Chapter 7

Integral representations of solutions of qDEs

7.1 Jx-function as element of .7, (X)

Let X be a variety with nef anticanonical bundle.' Introduce the basis (81, ..., B;)
of Hy(X,Z) Poincaré dual to (T'!,..., T"), so that

/Tj=/TiUT]'=5i,j.
i X ‘ ‘

T
Jj=1

Set

Consider the C-algebra H*(X, C). For brevity, we set
Fe(X) = F(H*(X,C))

for any k& € (C*)".
The Jx-function restricted to the small quantum locus of QH *(X) admits the
following expansion:

Jx (8 +logz-c1(X))|o=1
h=1

o0
_ a0 Z Z Z Sl a0 o, X 5T
@ BA0k=0

Such a series can be seen as an element of .%, (X) for different choices of k. We
describe two possible choices. In both cases, we have a series in .%, (X) concentrated
at c1(X).

Choice 1. Set 4 = 1 and k¥ = ¢, where ¢ is a common divisor of the numbers

The series can be rearranged as follows:

Jx (8 +logz-c1(X))|g=1 = Z Ja(8)zdetarX),
h=1 deN

'We recall that this means /, ¢ ¢1(X) = 0 for all curves C in X. If the strict inequality
holds true for any C, then X is Fano by the Nakai—-Moishezon theorem. Varieties with nef
anticanonical bundle can be thought as an interpolation between Fano and Calabi—Yau varieties.
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where

Ja@®) =Y (wTa ozaro@T® deN, T e HX(X,Z), c1(X) = cT.
ak

In particular, Jo(8) = €.

Choice 2. Set & = r and &k = (¢*1,...,c%). By expanding the sum over 3 over
the basis (81, ..., Br), the sum above becomes
Jx(@+logz-ci(X)lo=1= ) Ja (§)z 1™ e ey (X),
h=1 deNT
where

Ja(8) = ¢y (tTo. 1)02.4, Bay, +-+depa, T d €N,
ok

In particular, Jo(8) = €°.

7.2 Integral representations of the first kind

Let X be a Fano smooth projective variety. Assume that det Ty = L®¢ with L ample
line bundle. Lett: ¥ C X be a smooth subvariety defined as the zero locus of a regular
section of the vector bundle £ = @j’:l L®  where the numbers d; € N* are such
that Y5, d; < L.

Theorem 7.2.1. Let § € H?>(X,C), and let S5(X) be the corresponding space of
master functions of QH®(X). There exists a complex number cg € C such that the
space of master functions S,xg(Y) is contained in image of the C-linear map

Fie.ay: Ss(X) > O(CH)

defined by
Fun|®@2) =Ly 0,
ds ’(72?“;% d;
0.0 Li—di-ay ay ©Li—ay a,[P](2).
4 a4 ot

In other words, any element of $,x5(Y) is of the form
o oo [ ewiiq S\
e—CSZ/ / oz []&" |eZ=1tde ... di (7.2.1)
0 0 i=1
for some ® € S5(X). Moreover, cs # 0 only ifzj di =0—-1.

Proof. Set p := c1(L), and let p* € H,(X, Z) be its Poincaré dual homology class.
In particular, we have ¢;(X) = {p and ¢;(E) = (3_;_, di)p. By the adjunction for-
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mula, we have ¢{(Y) = t*(c1(X) — c1(E)). From Lemma A.2, we have
JX(S +10gZ'C1(X))|Q=1 = Z Jdp*(S)ZdK'FCI(X)
h=1  jeN

=Y Jape (§)z41F, (7.2.2)
deN

where Jgp+(8) = el Yok Tk Tas 1>0X,2,dp* T%. Analogously, from (5.3.2) we have

Ixy (8 + (c1(X) — c1(E)) log z)[o=1

h=1
s ({dip,dp™)

= Y Jar G+ @D —er(ENlog) [ ] @ip+m)

deN i=1 m=1

s d-d;

— Z Jdp*(S)Zd(ﬁ—zdi)-f—q(X)—m(E) 1_[ l_[(di,o+m)

deN i=1m=1

N

= 3 g ()24 EHET DR T] L +dip+ddi) 723

deN ’ i=1 F(l—i—d,-p)

On the one hand, from (7.2.2), one can see that Jy (6 + logz - ¢1(X)))|o=1,4=1 is
the analytification Ty of the series Jx € F4(X), concentrated at ¢, (X) = £p, defined
by
IX(Z) =" Jgpe(8)29&1 0,
deN
On the other hand, one recognizes in equation (7.2.3) the analytification of the itera-
tion of Laplace transforms

N

1
xy =] =" <$efz$, 4

iI:II I'(l+dip) i ’E—Z?S;II 4; (7.2.4)
00 Lvaj-ay a» ©Le—ay Q[JX]),

do *L—dy dy ¢t

which is an element of ﬁg,zls,:] 4 (X). By Theorems 5.3.1, 5.3.4, 6.5.1, and Propo-
sition 5.3.5, we have E

