Chapter 7

Integral representations of solutions of qDEs

7.1 J_X -function as element of $\mathscr{F}_k(X)$

Let X be a variety with nef anticanonical bundle.^{[1](#page-0-0)} Introduce the basis $(\beta_1, \ldots, \beta_r)$ of $H_2(X, \mathbb{Z})$ Poincaré dual to (T^1, \ldots, T^n) , so that

$$
\int_{\beta_i} T_j = \int_X T^i \cup T_j = \delta_{i,j}.
$$

Set

$$
c_1(X) = \sum_{j=1}^r c^{\alpha_{i_j}} T_{\alpha_{i_j}}, \quad c^{\alpha_{i_j}} \in \mathbb{N}^*.
$$

Consider the $\mathbb C$ -algebra $H^{\bullet}(X, \mathbb C)$. For brevity, we set

$$
\mathscr{F}_{\kappa}(X) := \mathscr{F}_{\kappa}(H^{\bullet}(X,\mathbb{C}))
$$

for any $\kappa \in (\mathbb{C}^*)^h$.

The J_X -function restricted to the small quantum locus of $QH^{\bullet}(X)$ admits the following expansion:

$$
J_X(\delta + \log z \cdot c_1(X))|_{Q=1}
$$

= $e^{\delta z c_1(X)} + \sum_{\alpha} \sum_{\beta \neq 0} \sum_{k=0}^{\infty} e^{\delta z \int_{\beta} c_1(X)} z^{c_1(X)} \langle \tau_k T_{\alpha}, 1 \rangle_{0,2,\beta}^X T^{\alpha}.$

Such a series can be seen as an element of $\mathcal{F}_{k}(X)$ for different choices of κ . We describe two possible choices. In both cases, we have a series in $\mathcal{F}_{k}(X)$ concentrated at $c_1(X)$.

Choice 1. Set $h = 1$ and $\kappa = c$, where c is a common divisor of the numbers

$$
c^{\alpha_{i_1}},\ldots,c^{\alpha_{i_r}}.
$$

The series can be rearranged as follows:

$$
J_X(\delta + \log z \cdot c_1(X))|_{\substack{Q=1 \ h=1}} = \sum_{d \in \mathbb{N}} J_d(\delta) z^{dc + c_1(X)},
$$

¹We recall that this means $\int_C c_1(X) \ge 0$ for all curves C in X. If the strict inequality holds true for any C , then X is Fano by the Nakai–Moishezon theorem. Varieties with nef anticanonical bundle can be thought as an interpolation between Fano and Calabi–Yau varieties.

where

$$
J_d(\delta) = e^{\delta} \sum_{\alpha,k} \langle \tau_k T_{\alpha}, 1 \rangle_{0,2,d \cdot PD(T)} T^{\alpha}, \quad d \in \mathbb{N}, T \in H^2(X, \mathbb{Z}), c_1(X) = cT.
$$

In particular, $J_0(\delta) = e^{\delta}$.

Choice 2. Set $h = r$ and $\kappa = (c^{\alpha_{i_1}}, \ldots, c^{\alpha_{i_r}})$. By expanding the sum over β over the basis $(\beta_1, \ldots, \beta_r)$, the sum above becomes

$$
J_X(\delta + \log z \cdot c_1(X))|_{\substack{Q=1 \ h=1}} = \sum_{d \in \mathbb{N}^T} J_d(\delta) z^{d_1 c^{\alpha_{i_1}} + \dots + d_r c^{\alpha_{i_r}} + c_1(X)},
$$

where

$$
J_d(\delta) = e^{\delta} \sum_{\alpha,k} \langle \tau_k T_{\alpha}, 1 \rangle_{0,2, d_1 \beta_{\alpha_{i_1}} + \dots + d_r \beta_{\alpha_{i_r}}} T^{\alpha}, \quad d \in \mathbb{N}^r.
$$

In particular, $J_0(\delta) = e^{\delta}$.

7.2 Integral representations of the first kind

Let X be a Fano smooth projective variety. Assume that det $T_X = L^{\otimes \ell}$ with L ample line bundle. Let $\iota: Y \subseteq X$ be a smooth subvariety defined as the zero locus of a regular section of the vector bundle $E = \bigoplus_{j=1}^s L^{\otimes d_j}$, where the numbers $d_j \in \mathbb{N}^*$ are such that $\sum_{j=1}^s d_j < \ell$.

