -entry of the matrix $\eta Z_{top}(z, \delta)$ equals

$$z^{\frac{\dim X}{2}} \int_X T_{\alpha} \cup J_X(\delta + \log z \cdot c_1(X)) \Big|_{\substack{\mathbf{Q}=1\\ \hbar=1}}$$

Corollary 5.1.3. Let $\delta \in H^2(X, \mathbb{C})$. The components of the function

$$J(\delta + \log z \cdot c_1(X))\Big|_{\substack{\mathbf{Q}=1\\ \hbar=1}},$$

with respect to any basis of $H^{\bullet}(X, \mathbb{C})$, span the space of master functions $S_{\delta}(X)$.

Proof. The functions $z^{-\frac{\dim X}{2}} [\eta Z_{top}(z, \delta)]^1_{\alpha}$ define a generating set of the space of master functions $S_{\delta}(X)$. The claim follows by Theorem 5.1.2.

In the notations of Section 3.1, set

$$\delta = \sum_{i=1}^{r} t^i T_i.$$

Any formal differential operator $P \in \mathbb{C}[\![\hbar \frac{\partial}{\partial t^1}, \dots, \hbar \frac{\partial}{\partial t^r}, e^{t^1}, \dots, e^{t^r}, \hbar]\!]$ such that

$$PJ_X(\delta) = 0$$

is called a *quantum differential operator*. The equation PY = 0 is called a *quantum differential equation*, see e.g. [27, Section 10.3]. By Corollary 5.1.3, the master differential equation, defined as in Section 2.7 at a point δ of the complement of the A_{Λ} -stratum of $QH^{\bullet}(X)$, is equivalent to a differential equation for master functions

$$\widetilde{P}_{\delta}(\vartheta, z)\Phi = 0, \quad \vartheta := z \frac{d}{dz}$$

for a suitable differentiable operator \tilde{P}_{δ} .

5.2 Twisted Gromov–Witten invariants

Given a holomorphic vector bundle $E \rightarrow X$ and an invertible multiplicative¹ characteristic class c, one can introduce a (E, c)-twisted version of the Gromov–Witten theory of X.

Given E, there exists a complex

$$0 \to E^0_{g,n,\beta} \to E^1_{g,n,\beta} \to 0$$

of locally free orbi-sheaves on $\overline{\mathcal{M}}_{g,n}(X,\beta)$ whose cohomology sheaves are

$$R^{0}$$
ft_{n+1,*}(ev_{n+1}^{*}E) and R^{1} ft_{n+1,*}(ev_{n+1}^{*}E),

respectively. Here, the forgetful and evaluation morphisms ft_{n+1} , ev_{n+1} at the last marked point fit in the diagram

Let us introduce an obstruction K-class

$$E_{g,n,\beta} \in K^0(\overline{\mathcal{M}}_{g,n}(X,\beta)),$$

defined as the K-theoretic difference

$$E_{g,n,\beta} := [E_{g,n,\beta}^0] - [E_{g,n,\beta}^1]$$

It is possible to show that such a difference does not depend on the choice of the complex.

Definition 5.2.1. The (E, c)-twisted Gromov–Witten invariants (with descendants) of X are the intersection numbers

$$\langle \tau_1^{d_1} \alpha_1 \otimes \cdots \otimes \tau_n^{d_n} \alpha_n \rangle_{g,n,\beta}^{X,E,c} := \int_{[\overline{\mathcal{M}}_{g,n}(X,\beta)]^{\text{virt}}} c(E_{g,n,\beta}) \cup \prod_{j=1}^n \psi_j^{d_j} \cup \text{ev}_j^*(\alpha_j),$$

where $\alpha_1, \ldots, \alpha_n \in H^{\bullet}(X, \mathbb{C})$.

Remark 5.2.2. If c is the trivial characteristic class, then we recover the untwisted Gromov–Witten invariants of X.

¹A characteristic class c is said to be *multiplicative* if $c(E_1 \oplus E_2) = c(E_1)c(E_2)$. It is *invertible* if c(E) is invertible in $H^{\bullet}(Y, \mathbb{C})$ for any vector bundle E on a manifold Y.

5.3 Quantum Lefschetz theorem

Introduce a \mathbb{C}^* -action on the total space *E* defined by fiberwise multiplication. Note that the \mathbb{C}^* -equivariant Euler class *e* is invertible over the field of fractions $\mathbb{Q}(\lambda)$ of $H^{\bullet}_{\mathbb{C}^*}(\text{pt}) \cong \mathbb{Q}[\lambda]$. Taking c = e we refer to the twisted Gromov–Witten invariants as *Euler-twisted Gromov–Witten invariants*.