Jy ("6 + c1(Y) log Z)|<;=1 = Txy 8+ (e1(X) — c1(E))) exp(—zH(8) o=1),
=1
where H(8) is defined in Proposition 5.3.5. Thus, the components of the right-hand
side, with respect to any basis of H*(Y,C), span the space of master functions
Si=5(Y), by Corollary 5.1.3. The factor * []_, T'(1 + d;ip)~! coming from (7.2.4)
can be eliminated by a change of basis of H*(Y, C). By H*(X, C)-linearity of the
Laplace (, B)-transforms, the claim follows by setting ¢5 := H(5)|g=1. ]
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Remark 7.2.2. Integral (7.2.1) is convergent for any z € C*. This follows from the
exponential asymptotics of Theorem 4.3.2 for z — oo, the Fano assumption on Y
(i.e. Z]_l d; <€), and the asymptotics |®(z)| < C|logz|4™c X for z — 0 (see
Theorem 5.1.2 and Corollary 5.1.3).

Remark 7.2.3. Formula (7.2.4) generalizes [37, Lemma 8.1].

7.3 Integral representations of the second kind

Let X1,..., X} be Fano smooth projective varieties. Assume that det Tx; = L
for ample hne bundles L;. Let Y be a smooth subvariety of X := ]_[ 1 X deﬁned
as the zero locus of a regular section of the line bundle

E— ® 189
j=1"

where the numbers d; € N* are such that d; < {; forany j = 1,...,h.
By Kiinneth isomorphism, any element of H?(X, C) is of the form

h
§=>18®§® @1 withé € H*(X;.C).
i=1

Denote by (: Y — X the inclusion.

Theorem 7.3.1. Let § € H*>(X,C), §; € H*(X;,C) be as above, and let Ss;(Xi)
be the corresponding space of master functions of QH *(X;). There exists a rational

number cg € Q such that the space of master functions S,+5(Y) is contained in image
of the C-linear map (g q4y: ®]_1 S5, (Xj) — (9((C*) defined by

Pu.[P1,.... Ppl(2) = e_c‘sz.iﬂa,ﬂ [®1,...,Dx](2),

where

(avﬂ):( dl LI dh ’61’...75
In other words, any element of $,+5(Y) is of the form

—dj
/ (z U H) A dA (7.3.1)

for some ®; € S5, (X) with j =1,...,h. Moreover, cs # 0 only ifdj = £; — 1 for
some j.

¢ —d th—dy dy d,,)

Proof. Setp; := c1(L;) andlet p} € H,(X;, Z) be its Poincaré dual homology class,
forany i = 1,..., h. By the Kiinneth isomorphism, and by the universal property of
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coproduct of algebras (i.e. tensor product), we have injective’ maps
H*(X;,C) - H*(X,C).

In order to ease the computations, in the next formulas we will not distinguish an
element of H*(X;, C) with its image in H*(X, C). So, for example we will write

h
ci(E) = Z dppp.
p=1

The same will be applied for elements in H, (X, Z).
We have

h
Tx (8 + c1(X)logz)o=1 = (X) Jx; (8 + c1(X;)logz)|o=1
1

h=1 = h=
h
= Y Jikpr G)Fititlin, (7.3.2)
i=1 kiGN

where
) X;
Jikipr () = € Y (i Twis Vg g e T
o, !
Analogously, from (5.3.2), we deduce the formula

Ixy (8 + (c1(X) — c1(E)) log z)|Q=1
h=1

h
= Z ®Ji ko (8) 2K CimdD+Ei=dpi
’ 1
ki,...kpeN i=1
(Zp dppp,Z,, ka;)

I (;dpPerM)

m=1

h
= Y (R i () G G,

ki,...kpeN i=1
Zp dpkp

[ (S m)

m=1
h

= Z ® Ji ki ((gl.)Zki €i—d)+Ei—d;)p;

. L+, dpkp + 3, dppp)
ra+ Zp dppp) .

(7.3.3)

2In particular, we have inclusions F (X;) — F (X).
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Each element in the tensor product (7.3.2) can easily be recognized as the analytifi-
cation in of a series Iy, € ﬁgi (X), foreachi = 1,..., h. The function in equation
(7.3.3) can be identified with the analytification of the Laplace (&, §)-multitransform

h h
1
s <® ra+y, d,,p,,)) L [®JX'}’ 7y

i=1 i=1

where

@ p) = (A L),

dl ey dh ,Zl,...,a
The series Iy,y can be seen as an element of .%, (X), with k = ({; — dl-)lhzl,

Kiinneth isomorphism. By Theorems 5.3.1, 5.3.4, 6.5.1, and Proposition 5.3.5, we
have

via the

Ty (@8 + e log )=t = Ty (3 + (@1(X) = c1(ED) exp(—=H ) =)
=1
Thus, the components of the right-hand side, with respect to any basis of H*(Y, C),
span the space of master functions §,+5(Y"), by Corollary 5.1.3. Notice that the factor
Fi_, T+ Zp a’p,op)_1 coming from (7.3.4) can be eliminated by a change of
basis of H*(Y, C). By H*(X, C)-linearity of the Laplace (e, 8)-multitransform, the
claim follows by setting cs := H(8)|g=1. ]

Remark 7.3.2. Integral (7.3.1) is convergent for any z € C*. This follows from the
exponential asymptotics of Theorem 4.3.2 for z — oo, the assumption d; < {; for
any j = 1,...,h, and the asymptotics |®;(z)| < C|log z|“i™c X/ for z — O (see
Theorem 5.1.2 and Corollary 5.1.3).