Theorem 7.2.1. Let $\delta \in H^2(X, \mathbb{C})$, and let $S_{\delta}(X)$ be the corresponding space of master functions of $QH^{\bullet}(X)$. There exists a complex number $c_{\delta} \in \mathbb{C}$ such that the *space of master functions* $S_{\iota^* \delta}(Y)$ *is contained in image of the* $\mathbb C$ *-linear map*

$$
\mathscr{S}_{(\ell,\boldsymbol{d})}:\mathcal{S}_{\delta}(X)\to\mathcal{O}(\widetilde{\mathbb{C}^*})
$$

defined by

$$
\mathscr{S}_{(\ell,d)}[\Phi](z) := e^{-c_{\delta}z} \mathscr{L}_{\underbrace{\ell-\sum_{i=1}^{s}d_i}_{d_{\delta}}, \underbrace{\frac{d_{\delta}}{\ell-\sum_{i=1}^{s-1}d_i}}}_{\varphi \mathscr{L}_{\ell-d_1}, \underbrace{d_2}_{d_2}, \underbrace{\varphi \mathscr{L}_{\ell-d_1}}_{d_1}, \underbrace{d_1}_{d_1}[\Phi](z).
$$

In other words, any element of $S_{\iota^* \delta}(Y)$ *is of the form*

$$
e^{-c_{\delta}z}\int_0^{\infty}\dots\int_0^{\infty}\Phi\left(z\frac{\ell-\sum_{j=1}^s d_j}{\ell}\prod_{i=1}^s \zeta_i^{\frac{d_i}{\ell}}\right)e^{-\sum_{i=1}^s \zeta_i} d\zeta_1\dots d\zeta_s\qquad(7.2.1)
$$

for some $\Phi \in S_{\delta}(X)$. Moreover, $c_{\delta} \neq 0$ only if $\sum_{j} d_j = \ell - 1$.

Proof. Set $\rho := c_1(L)$, and let $\rho^* \in H_2(X, \mathbb{Z})$ be its Poincaré dual homology class. In particular, we have $c_1(X) = \ell \rho$ and $c_1(E) = (\sum_{i=1}^s d_i) \rho$. By the adjunction formula, we have $c_1(Y) = \iota^*(c_1(X) - c_1(E))$. From Lemma [A.2,](#page--1-0) we have

$$
J_X(\delta + \log z \cdot c_1(X))|_{\mathbf{Q}=1} = \sum_{d \in \mathbb{N}} J_{d\rho^*}(\delta) z^{d\ell + c_1(X)} = \sum_{d \in \mathbb{N}} J_{d\rho^*}(\delta) z^{d\ell + \ell \rho},
$$
(7.2.2)

where $J_{d\rho^*}(\delta) = e^{\delta} \sum_{\alpha,k} \langle \tau_k T_{\alpha}, 1 \rangle_{0,2,d\rho^*}^X T^{\alpha}$. Analogously, from [\(5.3.2\)](#page--1-1) we have $I_{Y,Y}(\delta + (c_1(Y) - c_1(F)) \log z)$

$$
X_{i}Y_{i}(\delta + (c_{1}(X) - c_{1}(E)) \log Z)|Q=1
$$
\n
$$
= \sum_{d \in \mathbb{N}} J_{d\rho^{*}}(\delta + (c_{1}(X) - c_{1}(E)) \log Z) \prod_{i=1}^{s} \prod_{m=1}^{(d_{i}\rho, d\rho^{*})} (d_{i}\rho + m)
$$
\n
$$
= \sum_{d \in \mathbb{N}} J_{d\rho^{*}}(\delta) z^{d(\ell - \sum d_{i}) + c_{1}(X) - c_{1}(E)} \prod_{i=1}^{s} \prod_{m=1}^{d_{i}d_{i}} (d_{i}\rho + m)
$$
\n
$$
= \sum_{d \in \mathbb{N}} J_{d\rho^{*}}(\delta) z^{d(\ell - \sum d_{i}) + (\ell - \sum d_{i})\rho} \prod_{i=1}^{s} \frac{\Gamma(1 + d_{i}\rho + dd_{i})}{\Gamma(1 + d_{i}\rho)}.
$$
\n(7.2.3)