Exactly as in the untwisted case, (E, c)-twisted Gromov–Witten invariants can be collected in generating functions. In particular, we can introduce the *Euler-twisted J*-function as the $H^{\bullet}(X, \Lambda_X[\lambda])[[\hbar^{-1}]]$ -valued function on $H^{\bullet}(X, \mathbb{C})$ by

$$J_{E,e}(\tau) = 1 + \sum_{\alpha,k,n,\beta} \hbar^{-n-1} \frac{\mathbf{Q}^{\beta}}{k!} \langle \tau_n T_{\alpha}, 1, \tau, \dots, \tau \rangle_{0,k+2,\beta}^{X,E,e} T^{\alpha}.$$

Assume now that the vector bundle E is convex,² i.e. $H^1(C, f^*E) = 0$ for all stable maps $f: C \to X$ with C of genus zero. Let Y be a smooth subvariety of X defined by the zero locus of a regular section of E.

Theorem 5.3.1 ([15, 17]). The non-equivariant limit $J_{E,e}|_{\lambda=0}$ exists. Moreover, it is related to the function J_Y by the equation

$$\iota^* J_{E,\boldsymbol{e}}|_{\boldsymbol{\lambda}=\boldsymbol{0}}(\boldsymbol{\tau}) \stackrel{\iota_*}{=} J_Y(\iota^*\boldsymbol{\tau}), \quad \boldsymbol{\tau} \in H^{\bullet}(X, \mathbb{C}),$$
(5.3.1)

where $\iota: Y \hookrightarrow X$ is the inclusion.

Remark 5.3.2. The symbol $\stackrel{\iota_*}{=}$ means that identity (5.3.1) holds true after application of the morphism $\iota_*: \Lambda_X \to \Lambda_Y$ defined by $\mathbf{Q}^{\beta} \mapsto \mathbf{Q}^{\iota_*\beta}$.

Remark 5.3.3. If dim_{\mathbb{C}} X > 3, then ι^* is an isomorphism, by the hyperplane Lefschetz theorem.

Assume that

$$E = \bigoplus_{i=1}^{s} L_i,$$

where L_i are nef line bundles on X such that $c_1(E) \leq c_1(X)$. In such a case, the quantum Lefschetz theorem prescribes how to compute the non-equivariant limit $J_{E,e}(\delta)|_{\lambda=0}$ at points of the small quantum locus $\delta \in H^2(X, \mathbb{C})$.

Introduce the hypergeometric modification $I_{X,Y}$ of the function J_X as follows: write $J_X = \sum_{\beta} J_{\beta} \mathbf{Q}^{\beta}$, and for $\delta \in H^2(X, \mathbb{C})$ define

$$I_{X,Y}(\delta) := \sum_{\beta} J_{\beta}(\delta) \mathbf{Q}^{\beta} \prod_{i=1}^{s} \prod_{m=1}^{\langle c_1(L_i), \beta \rangle} (c_1(L_i) + m\hbar).$$
(5.3.2)

²Globally generated vector bundles and direct sums of nef line bundles are automatically convex.

Theorem 5.3.4 ([17]). The function $I_{X,Y}$ admits an expansion of the form

$$I_{X,Y}(\delta) = F(\delta) + \frac{1}{\hbar}G(\delta) + O\left(\frac{1}{\hbar^2}\right), \quad \delta \in H^2(X, \mathbb{C}),$$

where F is $H^0(X, \Lambda_X)$ -valued and G takes values in $H^0(X, \Lambda_X) \oplus H^2(X, \Lambda_X)$. Moreover, we have

$$J_{E,e}(\varphi(\delta))|_{\lambda=0} = \frac{I_{X,Y}(\delta)}{F(\delta)}, \quad \varphi(\delta) := \frac{G(\delta)}{F(\delta)}$$

Proposition 5.3.5 ([16, 17]). *Moreover, if* $c_1(X) > c_1(E)$, *then we have*

$$F(\delta) \equiv 1,$$

$$G(\delta) = \delta + H(\delta) \cdot 1,$$

$$H(\delta) = \sum_{\beta} \left(w_{\beta} \mathbf{Q}^{\beta} e^{\int_{\beta} \delta} \right) \cdot \delta_{1,\langle\beta,c_{1}(X)-c_{1}(E)\rangle}$$

for suitable rational coefficients $w_{\beta} \in \mathbb{Q}$.

