
Chapter 5

J -function and quantum Lefschetz theorem

5.1 J -function and master functions

Definition 5.1.1. The J -function of X is the H �.X;ƒX /ŒŒ„�1��-valued function of
� 2 H �.X;C/ defined by

JX .�/ WD 1C

NX
˛;�D0

1X
nD0

„
�.nC1/

hh�nT˛; 1ii0�
˛�T�:

The following result will be crucial for us. For its proof see Appendix A.

Theorem 5.1.2. Let ˛ D 0; : : : ; N and ı 2 H 2.X;C/. The .1; ˛/-entry of the matrix
�Ztop.z; ı/ equals

z
dimX
2

Z
X

T˛ [ JX .ı C log z � c1.X//
ˇ̌̌
QD1
„D1

:

Corollary 5.1.3. Let ı 2 H 2.X;C/. The components of the function

J.ı C log z � c1.X//
ˇ̌̌
QD1
„D1

;

with respect to any basis of H �.X;C/, span the space of master functions �ı.X/.

Proof. The functions z�
dimX
2 Œ�Ztop.z; ı/�

1
˛ define a generating set of the space of

master functions �ı.X/. The claim follows by Theorem 5.1.2.

In the notations of Section 3.1, set

ı D

rX
iD1

t iTi :

Any formal differential operator P 2 CŒŒ„ @
@t1
; : : : ; „ @

@tr
; et

1
; : : : ; et

r
; „�� such that

PJX .ı/ D 0

is called a quantum differential operator. The equation PY D 0 is called a quantum
differential equation, see e.g. [27, Section 10.3]. By Corollary 5.1.3, the master dif-
ferential equation, defined as in Section 2.7 at a point ı of the complement of the
Aƒ-stratum of QH �.X/, is equivalent to a differential equation for master functions

zPı.#; z/ˆ D 0; # WD z
d

dz
;

for a suitable differentiable operator zPı .
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5.2 Twisted Gromov–Witten invariants

Given a holomorphic vector bundle E ! X and an invertible multiplicative1 char-
acteristic class c, one can introduce a .E; c/-twisted version of the Gromov–Witten
theory of X .

Given E, there exists a complex

0! E0g;n;ˇ ! E1g;n;ˇ ! 0

of locally free orbi-sheaves on Mg;n.X; ˇ/ whose cohomology sheaves are

R0ftnC1;�.ev�nC1E/ and R1ftnC1;�.ev�nC1E/;

respectively. Here, the forgetful and evaluation morphisms ftnC1, evnC1 at the last
marked point fit in the diagram

Mg;nC1.X; ˇ/

ftnC1

ww

evnC1

%%
Mg;n.X; ˇ/ X .

Let us introduce an obstruction K-class

Eg;n;ˇ 2 K
0.Mg;n.X; ˇ//;

defined as the K-theoretic difference

Eg;n;ˇ WD ŒE
0
g;n;ˇ � � ŒE

1
g;n;ˇ �:

It is possible to show that such a difference does not depend on the choice of the
complex.

Definition 5.2.1. The .E; c/-twisted Gromov–Witten invariants (with descendants)
of X are the intersection numbers

h�
d1
1 ˛1 ˝ � � � ˝ �

dn
n ˛ni

X;E;c
g;n;ˇ

WD

Z
ŒMg;n.X;ˇ/�virt

c.Eg;n;ˇ / [

nY
jD1

 
dj
j [ ev�j . j̨ /;

where ˛1; : : : ; ˛n 2 H �.X;C/.

Remark 5.2.2. If c is the trivial characteristic class, then we recover the untwisted
Gromov–Witten invariants of X .

1A characteristic class c is said to be multiplicative if c.E1 ˚E2/ D c.E1/c.E2/. It is
invertible if c.E/ is invertible in H�.Y;C/ for any vector bundle E on a manifold Y .
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5.3 Quantum Lefschetz theorem

Introduce a C�-action on the total space E defined by fiberwise multiplication. Note
that the C�-equivariant Euler class e is invertible over the field of fractions Q.�/
ofH �C�.pt/ Š QŒ��. Taking c D e we refer to the twisted Gromov–Witten invariants
as Euler-twisted Gromov–Witten invariants.

Exactly as in the untwisted case, .E; c/-twisted Gromov–Witten invariants can
be collected in generating functions. In particular, we can introduce the Euler-twisted
J -function as the H �.X;ƒX Œ��/ŒŒ„�1��-valued function on H �.X;C/ by

JE;e.�/ D 1C
X

˛;k;n;ˇ

„
�n�1Qˇ

kŠ
h�nT˛; 1;�; : : : ;�i

X;E;e
0;kC2;ˇ

T ˛:

Assume now that the vector bundle E is convex,2 i.e. H 1.C; f �E/ D 0 for all
stable maps f WC ! X with C of genus zero. Let Y be a smooth subvariety of X
defined by the zero locus of a regular section of E.

Theorem 5.3.1 ([15,17]). The non-equivariant limit JE;e j�D0 exists. Moreover, it is
related to the function JY by the equation

��JE;e j�D0.�/
��
D JY .�

��/; � 2 H �.X;C/; (5.3.1)

where �WY ,! X is the inclusion.