On the one hand, from [\(7.2.2\)](#page-2-0), one can see that $J_X(\delta + \log z \cdot c_1(X))||_{\mathbf{Q} = 1, \hbar = 1}$ is the analytification \hat{J}_X of the series $J_X \in \mathscr{F}_\ell(X)$, concentrated at $c_1(X) = \ell \rho$, defined by

$$
J_X(Z) = \sum_{d \in \mathbb{N}} J_{d\rho^*}(\delta) Z^{d\ell \oplus c_1(X)}.
$$

On the other hand, one recognizes in equation [\(7.2.3\)](#page-2-1) the analytification of the iteration of Laplace transforms

$$
I_{X,Y} := \prod_{i=1}^{s} \frac{1}{\Gamma(1+d_i \rho)} \cdot \left(\mathcal{L}_{\frac{\ell - \sum_{i=1}^{s} d_i}{ds}, \frac{ds}{\ell - \sum_{i=1}^{s-1} d_i}} \right) \quad (7.2.4)
$$

$$
\circ \cdots \circ \mathcal{L}_{\frac{\ell - d_1 - d_2}{d_2}, \frac{d_2}{\ell - d_1}} \circ \mathcal{L}_{\frac{\ell - d_1}{d_1}, \frac{d_1}{\ell}}[J_X] \right),
$$

which is an element of $\mathscr{F}_{\frac{\ell-\sum_{i=1}^{s}d_i}{\ell}}$ (X) . By Theorems [5.3.1,](#page--1-2) [5.3.4,](#page--1-0) [6.5.1,](#page--1-3) and Proposition [5.3.5,](#page--1-4) we have

$$
J_Y(\iota^*\delta + c_1(Y) \log z)|_{\mathbf{Q} = 1} = \iota^*\hat{\mathbf{I}}_{X,Y}(\delta + (c_1(X) - c_1(E))) \exp(-zH(\delta)|_{\mathbf{Q} = 1}),
$$

where $H(\delta)$ is defined in Proposition [5.3.5.](#page--1-4) Thus, the components of the right-hand side, with respect to any basis of $H^{\bullet}(Y, \mathbb{C})$, span the space of master functions $S_{i^*S}(Y)$, by Corollary [5.1.3.](#page--1-5) The factor $\iota^* \prod_{i=1}^s \Gamma(1 + d_i \rho)^{-1}$ coming from [\(7.2.4\)](#page-2-2) can be eliminated by a change of basis of $H^{\bullet}(Y, \mathbb{C})$. By $H^{\bullet}(X, \mathbb{C})$ -linearity of the Laplace (α, β) -transforms, the claim follows by setting $c_{\delta} := H(\delta)|_{\mathbf{Q} = 1}$.

Remark 7.2.2. Integral [\(7.2.1\)](#page-1-0) is convergent for any $z \in \widetilde{C}^*$. This follows from the exponential asymptotics of Theorem [4.3.2](#page--1-6) for $z \to \infty$, the Fano assumption on Y (i.e. $\sum_{j=1}^{s} d_j < l$), and the asymptotics $|\Phi(z)| < C |\log z|^{dim_{\mathbb{C}} X}$ for $z \to 0^+$ (see Theorem [5.1.2](#page--1-7) and Corollary [5.1.3\)](#page--1-5).

Remark 7.2.3. Formula [\(7.2.4\)](#page-2-2) generalizes [\[37,](#page--1-8) Lemma 8.1].

7.3 Integral representations of the second kind

Let X_1, \ldots, X_h be Fano smooth projective varieties. Assume that det $T_{X_j} = L_j^{\otimes \ell_j}$ j for ample line bundles L_j . Let Y be a smooth subvariety of $X := \prod_{j=1}^h X_j$ defined as the zero locus of a regular section of the line bundle

$$
E = \mathop{\boxtimes}\limits_{j=1}^h L_j^{\otimes d_j},
$$

where the numbers $d_j \in \mathbb{N}^*$ are such that $d_j < \ell_j$ for any $j = 1, ..., h$.

