#### Chapter 6

# Borel–Laplace $(\alpha, \beta)$ -multitransforms

#### 6.1 Algebras of Ribenboim's generalized power series

Let (M, +, 0) be a *monoid*, i.e. a commutative semigroup with neutral element. We say that a partial order relation  $\leq$  on M defines a *strictly ordered monoid*  $(M, +, 0, \leq)$  if the following compatibility condition holds true:

if 
$$a < b$$
, then  $a + s < b + s$  for all  $s \in M$ .

Let R be a commutative ring with unit. The set

$$R[M] := R^M$$

of all functions  $f: M \to R$  is equipped with a natural R-module structure, with respect to pointwise addition and multiplication by scalars. An element  $f \in R[\![M]\!]$  will usually be denoted by

$$f = \sum_{a \in M} f(a) Z^a,$$

where Z is an indeterminate. Given two functions  $f, g \in R[\![M]\!]$ , we could be tempted to define their product as

$$f \cdot g := \sum_{s \in M} \left( \sum_{(p,q) \in X_s(f,g)} f(p) \cdot g(q) \right) Z^s, \tag{6.1.1}$$

where we set

$$X_s(f,g) := \{(p,q) \in M \times M : p+q = s, \ f(p) \neq 0, \ g(q) \neq 0\}.$$

In general the set  $X_s(f, g)$  is *not* finite, and consequently the product  $f \cdot g$  could be not defined.

**Definition 6.1.1.** Let  $(M, +, 0, \leq)$  be a strictly ordered monoid. The R-submodule of  $R[\![M]\!]$  which consists of all functions  $f: M \to R$  whose support

$$\operatorname{supp}(f) := \{ s \in M : f(s) \neq 0 \}$$

is

- (1) Artinian, i.e. every subset of supp(f) admits a minimal element,
- (2) narrow, i.e. every subset of supp(f) of pairwise incomparable elements is finite,

is called the set of *generalized power series* with coefficients in R and exponents in M. It is denoted by  $R[\![M,\leq]\!]$ .

**Proposition 6.1.2** ([68, 69]). Given  $f, g \in R[M, \leq]]$ , the set  $X_s(f, g)$  is finite, and the product (6.1.1) is well defined. The set  $R[M, \leq]$  inherits the structure of an associative R-algebra.

**Remark 6.1.3.** If  $(M, \leq)$  is itself Artinian and narrow, then all its subsets are Artinian and narrow. Consequently,  $R[M, \leq] = R[M]$ .

#### 6.2 The algebra $\mathscr{F}_{\kappa}(A)$

Let  $\kappa := (\kappa_1, \dots, \kappa_h) \in (\mathbb{C}^*)^h$ . Consider an associative, commutative, unitary and finite-dimensional  $\mathbb{C}$ -algebra  $(A, +, \cdot, 1_A)$ . Denote by Nil(A) the nilradical of A, that is,

$$Nil(A) := \{a \in A : \text{there exists an } n \in \mathbb{N} \text{ such that } a^n = 0\}.$$

Set  $\mathbb{N}_A := \{n \cdot 1_A : n \in \mathbb{N}\}$ . Define the monoid  $M_{A,\kappa}$  as the (external) direct sum of monoids

$$M_{A,\kappa} := \left(\bigoplus_{j=1}^h \kappa_j \mathbb{N}_A\right) \oplus \operatorname{Nil}(A).$$

We have two maps  $\nu_{\kappa}: M_{A,\kappa} \to \mathbb{N}^h$  and  $\iota_{\kappa}: M_{A,\kappa} \to A$  defined by

$$v_{\kappa}((\kappa_i n_i 1_A)_{i=1}^h, r) := (n_i)_{i=1}^h$$

and

$$\iota_{\kappa}((\kappa_i n_i 1_A)_{i=1}^h, r) := \sum_{i=1}^h \kappa_i n_i 1_A + r.$$

On  $M_{A,\kappa}$  we can define the partial order

$$x \leq y \iff \nu_{\kappa}(x) \leq \nu_{\kappa}(y),$$

the order on  $\mathbb{N}^h$  being the lexicographical one. This order makes  $(M_{A,\kappa}, \leq)$  a strictly ordered monoid.

