Chapter 6

Borel-Laplace (o, §)-multitransforms

6.1 Algebras of Ribenboim’s generalized power series

Let (M, 4, 0) be a monoid, i.e. a commutative semigroup with neutral element. We
say that a partial order relation < on M defines a strictly ordered monoid (M, +, 0, <)
if the following compatibility condition holds true:

ifa <b,thena+s <b+sforalls e M.

Let R be a commutative ring with unit. The set
R[M] := RM

of all functions f: M — R is equipped with a natural R-module structure, with
respect to pointwise addition and multiplication by scalars. An element f € R[M]
will usually be denoted by

f=>Y fl@ze
aeM
where Z is an indeterminate. Given two functions f, g € R[M], we could be tempted
to define their product as

f-g:=Z( ) f(p)~g(q))Zs, (6.1.1)

seEM *(p,q)eXs(f.g)

where we set

Xs(f,8) =p.9) eMxM:p+q=s, f(p)#0, glg) # 0}.

In general the set X( f, g) is not finite, and consequently the product f - g could be
not defined.

Definition 6.1.1. Let (M, +,0, <) be a strictly ordered monoid. The R-submodule
of R[M] which consists of all functions f: M — R whose support

supp(f) :={s € M : f(s) # 0}
is
(1) Artinian, i.e. every subset of supp( /) admits a minimal element,

(2) narrow, i.e. every subset of supp(f) of pairwise incomparable elements is
finite,

is called the set of generalized power series with coefficients in R and exponents
in M. It is denoted by R[[M, <].
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Proposition 6.1.2 ([68,69]). Given f,g € R[M, <], the set Xs(f, g) is finite, and
the product (6.1.1) is well defined. The set R[[M, <] inherits the structure of an asso-
ciative R-algebra.

Remark 6.1.3. If (M, <) is itself Artinian and narrow, then all its subsets are Artinian
and narrow. Consequently, R[M, <] = R[M].

6.2 The algebra .7, (A)

Let k := (ky,...,kp) € (C*)". Consider an associative, commutative, unitary and
finite-dimensional C-algebra (A4, +, -, 1 4). Denote by Nil(A) the nilradical of A, that
is,

Nil(A) := {a € A : there exists an n € N such that a” = 0}.

Set Ng := {n - 14:n € N}. Define the monoid M4, as the (external) direct sum

of monoids i
My, = (@K,NA) @ Nil(A).
j=1
We have two maps ve: Mg, — N” and te: My — A defined by
v ((eini La)f—y.r) i= ()],
and
h
LK((K,-nilA)f;l, r) = Z/qn,-lA +r.

i=1

On My, we can define the partial order
X<y <= ve(x) e (),

the order on N” being the lexicographical one. This order makes (M, A, <) astrictly
ordered monoid.

We denote by %, (A) the ring A[Myg e, <]

By the universal property of the direct sums of monoids, the natural inclusions
My, — My, induce a unique morphism

h
Pr: @MA,K,' — My .

i=1

Definition 6.2.1. Let r, € Nil(A4). We say that an element f € %, (A) is concen-

trated at r, if ,
supp(f) S (@K,NA) X {ro}.

i=1
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6.3 Formal Borel-Laplace (a, f)-multitransforms

Given two h-tuples a, B € (C*)", we seta - B := (aiﬁ,-)f.‘zl, and ™! := (aii)f.‘zl.

Definition 6.3.1. Let F € C[[x] be a formal power series F(x) = Y e, arxk. For
a € Nil(A4) define F(«) € A by the finite sum

[e.e]
F(a) = Z aga®.
k=0

If F is invertible, i.e. ag # 0, then F () is invertible in A.

In what follows we will usually take F(x) = '(A 4+ x) with A € C \ Z <o, where
I" denotes the Euler Gamma function.

Definition 6.3.2. Let &, B,k € (C*)". We define the Borel («, B)-multitransform as
the A-linear morphism

h

Bup: Q) Fi; (A) > F o1 g1, (A),
j=1

which is defined, on decomposable elements, by

P (é) ( S Zs,»))

S_,'EMA.Kj

h 4 o
= ¥ A (el
5j EMA i, 1ﬂ(l + 2 =1 e (Sz),Be)
j=1,...,h

Definition 6.3.3. Let &, B,k € (C*)". We define the Laplace («, B)-multitransform
as the A-linear morphism

h
goz,;f ®§Kj (A) — d’ﬂ'lC(A)’

Jj=1

which is defined, on decomposable elements, by

.z,,,,ﬂ<(§)( » fs.jjzs_/))

J=1 Vs EMA.KJ'
h . h .
= Z (1_[ fsl,)r (1 + Z Liey (Se)ﬂz) 7P @p=1aePese)
SjEMA,Kj i=1 =1

j=1,h
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In the case & = 1, the Borel-Laplace (e, §)-multitransform simplify as follows.
Definition 6.3.4. Given o, 8 € C*, we define two A-linear maps
Bop: Fi(A) > ﬁﬁ(/l), Lo p: Fi(A) > Fope(A), keC*

called respectively («, B)-Borel and Laplace transforms, through the formulas

s|. Js &
ha| T 57| ¥ gt

SGMA.K SGMA',(
,sfa,ﬂ[ > stS] = Y AT+ Bs)zs.
SEM4 4 SEM 4 4

Theorem 6.3.5. The Borel-Laplace (a, B)-transform are inverses of each other, i.e.

e@a,lg o ga,ﬁ = Id, ga,ﬂ o e%a,ﬂ = Id. ]

6.4 Analytic Borel-Laplace («, 8)-multitransforms

Definition 6.4.1. Let o, B € (C*)". The Borel (&, 8)-multitransform of an A-tuple
of A-valued functions (®1, ..., ®y) is defined, when the integral exists, by

1o o g\ adA
e%a,ﬂ[q)l,...,q)h](Z) = %/ 1_[ qDJ(Z iPi A -’)e T,
ijl

where y is a Hankel-type contour of integration, see Figure 6.1.