By Künneth isomorphism, any element of $H^2(X,\mathbb{C})$ is of the form

$$
\delta = \sum_{i=1}^h 1 \otimes \cdots \otimes \delta_i \otimes \cdots \otimes 1 \quad \text{with } \delta_i \in H^2(X_i, \mathbb{C}).
$$

Denote by $\iota: Y \to X$ the inclusion.

Theorem 7.3.1. Let $\delta \in H^2(X, \mathbb{C})$, $\delta_i \in H^2(X_i, \mathbb{C})$ be as above, and let $\delta_{\delta_i}(X_i)$ be the corresponding space of master functions of $QH^{\bullet}(X_i)$. There exists a rational *number* $c_8 \in \mathbb{Q}$ *such that the space of master functions* $S_{\iota^* \delta}(Y)$ *is contained in image of the* $\mathbb C$ -linear map $\mathscr P(\ell, d)$: $\bigotimes_{j=1}^h \mathcal S_{\delta_j}(X_j) \to \mathcal O(\widetilde{\mathbb C}^*)$ defined by

$$
\mathscr{P}_{(\ell,\boldsymbol{d})}[\Phi_1,\ldots,\Phi_h](z):=e^{-c_{\delta}z}\mathscr{L}_{\boldsymbol{\alpha},\boldsymbol{\beta}}[\Phi_1,\ldots,\Phi_h](z),
$$

where

$$
(\boldsymbol{\alpha},\boldsymbol{\beta})=\bigg(\frac{\ell_1-d_1}{d_1},\ldots,\frac{\ell_h-d_h}{d_h};\frac{d_1}{\ell_1},\ldots,\frac{d_h}{\ell_h}\bigg).
$$

In other words, any element of $S_{\iota^* \delta}(Y)$ *is of the form*

$$
e^{-c_{\delta}z} \int_0^{\infty} \prod_{j=1}^h \Phi_j \left(z^{\frac{\ell_j - d_j}{\ell_j}} \lambda^{\frac{d_j}{\ell_j}} \right) e^{-\lambda} d\lambda \tag{7.3.1}
$$

for some $\Phi_j \in S_{\delta_j}(X)$ *with* $j = 1, ..., h$ *. Moreover,* $c_{\delta} \neq 0$ *only if* $d_j = \ell_j - 1$ *for some* j *.*

Proof. Set $\rho_i := c_1(L_i)$ and let $\rho_i^* \in H_2(X_i, \mathbb{Z})$ be its Poincaré dual homology class, for any $i = 1, \ldots, h$. By the Künneth isomorphism, and by the universal property of coproduct of algebras (i.e. tensor product), we have injective^{[2](#page-4-0)} maps

$$
H^{\bullet}(X_i,\mathbb{C}) \to H^{\bullet}(X,\mathbb{C}).
$$

In order to ease the computations, in the next formulas we will not distinguish an element of $H^{\bullet}(X_i, \mathbb{C})$ with its image in $H^{\bullet}(X, \mathbb{C})$. So, for example we will write

$$
c_1(E) = \sum_{p=1}^h d_p \rho_p.
$$

The same will be applied for elements in $H_2(X, \mathbb{Z})$.

We have

$$
J_X(\delta + c_1(X) \log z)|_{\mathbf{Q}=1} = \bigotimes_{i=1}^h J_{X_i}(\delta_i + c_1(X_i) \log z)|_{\mathbf{Q}=1}
$$

=
$$
\bigotimes_{i=1}^h \sum_{k_i \in \mathbb{N}} J_{i,k_i \rho_i^*}(\delta_i) z^{k_i \ell_i + \ell_i \rho_i},
$$
(7.3.2)

where

$$
J_{i,k_i\rho_i^*}(\delta_i)=e^{\delta_i}\sum_{\alpha,j}\langle\tau_jT_{\alpha,i},1\rangle_{0,2,k_i\rho_i^*}^{X_i}T_i^{\alpha}.
$$