We denote by  $\mathscr{F}_{\kappa}(A)$  the ring  $A[\![M_{A,\kappa},\leq]\!]$ .

By the universal property of the direct sums of monoids, the natural inclusions  $M_{A,\kappa_i} \to M_{A,\kappa}$  induce a unique morphism

$$\rho_{\kappa} : \bigoplus_{i=1}^{h} M_{A,\kappa_i} \to M_{A,\kappa}.$$

**Definition 6.2.1.** Let  $r_o \in \text{Nil}(A)$ . We say that an element  $f \in \mathscr{F}_{\kappa}(A)$  is *concentrated at*  $r_o$  if

$$\operatorname{supp}(f) \subseteq \left(\bigoplus_{i=1}^h \kappa_i \, \mathbb{N}_A\right) \times \{r_o\}.$$

### **6.3** Formal Borel–Laplace $(\alpha, \beta)$ -multitransforms

Given two h-tuples  $\boldsymbol{\alpha}, \boldsymbol{\beta} \in (\mathbb{C}^*)^h$ , we set  $\boldsymbol{\alpha} \cdot \boldsymbol{\beta} := (a_i \beta_i)_{i=1}^h$ , and  $\boldsymbol{\alpha}^{-1} := (\frac{1}{\alpha_i})_{i=1}^h$ .

**Definition 6.3.1.** Let  $F \in \mathbb{C}[x]$  be a formal power series  $F(x) = \sum_{k=0}^{\infty} a_k x^k$ . For  $\alpha \in \text{Nil}(A)$  define  $F(\alpha) \in A$  by the finite sum

$$F(\alpha) = \sum_{k=0}^{\infty} a_k \alpha^k.$$

If F is invertible, i.e.  $a_0 \neq 0$ , then  $F(\alpha)$  is invertible in A.

In what follows we will usually take  $F(x) = \Gamma(\lambda + x)$  with  $\lambda \in \mathbb{C} \setminus \mathbb{Z}_{\leq 0}$ , where  $\Gamma$  denotes the Euler Gamma function.

**Definition 6.3.2.** Let  $\alpha, \beta, \kappa \in (\mathbb{C}^*)^h$ . We define the *Borel*  $(\alpha, \beta)$ -*multitransform* as the *A*-linear morphism

$$\mathscr{B}_{\boldsymbol{\alpha},\boldsymbol{\beta}}: \bigotimes_{j=1}^{h} \mathscr{F}_{\kappa_{j}}(A) \to \mathscr{F}_{\boldsymbol{\alpha}^{-1}\cdot\boldsymbol{\beta}^{-1}\cdot\boldsymbol{\kappa}}(A),$$

which is defined, on decomposable elements, by

$$\mathcal{B}_{\boldsymbol{\alpha},\boldsymbol{\beta}} \left( \bigotimes_{j=1}^{h} \left( \sum_{s_{j} \in M_{A,\kappa_{j}}} f_{s_{j}}^{j} Z^{s_{j}} \right) \right)$$

$$:= \sum_{\substack{s_{j} \in M_{A,\kappa_{j}} \\ i=1,\dots,h}} \frac{\prod_{i=1}^{h} f_{s_{i}}^{i}}{\Gamma(1+\sum_{\ell=1}^{h} \iota_{\kappa_{\ell}}(s_{\ell})\beta_{\ell})} Z^{\rho_{\kappa} \left(\bigoplus_{\ell=1}^{h} \frac{s_{\ell}}{\alpha_{\ell}\beta_{\ell}}\right)}.$$