Remark 5.3.2. The symbol
��
Dmeans that identity (5.3.1) holds true after application

of the morphism ��WƒX ! ƒY defined by Qˇ 7! Q��ˇ .

Remark 5.3.3. If dimC X > 3, then �� is an isomorphism, by the hyperplane Lef-
schetz theorem.

Assume that

E D

sM
iD1

Li ;

where Li are nef line bundles on X such that c1.E/ 6 c1.X/. In such a case, the
quantum Lefschetz theorem prescribes how to compute the non-equivariant limit
JE;e.ı/j�D0 at points of the small quantum locus ı 2 H 2.X;C/.

Introduce the hypergeometric modification IX;Y of the function JX as follows:
write JX D

P
ˇ JˇQˇ , and for ı 2 H 2.X;C/ define

IX;Y .ı/ WD
X
ˇ

Jˇ .ı/Qˇ

sY
iD1

hc1.Li /;ˇiY
mD1

.c1.Li /Cm„/: (5.3.2)

2Globally generated vector bundles and direct sums of nef line bundles are automatically
convex.
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Theorem 5.3.4 ([17]). The function IX;Y admits an expansion of the form

IX;Y .ı/ D F.ı/C
1

„
G.ı/CO

�
1

„2

�
; ı 2 H 2.X;C/;

where F is H 0.X;ƒX /-valued and G takes values in H 0.X;ƒX /˚H
2.X;ƒX /.

Moreover, we have

JE;e.'.ı//j�D0 D
IX;Y .ı/

F.ı/
; '.ı/ WD

G.ı/

F.ı/
:

Proposition 5.3.5 ([16, 17]). Moreover, if c1.X/ > c1.E/, then we have

F.ı/ � 1;

G.ı/ D ı CH.ı/ � 1;

H.ı/ D
X
ˇ

�
wˇQˇe

R
ˇ ı
�
� ı1;hˇ;c1.X/�c1.E/i

for suitable rational coefficients wˇ 2 Q.

Proof. The function IX;Y .ı/ is homogeneous of degree 0 with respect to the gradings

deg Qˇ
D

Z
ˇ

c1.X/ �

Z
ˇ

c1.E/;

deg „ D 1;

degT˛ D k if T˛ 2 H 2k.X;C/:

This is easily seen from the expansion of JX given in Lemma A.2. Hence, F.ı/ is
given from the only contribution of the term J0.ı/ D 1C

ı
„
C � � � and H.ı/ from the

terms for which deg Qˇ D 1.

5.4 Inequality for dimensions of spaces of master functions

Let Y � X be the zero locus of a regular section of a vector bundle E ! X , sum of
nef line bundles, with c1.E/ < c1.X/. Denote by �WY ! X the inclusion. We always
assume that both X and Y have vanishing odd cohomology.

For a point � 2 QH �.X/, denote by ��.X/ WD ��.QH
�.X// the space of master

functions as �.

Theorem 5.4.1. Let ı 2 H 2.X;C/. We have

dimC ���ı.Y / 6 dimC �ıCc.X/; (5.4.1)

where c WD c1.X/ � c1.E/.
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Proof. By the adjunction formula, we have

��c D c1.Y /:

The components of the function JX .ı C c log z/jQD1;„D1, with respect to any basis
of H �.X;C/, span the space �ıCc.X/. Analogously, the components of the func-
tion JY .��ı C c1.Y / log z/jQD1;„D1, with respect to any basis ofH �.Y;C/, span the
space ���ı.Y /.

By Theorems 5.3.1, 5.3.4 and Proposition 5.3.5, we have

JY .�
�ı C c1.Y / log z/jQD1

„D1

D e�zH.ı/ � ��IX;Y .ı C c log z/jQD1
„D1

:

The components of the right side are obtained by linear combinations and rescaling
of the components of JX .ı C c log z/jQD1;„D1: such a linear combination is due to
the hypergeometric modification (5.3.2), namely the[-multiplication by an invertible
class. The claim follows.

Theorem 5.4.2. Let Y be a hyperplane section of X . Assume that d WD dimC X is
odd, and that the following inequalities of Betti numbers hold true:

bd�1.X/ <
1

2
bd�1.Y /: (5.4.2)

Then ��.H 2.X;C// is contained in the Aƒ-stratum of the Frobenius manifold
QH �.Y /. In particular, along ��.H 2.X;C// the canonical coordinates of QH �.Y /
coalesce.

Proof. From the hyperplane Lefschetz theorem we deduce that (5.4.2) holds true if
and only if dimC H

�.X;C/ < dimC H
�.Y;C/. Then for any ı 2 H 2.X;C/ we have

dimC ���ı.Y / < dimC H
�.Y;C/, by (5.4.1). Hence, the master differential equation

of QH �.Y / at ��ı is not of order dimC H
�.Y;C/. This implies that the denominator

of detƒ is identically zero at ��ı. The last statement follows from Lemma 2.6.1 and
Theorem 2.6.2.