Analogously, from [\(5.3.2\)](#page--1-1), we deduce the formula

$$
I_{X,Y}(\delta + (c_1(X) - c_1(E)) \log z)|_{Q=1}
$$
\n
$$
= \sum_{k_1,\dots,k_h \in \mathbb{N}} \bigotimes_{i=1}^{h} J_{i,k_i\rho_i^*}(\delta_i) z^{k_i(\ell_i - d_i) + (\ell_i - d_i)\rho_i}
$$
\n
$$
\cdot \prod_{m=1}^{\langle \sum_p d_p \rho_p, \sum_p k_p \rho_p^* \rangle} \Bigg(\sum_p d_p \rho_p + m\Bigg)
$$
\n
$$
= \sum_{k_1,\dots,k_h \in \mathbb{N}} \bigotimes_{i=1}^{h} J_{i,k_i\rho_i^*}(\delta_i) z^{k_i(\ell_i - d_i) + (\ell_i - d_i)\rho_i}
$$
\n
$$
\cdot \prod_{m=1}^{\sum_p d_p k_p} \Bigg(\sum_p d_p \rho_p + m\Bigg)
$$
\n
$$
= \sum_{k_1,\dots,k_h \in \mathbb{N}} \bigotimes_{i=1}^{h} J_{i,k_i\rho_i^*}(\delta_i) z^{k_i(\ell_i - d_i) + (\ell_i - d_i)\rho_i}
$$
\n
$$
\cdot \frac{\Gamma(1 + \sum_p d_p k_p + \sum_p d_p \rho_p)}{\Gamma(1 + \sum_p d_p \rho_p)}
$$
\n(7.3.3)

²In particular, we have inclusions $\mathscr{F}_{k}(X_j) \to \mathscr{F}_{k}(X)$.

Each element in the tensor product $(7.3.2)$ can easily be recognized as the analytification \hat{J}_{X_i} of a series $J_{X_i} \in \mathscr{F}_{\ell_i}(X)$, for each $i = 1, ..., h$. The function in equation [\(7.3.3\)](#page-4-2) can be identified with the analytification of the Laplace (α, β) -multitransform

$$
I_{X,Y} = \left(\bigotimes_{i=1}^{h} \frac{1}{\Gamma(1 + \sum_{p} d_p \rho_p)}\right) \cup_X \mathcal{L}_{\alpha,\beta} \left[\bigotimes_{i=1}^{h} J_{X_i}\right],\tag{7.3.4}
$$

where

$$
(\boldsymbol{\alpha},\boldsymbol{\beta})=\bigg(\frac{\ell_1-d_1}{d_1},\ldots,\frac{\ell_h-d_h}{d_h};\frac{d_1}{\ell_1},\ldots,\frac{d_h}{\ell_h}\bigg).
$$

The series $I_{X,Y}$ can be seen as an element of $\mathscr{F}_{\kappa}(X)$, with $\kappa = (\ell_i - d_i)_{i=1}^h$, via the Künneth isomorphism. By Theorems [5.3.1,](#page--1-2) [5.3.4,](#page--1-0) [6.5.1,](#page--1-3) and Proposition [5.3.5,](#page--1-4) we have

$$
J_Y(\iota^*\delta + c_1(Y) \log z)|_{\mathbf{Q} = 1} = \iota^*\hat{\mathbf{I}}_{X,Y}(\delta + (c_1(X) - c_1(E))) \exp(-zH(\delta)|_{\mathbf{Q} = 1}).
$$

Thus, the components of the right-hand side, with respect to any basis of $H^{\bullet}(Y, \mathbb{C})$, span the space of master functions $S_{\iota * \delta}(Y)$, by Corollary [5.1.3.](#page--1-5) Notice that the factor $\mu^* \otimes_{i=1}^s \Gamma(1 + \sum_p d_p \rho_p)^{-1}$ coming from [\(7.3.4\)](#page-5-0) can be eliminated by a change of basis of $H^{\bullet}(Y, \mathbb{C})$. By $H^{\bullet}(X, \mathbb{C})$ -linearity of the Laplace (α, β) -multitransform, the claim follows by setting $c_{\delta} := H(\delta)|_{\mathbf{Q} = 1}$.