**Definition 6.3.3.** Let  $\alpha, \beta, \kappa \in (\mathbb{C}^*)^h$ . We define the *Laplace*  $(\alpha, \beta)$ -multitransform as the *A*-linear morphism

$$\mathscr{L}_{\alpha,\beta}: \bigotimes_{j=1}^h \mathscr{F}_{\kappa_j}(A) \to \mathscr{F}_{\alpha \cdot \beta \cdot \kappa}(A),$$

which is defined, on decomposable elements, by

$$\mathcal{L}_{\boldsymbol{\alpha},\boldsymbol{\beta}} \left( \bigotimes_{j=1}^{h} \left( \sum_{s_{j} \in M_{A,\kappa_{j}}} f_{s_{j}}^{j} Z^{s_{j}} \right) \right)$$

$$:= \sum_{\substack{s_{j} \in M_{A,\kappa_{j}} \\ j=1,\dots,h}} \left( \prod_{i=1}^{h} f_{s_{i}}^{i} \right) \Gamma \left( 1 + \sum_{\ell=1}^{h} \iota_{\kappa_{\ell}}(s_{\ell}) \beta_{\ell} \right) Z^{\rho_{\kappa}(\bigoplus_{\ell=1}^{h} \alpha_{\ell} \beta_{\ell} s_{\ell})}.$$

In the case h = 1, the Borel–Laplace  $(\alpha, \beta)$ -multitransform simplify as follows.

**Definition 6.3.4.** Given  $\alpha, \beta \in \mathbb{C}^*$ , we define two A-linear maps

$$\mathscr{B}_{\alpha,\beta}\colon \mathscr{F}_{\kappa}(A) \to \mathscr{F}_{\frac{\kappa}{\alpha\beta}}(A), \quad \mathscr{L}_{\alpha,\beta}\colon \mathscr{F}_{\kappa}(A) \to \mathscr{F}_{\alpha\beta\kappa}(A), \quad \kappa \in \mathbb{C}^*$$

called respectively  $(\alpha, \beta)$ -Borel and Laplace transforms, through the formulas

$$\mathcal{B}_{\alpha,\beta} \left[ \sum_{s \in M_{A,\kappa}} f_s Z^s \right] := \sum_{s \in M_{A,\kappa}} \frac{f_s}{\Gamma(1+\beta s)} Z^{\frac{s}{\alpha\beta}},$$

$$\mathcal{L}_{\alpha,\beta} \left[ \sum_{s \in M_{A,\kappa}} f_s Z^s \right] := \sum_{s \in M_{A,\kappa}} f_s \Gamma(1+\beta s) Z^{\alpha\beta s}.$$

**Theorem 6.3.5.** The Borel–Laplace  $(\alpha, \beta)$ -transform are inverses of each other, i.e.

$$\mathscr{B}_{\alpha,\beta} \circ \mathscr{L}_{\alpha,\beta} = \mathrm{Id}, \quad \mathscr{L}_{\alpha,\beta} \circ \mathscr{B}_{\alpha,\beta} = \mathrm{Id}.$$

#### 6.4 Analytic Borel–Laplace $(\alpha, \beta)$ -multitransforms

**Definition 6.4.1.** Let  $\alpha, \beta \in (\mathbb{C}^*)^h$ . The Borel  $(\alpha, \beta)$ -multitransform of an h-tuple of A-valued functions  $(\Phi_1, \dots, \Phi_h)$  is defined, when the integral exists, by

$$\mathscr{B}_{\boldsymbol{\alpha},\boldsymbol{\beta}}[\Phi_1,\ldots,\Phi_h](z) := \frac{1}{2\pi i} \int_{\gamma} \prod_{j=1}^h \Phi_j \left( z^{\frac{1}{\alpha_j \beta_j}} \lambda^{-\beta_j} \right) e^{\lambda} \frac{d\lambda}{\lambda},$$

where  $\gamma$  is a Hankel-type contour of integration, see Figure 6.1.