Remark 7.3.3. Formula (7.3.4) generalizes [37, Lemma 8.1].

7.4 Master functions as Mellin—Barnes integrals

When applied to the case of Fano complete intersections in products of projective
spaces, Theorems 7.2.1 and 7.3.1 give explicit Mellin—Barnes integral representations
of solutions of the gDE.

Theorem 7.4.1. Let Y be a Fano complete intersection in P"~1 defined by h homo-
geneous polynomials of degrees di, ... ,dy. There exists a unique ¢ € Q such that
any master functions in $o(Y) is a linear combination of the Mellin—Barnes integrals

e—CZ

G =),

h
F(S)n 1_[ ra- dks)z—(n—2£=1 dk)s(pj (s)ds
k=1
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for j =0,...,n— 1. The path of integration y is a parabola of the form
Res = —p1(Ims)® + pa,

Sor suitable p1, p2 € R4, such that y encircles the poles of T (s)", and separates them
from the poles of the factors I (1 — dys). The functions ¢; are given by

* forn even:
@i (s) = exp(Zn«/—_ljs), j=0,...,n—1,
* forn odd:
;i (s) == exp(2nv/—1js + nv/~1s5), j=0,...,n—1.
Moreover, ¢ # 0only if Y, dx =n — 1.

Proof. The functions
1
gj(z) = ﬁ/F(s)”z_”s(pj(s) ds, j=0,...,n—1,
—1Jy

are a basis of the space of master functions So(IP"~!), see [46, Lemma 5]. The result
follows by applying Theorem 7.2.1 to the case X = P"~1, { = n. [

Theorem 7.4.2. Let Y be a Fano hypersurface of P"1 7! x -.. x P~ defined by
a homogeneous polynomial of multi-degree (dy, . .., dy). There exists a unique ¢ € Q
such that any master function in So(Y') is a linear combination of the multi-dimen-
sional Mellin—Barnes integrals

e—CZ
Hj(z) := —(2]“/__1)}2 /Xy,- |:

h
h
-F(l - Zd;si)z_zil(”f_df)“‘f dsy...dsy
i=1

forj = (j1,...,jn) € ]_[;’21{0, ..., nj — 1}. The paths y; are parabolas of the form

i=

h .
()" ¢, (s,-)}
1

Res; = —p1,;(Ims;)* + p2,7,

for suitable py ;, p2,; € Ry, so that they encircle the poles of the factors I' (s;)". The
Sfunction (pj’:l, is defined as follows:

* forn; even:
(p}i(si) = exp(2n«/—_1jl-s,-), ji=0,...,n; —1,
* forn; odd:
(p}i (s;) = exp(2nv/—jisi + nv/~1s;), ji =0,...,n; — L.

Moreover, ¢ # Oonly ifd; = n; — 1 for somei =1,...,h.
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Proof. The result follows by application of Theorem 7.3.1 to the case X; = P" !
{; = n;.For each factor P"~1 a basis of the space So(PP" ~!) is given by the integrals

. 1
L (2) 1= ——— L (s)%iz7"s ’ s)ds, j =0,...,n; —1. m
g]l() 27[\/_—1 v; () () .]l 1

Example. Consider the complex Grassmannian G := G(2, 4): it can be realized as
a quadric in IP°, by Pliicker embedding. It can be shown that the space So(G) is the
space of solutions @ of the gDE given by

d
92D — 1024249 D — 2048z4d =0, ¥ := 2o (7.4.1)
z

By Theorem 7.4.1, any solution of (7.4.1) is a linear combination of the functions

Gi(z) = [(s)®T (1 —2s)z™% exp(2rv/—1js)ds, j=0,....5.

i)

Recalling the reflection and duplication formulas for I'-function (see e.g. [64]),

L@ -2 = 0. 1o = n—ézﬂ—lr(z)r(z + %)

it is easy to see that the function

3
22 I(s)° 4=,
Go(z) = - z % ds
o(2) 2n/—1Jy T(s + %) sin(27s)

is a solution of (7.4.1). In [23, Section 6] the solutions

F(S)5

®i(z) = 4_S 4 ds

an/_/

and
Dy(z) =

C(s)°T ( —s)ei”54_sz_4s ds
n\/— (s)

of equation (7.4.1) were found and studied. It is not difficult to see that ®; and ®,
are linear combinations of the functions G;.

Remark 7.4.3. This example can be extended to Grassmannians G (k, n) and other
families of partial flag varieties. In the case of Grassmannians it gives different inte-
gral representations of solutions with respect to those obtained from the quantum
Satake identification [42,55]. More in general, it would be interesting to do a com-
parison with the integral representations of solutions obtained from the Abelian—
Nonabelian correspondence [14].