Remark 7.3.2. Integral [\(7.3.1\)](#page-3-0) is convergent for any $z \in \widetilde{C}^*$. This follows from the exponential asymptotics of Theorem [4.3.2](#page--1-6) for $z \to \infty$, the assumption $d_i < \ell_i$ for any $j = 1, ..., h$, and the asymptotics $|\Phi_j(z)| < C |\log z|^{\dim_{\mathbb{C}} X_j}$ for $z \to 0^+$ (see Theorem [5.1.2](#page--1-7) and Corollary [5.1.3\)](#page--1-5).

Remark 7.3.3. Formula [\(7.3.4\)](#page-5-0) generalizes [\[37,](#page--1-8) Lemma 8.1].

7.4 Master functions as Mellin–Barnes integrals

When applied to the case of Fano complete intersections in products of projective spaces, Theorems [7.2.1](#page-1-1) and [7.3.1](#page-3-1) give explicit Mellin–Barnes integral representations of solutions of the qDE.

Theorem 7.4.1. Let Y be a Fano complete intersection in \mathbb{P}^{n-1} defined by h homo*geneous polynomials of degrees* d_1, \ldots, d_h . There exists a unique $c \in \mathbb{Q}$ such that *any master functions in* $S_0(Y)$ *is a linear combination of the Mellin–Barnes integrals*

$$
G_j(z) = \frac{e^{-cz}}{2\pi \sqrt{-1}} \int_{\gamma} \Gamma(s)^n \prod_{k=1}^h \Gamma(1 - d_k s) z^{-(n - \sum_{k=1}^h d_k) s} \varphi_j(s) ds
$$

for $j = 0, \ldots, n - 1$. The path of integration γ is a parabola of the form

$$
\operatorname{Re} s = -\rho_1 (\operatorname{Im} s)^2 + \rho_2,
$$

for suitable $\rho_1, \rho_2 \in \mathbb{R}_+$, such that γ encircles the poles of $\Gamma(s)^n$, and separates them *from the poles of the factors* $\Gamma(1 - d_k s)$ *. The functions* φ_i *are given by*

• *for* n *even:*

$$
\varphi_j(s) := \exp(2\pi \sqrt{-1} j s), \quad j = 0, ..., n-1,
$$

• *for* n *odd:*

$$
\varphi_j(s) := \exp(2\pi \sqrt{-1}js + \pi \sqrt{-1}s), \quad j = 0, ..., n-1.
$$

Moreover, $c \neq 0$ only if $\sum_k d_k = n - 1$.

Proof. The functions

$$
g_j(z) := \frac{1}{2\pi \sqrt{-1}} \int_{\gamma} \Gamma(s)^n z^{-ns} \varphi_j(s) \, ds, \quad j = 0, \dots, n-1,
$$

are a basis of the space of master functions $S_0(\mathbb{P}^{n-1})$, see [\[46,](#page--1-9) Lemma 5]. The result follows by applying Theorem [7.2.1](#page-1-1) to the case $X = \mathbb{P}^{n-1}$, $\ell = n$.

Theorem 7.4.2. Let Y be a Fano hypersurface of $\mathbb{P}^{n_1-1} \times \cdots \times \mathbb{P}^{n_h-1}$ defined by *a homogeneous polynomial of multi-degree* (d_1, \ldots, d_h) *. There exists a unique* $c \in \mathbb{Q}$ such that any master function in $S_0(Y)$ is a linear combination of the multi-dimen*sional Mellin–Barnes integrals*

$$
H_{\boldsymbol{j}}(z) := \frac{e^{-cz}}{(2\pi\sqrt{-1})^h} \int_{\times\gamma_i} \left[\prod_{i=1}^h \Gamma(s_i)^{n_i} \varphi_{j_i}^i(s_i) \right]
$$

$$
\cdot \Gamma\left(1 - \sum_{i=1}^h d_i s_i\right) z^{-\sum_{i=1}^h (n_i - d_i)s_i} ds_1 \dots ds_h
$$

for $\boldsymbol{j} = (j_1, \ldots, j_h) \in \prod_{i=1}^h \{0, \ldots, n_i - 1\}$. The paths γ_i are parabolas of the form