**Figure 6.1.** Hankel-type contour of integration defining Borel  $(\alpha, \beta)$ -multitransform.

**Definition 6.4.2.** Let  $\alpha := (\alpha_1, \dots, \alpha_h)$  and  $\beta := (\beta_1, \dots, \beta_h)$  be h-tuples in  $(\mathbb{C}^*)^h$ . The  $(\alpha, \beta)$ -Laplace transform of an h-tuple of functions  $(\Phi_1, \dots, \Phi_h)$  is defined, when the integral exists, by

$$\mathscr{L}_{\boldsymbol{\alpha},\boldsymbol{\beta}}[\Phi_1,\ldots,\Phi_h](z) := \int_0^\infty \prod_{i=1}^h \Phi_i(z^{\alpha_i\beta_i}\lambda^{\beta_i}) \exp(-\lambda) \, d\lambda.$$

**Proposition 6.4.3.** Let  $(e_1, \ldots, e_n)$  be a basis of A and let  $\Phi_1, \ldots, \Phi_h$  be A-valued functions. Write  $\Phi_i = \sum_j \Phi_i^j e_j$  for  $\mathbb{C}$ -valued component functions  $\Phi_i^j$ . The components of  $\mathcal{B}_{\boldsymbol{\alpha},\boldsymbol{\beta}}[\Phi_1,\ldots,\Phi_h]$  (resp.  $\mathcal{L}_{\boldsymbol{\alpha},\boldsymbol{\beta}}[\Phi_1,\ldots,\Phi_h]$ ) are  $\mathbb{C}$ -linear combinations of the  $h \cdot n$   $\mathbb{C}$ -valued functions  $\mathcal{B}_{\boldsymbol{\alpha},\boldsymbol{\beta}}[\Phi_1^{i_1},\ldots,\Phi_h^{i_h}]$  (resp.  $\mathcal{L}_{\boldsymbol{\alpha},\boldsymbol{\beta}}[\Phi_1^{i_1},\ldots,\Phi_h^{i_h}]$ ), where  $(i_1,\ldots,i_h) \in \{1,\ldots,n\}^{\times h}$ .

*Proof.* Let  $c_{ik}^i \in \mathbb{C}$  be the structure constants of the algebra A, so that

$$e_j e_k = \sum_i c^i_{jk} e_i.$$

We have

$$\mathscr{B}_{\boldsymbol{\alpha},\boldsymbol{\beta}}[\Phi_1,\ldots,\Phi_h] = \sum_{\boldsymbol{a},\boldsymbol{i}} c_{i_1i_2}^{a_1} c_{a_1i_3}^{a_2} \ldots c_{a_{h-2}i_h}^{a_{h-1}} e_{a_{h-1}} \mathscr{B}_{\boldsymbol{\alpha},\boldsymbol{\beta}}[\Phi_1^{i_1},\ldots,\Phi_h^{i_h}].$$

Similarly for the Laplace multitransform.

## **6.5** Analytification of elements of $\mathscr{F}_{\kappa}(A)$

Let  $s = ((\kappa_i n_i 1_A)_{i=1}^h, r) \in M_{A,\kappa}$ . We define the *analytification*  $\widehat{Z}^s$  of the monomial  $Z^s \in \mathscr{F}_{\kappa}(A)$  to be the *A*-valued holomorphic function

$$\widehat{Z^s}: \widetilde{\mathbb{C}^*} \to A, \quad \widehat{Z^s}(z) := z^{\sum_{i=1}^h \kappa_i n_i} \sum_{j=1}^\infty \frac{r^j}{j!} \log^j z.$$

Notice that the sum is finite, since  $r \in Nil(A)$ .

Let  $f \in \mathscr{F}_{\kappa}(A)$  be a series

$$f(Z) = \sum_{s \in M_{A_K}} f_a Z^s$$

such that

$$\operatorname{card} \operatorname{supp}(f) \leqslant \aleph_0.$$

The analytification  $\hat{f}$  of f is the A-valued holomorphic function defined if the series absolutely converges, by

$$\widehat{f}: W \subseteq \widetilde{\mathbb{C}^*} \to A, \quad \widehat{f}(z) := \sum_{s \in M_{A,\kappa}} f_a \widehat{Z^s}(z).$$

**Theorem 6.5.1.** Let  $f_i \in \mathscr{F}_{\kappa_i}(A)$  such that

- card supp $(f_i) \leq \aleph_0$  for i = 1, ..., h,
- the functions  $\hat{f_i}$  are well defined on  $\mathbb{R}_+$ .