Proof. The function $I_{X,Y}(\delta)$ is homogeneous of degree 0 with respect to the gradings

$$\deg \mathbf{Q}^{\beta} = \int_{\beta} c_1(X) - \int_{\beta} c_1(E),$$
$$\deg \hbar = 1,$$
$$\deg T_{\alpha} = k \quad \text{if } T_{\alpha} \in H^{2k}(X, \mathbb{C}).$$

This is easily seen from the expansion of J_X given in Lemma A.2. Hence, $F(\delta)$ is given from the only contribution of the term $J_0(\delta) = 1 + \frac{\delta}{\hbar} + \cdots$ and $H(\delta)$ from the terms for which deg $\mathbf{Q}^{\beta} = 1$.

5.4 Inequality for dimensions of spaces of master functions

Let $Y \subseteq X$ be the zero locus of a regular section of a vector bundle $E \to X$, sum of nef line bundles, with $c_1(E) < c_1(X)$. Denote by $\iota: Y \to X$ the inclusion. We always assume that both X and Y have vanishing odd cohomology.

For a point $\tau \in QH^{\bullet}(X)$, denote by $S_{\tau}(X) := S_{\tau}(QH^{\bullet}(X))$ the space of master functions as τ .

Theorem 5.4.1. Let $\delta \in H^2(X, \mathbb{C})$. We have

$$\dim_{\mathbb{C}} \mathcal{S}_{\iota^*\delta}(Y) \leq \dim_{\mathbb{C}} \mathcal{S}_{\delta+c}(X), \tag{5.4.1}$$

where $c := c_1(X) - c_1(E)$.

Proof. By the adjunction formula, we have

$$\iota^* c = c_1(Y).$$

The components of the function $J_X(\delta + c \log z)|_{\mathbf{Q}=1,\hbar=1}$, with respect to any basis of $H^{\bullet}(X, \mathbb{C})$, span the space $\mathcal{S}_{\delta+c}(X)$. Analogously, the components of the function $J_Y(\iota^*\delta + c_1(Y)\log z)|_{\mathbf{Q}=1,\hbar=1}$, with respect to any basis of $H^{\bullet}(Y, \mathbb{C})$, span the space $\mathcal{S}_{\iota^*\delta}(Y)$.

By Theorems 5.3.1, 5.3.4 and Proposition 5.3.5, we have

$$J_Y(\iota^*\delta + c_1(Y)\log z)|_{\substack{\mathbf{Q}=1\\ \hbar=1}} = e^{-zH(\delta)} \cdot \iota^* I_{X,Y}(\delta + c\log z)|_{\substack{\mathbf{Q}=1\\ \hbar=1}}$$

The components of the right side are obtained by linear combinations and rescaling of the components of $J_X(\delta + c \log z)|_{\mathbf{Q}=1,\hbar=1}$: such a linear combination is due to the hypergeometric modification (5.3.2), namely the \cup -multiplication by an invertible class. The claim follows.

Theorem 5.4.2. Let Y be a hyperplane section of X. Assume that $d := \dim_{\mathbb{C}} X$ is odd, and that the following inequalities of Betti numbers hold true:

$$b_{d-1}(X) < \frac{1}{2}b_{d-1}(Y).$$
 (5.4.2)

Then $\iota^*(H^2(X, \mathbb{C}))$ is contained in the \mathcal{A}_{Λ} -stratum of the Frobenius manifold $QH^{\bullet}(Y)$. In particular, along $\iota^*(H^2(X, \mathbb{C}))$ the canonical coordinates of $QH^{\bullet}(Y)$ coalesce.

Proof. From the hyperplane Lefschetz theorem we deduce that (5.4.2) holds true if and only if dim_C $H^{\bullet}(X, \mathbb{C}) < \dim_{\mathbb{C}} H^{\bullet}(Y, \mathbb{C})$. Then for any $\delta \in H^2(X, \mathbb{C})$ we have dim_C $S_{\iota^*\delta}(Y) < \dim_{\mathbb{C}} H^{\bullet}(Y, \mathbb{C})$, by (5.4.1). Hence, the master differential equation of $QH^{\bullet}(Y)$ at $\iota^*\delta$ is not of order dim_C $H^{\bullet}(Y, \mathbb{C})$. This implies that the denominator of det Λ is identically zero at $\iota^*\delta$. The last statement follows from Lemma 2.6.1 and Theorem 2.6.2.