Re
$$
s_i = -\rho_{1,i} (\text{Im } s_i)^2 + \rho_{2,i}
$$
,

for suitable $\rho_{1,i}$, $\rho_{2,i} \in \mathbb{R}_+$, so that they encircle the poles of the factors $\Gamma(s_i)^{n_i}$. The function $\varphi^i_{j_i}$ is defined as follows:

• *for* nⁱ *even:*

$$
\varphi_{j_i}^i(s_i) := \exp(2\pi \sqrt{-1} j_i s_i), \quad j_i = 0, ..., n_i - 1,
$$

• *for* n_i *odd:*

$$
\varphi_{j_i}^i(s_i) := \exp(2\pi \sqrt{-1} j_i s_i + \pi \sqrt{-1} s_i), \quad j_i = 0, \ldots, n_i - 1.
$$

Moreover, $c \neq 0$ *only if* $d_i = n_i - 1$ *for some* $i = 1, \ldots, h$ *.*

Proof. The result follows by application of Theorem [7.3.1](#page-3-1) to the case $X_i = \mathbb{P}^{n_i-1}$, $\ell_i = n_i$. For each factor \mathbb{P}^{n_i-1} a basis of the space $\mathcal{S}_0(\mathbb{P}^{n_i-1})$ is given by the integrals

$$
g_{j_i}^i(z) := \frac{1}{2\pi \sqrt{-1}} \int_{\gamma_i} \Gamma(s)^{n_i} z^{-n_i s} \varphi_{j_i}^i(s) ds, \quad j_i = 0, \dots, n_i - 1.
$$

Example. Consider the complex Grassmannian $\mathbb{G} := \mathbb{G}(2, 4)$: it can be realized as a quadric in \mathbb{P}^5 , by Plücker embedding. It can be shown that the space $\mathcal{S}_0(\mathbb{G})$ is the space of solutions Φ of the qDE given by

$$
\vartheta^5 \Phi - 1024 z^4 \vartheta \Phi - 2048 z^4 \Phi = 0, \quad \vartheta := z \frac{d}{dz}.
$$
 (7.4.1)

By Theorem [7.4.1,](#page-5-1) any solution of $(7.4.1)$ is a linear combination of the functions

$$
G_j(z) = \frac{1}{2\pi\sqrt{-1}} \int_{\gamma} \Gamma(s)^6 \Gamma(1-2s) z^{-4s} \exp(2\pi\sqrt{-1}js) ds, \quad j = 0, \dots, 5.
$$

Recalling the reflection and duplication formulas for Γ -function (see e.g. [\[64\]](#page--1-10)),

$$
\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin(\pi z)}, \quad \Gamma(2z) = \pi^{-\frac{1}{2}}2^{2z-1}\Gamma(z)\Gamma\left(z+\frac{1}{2}\right),
$$

it is easy to see that the function

$$
G_0(z) = \frac{2\pi^{\frac{3}{2}}}{2\pi\sqrt{-1}} \int_{\gamma} \frac{\Gamma(s)^5}{\Gamma(s+\frac{1}{2})} \frac{4^{-s}}{\sin(2\pi s)} z^{-4s} ds
$$

is a solution of $(7.4.1)$. In [\[23,](#page--1-11) Section 6] the solutions

$$
\Phi_1(z) = \frac{1}{2\pi\sqrt{-1}} \int_{\gamma} \frac{\Gamma(s)^5}{\Gamma(s+\frac{1}{2})} 4^{-s} z^{-4s} ds
$$

and

$$
\Phi_2(z) = \frac{1}{2\pi\sqrt{-1}} \int_{\gamma} \Gamma(s)^5 \Gamma\left(\frac{1}{2} - s\right) e^{i\pi s} 4^{-s} z^{-4s} ds
$$

of equation [\(7.4.1\)](#page-7-0) were found and studied. It is not difficult to see that Φ_1 and Φ_2 are linear combinations of the functions G_j .

Remark 7.4.3. This example can be extended to Grassmannians $\mathbb{G}(k, n)$ and other families of partial flag varieties. In the case of Grassmannians it gives different integral representations of solutions with respect to those obtained from the quantum Satake identification [\[42,](#page--1-12) [55\]](#page--1-13). More in general, it would be interesting to do a comparison with the integral representations of solutions obtained from the Abelian– Nonabelian correspondence [\[14\]](#page--1-14).