We have

$$\widehat{\mathcal{B}_{\boldsymbol{\alpha},\boldsymbol{\beta}}} \left[ \bigotimes_{j=1}^{h} f_{j} \right] = \mathcal{B}_{\boldsymbol{\alpha},\boldsymbol{\beta}} [\widehat{f}_{1}, \dots, \widehat{f}_{h}],$$

$$\widehat{\mathcal{L}_{\boldsymbol{\alpha},\boldsymbol{\beta}}} \left[ \bigotimes_{j=1}^{h} f_{j} \right] = \mathcal{L}_{\boldsymbol{\alpha},\boldsymbol{\beta}} [\widehat{f}_{1}, \dots, \widehat{f}_{h}],$$

provided that both sides are well defined.

*Proof.* It is sufficient to prove the statement on monomials  $Z^{s_1}, \ldots, Z^{s_h}$ . To this end, let  $s_j = (\kappa_j n_j 1_A, r_j)$  for  $j = 1, \ldots, h$ . We have

$$\mathcal{B}_{\boldsymbol{\alpha},\boldsymbol{\beta}} \left[ \bigotimes_{j=1}^{h} Z^{s_{j}} \right] \\
= \frac{1}{\Gamma(1 + \sum_{\ell=1}^{h} \iota_{\kappa_{\ell}}(s_{\ell})\beta_{\ell})} Z^{\rho_{\kappa}} \left( \bigoplus_{\ell=1}^{h} \frac{s_{\ell}}{\alpha_{\ell}\beta_{\ell}} \right) \\
= \frac{1}{\Gamma(1 + \sum_{\ell=1}^{h} (\kappa_{\ell}n_{\ell}1_{A} + r_{\ell})\beta_{\ell})} Z^{\left(\left(\frac{\kappa_{j}}{\alpha_{j}\beta_{j}}n_{j}1_{A}\right)_{j=1}^{h}, \frac{r_{1}}{\alpha_{1}\beta_{1}} + \dots + \frac{r_{h}}{\alpha_{h}\beta_{h}} \right)}.$$

Hence, we have

$$\widehat{\mathcal{B}_{\boldsymbol{\alpha},\boldsymbol{\beta}}} \left[ \bigoplus_{j=1}^{h} Z^{s_{j}} \right] (z) \\
= \frac{z^{\sum_{i=1}^{h} \frac{\kappa_{i} n_{i}}{\alpha_{i} \beta_{i}}}}{\Gamma(1 + \sum_{\ell=1}^{h} (\kappa_{\ell} n_{\ell} 1_{A} + r_{\ell}) \beta_{\ell})} \sum_{j=1}^{\infty} \frac{\left(\frac{r_{1}}{\alpha_{1} \beta_{1}} + \dots + \frac{r_{h}}{\alpha_{h} \beta_{h}}\right)^{j}}{j!} \log^{j} z.$$

On the other hand, we have

$$\widehat{Z^{s_j}}(z) = z^{\kappa_j n_j} \sum_{\ell} \frac{r_j^{\ell}}{\ell!} \log^{\ell} z,$$

so that

$$\begin{split} \mathscr{B}_{\boldsymbol{\alpha},\boldsymbol{\beta}}[\widehat{Z^{s_1}},\dots,\widehat{Z^{s_h}}](z) \\ &= \frac{1}{2\pi i} \int_{\gamma} \prod_{j=1}^{h} \widehat{Z^{s_j}} \left( z^{\frac{1}{\alpha_j \beta_j}} \lambda^{-\beta_j} \right) e^{\lambda} \frac{d\lambda}{\lambda} \\ &= \frac{1}{2\pi i} \int_{\gamma} e^{\lambda} \frac{d\lambda}{\lambda} \prod_{j=1}^{h} \left( z^{\frac{1}{\alpha_j \beta_j}} \lambda^{-\beta_j} \right)^{\kappa_j n_j} \sum_{\ell} \frac{r_j^{\ell}}{\ell!} \log^{\ell} \left( z^{\frac{1}{\alpha_j \beta_j}} \lambda^{-\beta_j} \right) \end{split}$$