Figure 6.1. Hankel-type contour of integration defining Borel (e, #)-multitransform.

Definition 6.4.2. Leto := (oq,..., o) and B := (B1,. .., Bn) be h-tuples in (C*)".
The (e, B)-Laplace transform of an h-tuple of functions (®q,..., ;) is defined,
when the integral exists, by

0 h
L pl®1,..., P](2) ;=/ [T ®: %P A%) exp(—1) dA.
0

i=1
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Proposition 6.4.3. Let (ey,...,e,) be a basis of A and let 1, ..., Oy, be A-valued
functions. Write ®; = ) j CD{ e; for C-valued component functions ij The compo-
nents of Ba g P1. ..., Pyl (resp. Lo g[P1...., Py]) are C- lmear combmatlons of
the h - n C-valued functions B, g [CIDiI' s CI> "] (resp. Lo [P, ..., ®}']), where
(i1,....ip) €{1,... .0}

Proof. Let cj". « € C be the structure constants of the algebra 4, so that
ejex = Zc}kei.
i
We have

a i i
PBagl®1,...,Pp) = Zcmz gy ol eay B pl® ... D],

Similarly for the Laplace multitransform. |

6.5 Analytification of elements of .7, (A)

Lets = ((kjn;1 A)l_l, r) € My, . We define the analytification Z* of the monomial
75 € %, (A) to be the A-valued holomorphic function

o
J
5. % 75 YN ki I ned
2°:C"—> A, Z°(z) = z~i=1 E .!log z.
j=1
Notice that the sum is finite, since r € Nil(A).
Let f € % (A) be a series

f@y= Y fuz*

SEMA

such that
card supp(f) < Ro

The analytification f of f is the A-valued holomorphic function defined if the
series absolutely converges, by

FiweC -4 for= ) fuZ'C).

SEM 4 4

Theorem 6.5.1. Ler f; € F, (A) such that
o cardsupp(fi) < Rofori =1,...,h,

* the functions ﬁ are well defined on R 4.
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We have

——
Bap| Q1 | = Baslhris - Jul,

L j=1

_— -
Lup| QS | = Luplh..... Jal.

L/j=1 .

provided that both sides are well defined.

Proof. 1tis sufficient to prove the statement on monomials Z°1, ..., Z*. To this end,
lets; = (kjnjly,ry)for j =1,...,h. We have
h
%x,ﬂ[@z%}
j=1
— hl ZPK(@2=1 (127%5)
(14 Y ¢—y ey (se)Be)
K; h
— ! Z((ajﬂj IA)j 1 01151+ T ﬁ )

T(1+ Y0 (kenela + ro)Be)

Hence, we have

h
%%ﬁ[GBZW}@>
j=1

Y Y 00 J
_ z L ;B (al.Bl + - +ahﬁh) logjz

L1+ Y eengla + r)Be) io J!

On the other hand, we have
rﬁ

[l

23(2) = z<" ! Jogt z,

so that

Qaméﬁ...ZEKﬂ



Analytification of elements of .%, (4) 51

L h
- Y
- 2ri /},e}L )’1"1‘22 llcgnpﬁg l_[ Zﬁlog ( ]B])L ﬂj)

J

Py . di hoyt . i
= , /e p Z l_[1—10g _/(Zoe,-ﬁj A—Bj)_
27 y Al—i—zef:]/cgngﬂg oty =1 Kj'
We have
7
r 1
1_[ j_ 1og€j (Z ajB_/‘ Al_ﬂj)
L L]
j=
[e'e) Ej
r; log z
=[1 X wf,u,(aﬁ) (=B 10g )" Bu-ut,
j=lwu=0 N JFJ
h 17 w;
r; logz\™ ,
= Y o (255) ertoensn, e
W] ,eeny Wy j=1 wj: u] a]ﬂj
Ul,..sUp
and

1 A di ) 1 (u;) h
—(~logV)¥ = = 1 ’
Zm'/ye Al-i—Z?:]Kgngﬁe( ogh) (I‘) +;Keneﬁe

because of the Hankel formula (see e.g. [64])

1 1
P

I'(z) 2ni), A

Thus, we have

Kn ]
BoglZ5, ..., Z9(z) = 1= b 3 l‘[ i

uj

B; (logz)wj
wjlu;! \ ;B

1 (u_/-) h
. (F) L4 keneBe |Suw;4u, 4, -
=1

This coincides with the formula of widehat By g [®j-’=1 Z%7](z). The proof for the
Laplace multitransform is similar, based on the identity

Ly,eky J=1
W, W
UL sy

I(z) = / A lehd.
0