$$\begin{split} &= \frac{z^{\sum_{i=1}^{h} \frac{\kappa_{i} n_{i}}{\alpha_{i} \beta_{i}}}}{2\pi i} \int_{\gamma} e^{\lambda} \frac{d\lambda}{\lambda^{1+\sum_{\ell=1}^{h} \kappa_{\ell} n_{\ell} \beta_{\ell}}} \prod_{j=1}^{h} \sum_{\ell} \frac{r_{j}^{\ell}}{\ell!} \log^{\ell} \left( z^{\frac{1}{\alpha_{j} \beta_{j}}} \lambda^{-\beta_{j}} \right) \\ &= \frac{z^{\sum_{i=1}^{h} \frac{\kappa_{i} n_{i}}{\alpha_{i} \beta_{i}}}}{2\pi i} \int_{\gamma} e^{\lambda} \frac{d\lambda}{\lambda^{1+\sum_{\ell=1}^{h} \kappa_{\ell} n_{\ell} \beta_{\ell}}} \sum_{\ell_{1}, \dots, \ell_{h}} \prod_{j=1}^{h} \frac{r_{j}^{\ell_{j}}}{\ell_{j}!} \log^{\ell_{j}} \left( z^{\frac{1}{\alpha_{j} \beta_{j}}} \lambda^{-\beta_{j}} \right). \end{split}$$

We have

$$\prod_{j=1}^{h} \frac{r_j^{\ell_j}}{\ell_j!} \log^{\ell_j} \left( z^{\frac{1}{\alpha_j \beta_j}} \lambda^{-\beta_j} \right) \\
= \prod_{j=1}^{h} \sum_{w,u=0}^{\infty} \frac{r_j^{\ell_j}}{w!u!} \left( \frac{\log z}{\alpha_j \beta_j} \right)^w (-\beta_j \log \lambda)^u \delta_{w+u,\ell_j} \\
= \sum_{\substack{w_1,\dots,w_h \\ u_1,\dots,u_h}} \prod_{j=1}^{h} \frac{r_j^{\ell_j}}{w_j!u_j!} \left( \frac{\log z}{\alpha_j \beta_j} \right)^{w_j} (-\beta_j \log \lambda)^{u_j} \delta_{w_j+u_j,\ell_j},$$

and

$$\frac{1}{2\pi i} \int_{\gamma} e^{\lambda} \frac{d\lambda}{\lambda^{1+\sum_{\ell=1}^{h} \kappa_{\ell} n_{\ell} \beta_{\ell}}} (-\log \lambda)^{u_{j}} = \left(\frac{1}{\Gamma}\right)^{(u_{j})} \left(1 + \sum_{\ell=1}^{h} \kappa_{\ell} n_{\ell} \beta_{\ell}\right),$$

because of the Hankel formula (see e.g. [64])

$$\frac{1}{\Gamma(z)} = \frac{1}{2\pi i} \int_{\gamma} e^{\lambda} \, \frac{d\lambda}{\lambda^{z}}.$$

Thus, we have

$$\mathcal{B}_{\boldsymbol{\alpha},\boldsymbol{\beta}}[\widehat{Z^{s_1}},\ldots,\widehat{Z^{s_h}}](z) = z^{\sum_{i=1}^h \frac{\kappa_i n_i}{\alpha_i \beta_i}} \sum_{\substack{\ell_1,\ldots,\ell_h \\ w_1,\ldots,w_h \\ u_1,\ldots,u_h}} \prod_{j=1}^h \frac{r_j^{\ell_j} \beta_j^{u_j}}{w_j! u_j!} \left(\frac{\log z}{\alpha_j \beta_j}\right)^{w_j} \cdot \left(\frac{1}{\Gamma}\right)^{(u_j)} \left(1 + \sum_{\ell=1}^h \kappa_\ell n_\ell \beta_\ell\right) \delta_{w_j + u_j,\ell_j}.$$

This coincides with the formula of  $widehat \mathcal{B}_{\alpha,\beta}[\bigotimes_{j=1}^{h} Z^{s_j}](z)$ . The proof for the Laplace multitransform is similar, based on the identity

$$\Gamma(z) = \int_0^\infty \lambda^{z-1} e^{-\lambda} \, d\lambda.$$