
Chapter 7

Integral representations of solutions of qDEs

7.1 JX -function as element of F�.X/

Let X be a variety with nef anticanonical bundle.1 Introduce the basis .ˇ1; : : : ; ˇr/
of H2.X;Z/ Poincaré dual to .T 1; : : : ; T n/, so thatZ

ˇi

Tj D

Z
X

T i [ Tj D ıi;j :

Set

c1.X/ D

rX
jD1

c
˛ij T˛ij

; c
˛ij 2 N�:

Consider the C-algebra H �.X;C/. For brevity, we set

F�.X/ WDF�.H
�.X;C//

for any � 2 .C�/h.
The JX -function restricted to the small quantum locus of QH �.X/ admits the

following expansion:

JX .ı C log z � c1.X//jQD1
„D1

D eızc1.X/ C
X
˛

X
ˇ¤0

1X
kD0

eız
R
ˇ c1.X/zc1.X/h�kT˛; 1i

X
0;2;ˇT

˛:

Such a series can be seen as an element of F�.X/ for different choices of �. We
describe two possible choices. In both cases, we have a series in F�.X/ concentrated
at c1.X/.

Choice 1. Set h D 1 and � D c, where c is a common divisor of the numbers

c˛i1 ; : : : ; c˛ir :

The series can be rearranged as follows:

JX .ı C log z � c1.X//jQD1
„D1

D

X
d2N

Jd .ı/z
dcCc1.X/;

1We recall that this means
R
C
c1.X/ > 0 for all curves C in X . If the strict inequality

holds true for any C , then X is Fano by the Nakai–Moishezon theorem. Varieties with nef
anticanonical bundle can be thought as an interpolation between Fano and Calabi–Yau varieties.
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where

Jd .ı/ D e
ı
X
˛;k

h�kT˛; 1i0;2;d �PD.T /T
˛; d 2 N; T 2 H 2.X;Z/; c1.X/ D cT:

In particular, J0.ı/ D eı .

Choice 2. Set h D r and � D .c˛i1 ; : : : ; c˛ir /. By expanding the sum over ˇ over
the basis .ˇ1; : : : ; ˇr/, the sum above becomes

JX .ı C log z � c1.X//jQD1
„D1

D

X
d2Nr

Jd .ı/z
d1c

˛i1C���Cdrc
˛irCc1.X/;

where
Jd .ı/ D e

ı
X
˛;k

h�kT˛; 1i0;2;d1ˇ˛i1C���Cdrˇ˛ir
T ˛; d 2 Nr:

In particular, J0.ı/ D eı .

7.2 Integral representations of the first kind

Let X be a Fano smooth projective variety. Assume that detTX D L˝` with L ample
line bundle. Let �WY � X be a smooth subvariety defined as the zero locus of a regular
section of the vector bundle E D

Ls
jD1L

˝dj , where the numbers dj 2 N� are such
that

Ps
jD1 dj < `:

Theorem 7.2.1. Let ı 2 H 2.X;C/, and let �ı.X/ be the corresponding space of
master functions of QH �.X/. There exists a complex number cı 2 C such that the
space of master functions ���ı.Y / is contained in image of the C-linear map

S.`;d/W �ı.X/! O.fC�/
defined by

S.`;d/Œˆ�.z/ WD e
�cızL `�

Ps
iD1

di
ds

; ds

`�
Ps�1
iD1

di

ı � � � ıL `�d1�d2
d2

;
d2
`�d1

ıL `�d1
d1

;
d1
`

Œˆ�.z/:

In other words, any element of ���ı.Y / is of the form

e�cız
Z 1
0

: : :

Z 1
0

ˆ

 
z
`�

Ps
jD1

dj

`

sY
iD1

�
di
`

i

!
e�

Ps
iD1 �i d�1 : : : d�s (7.2.1)

for some ˆ 2 �ı.X/. Moreover, cı ¤ 0 only if
P
j dj D ` � 1.

Proof. Set � WD c1.L/, and let �� 2 H2.X;Z/ be its Poincaré dual homology class.
In particular, we have c1.X/ D `� and c1.E/ D .

Ps
iD1 di /�. By the adjunction for-
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mula, we have c1.Y / D ��.c1.X/ � c1.E//. From Lemma A.2, we have

JX .ı C log z � c1.X//jQD1
„D1

D

X
d2N

Jd��.ı/z
d`Cc1.X/

D

X
d2N

Jd��.ı/z
d`C`�; (7.2.2)

where Jd��.ı/ D eı
P
˛;kh�kT˛; 1i

X
0;2;d��

T ˛ . Analogously, from (5.3.2) we have

IX;Y .ı C .c1.X/ � c1.E// log z/jQD1
„D1

D

X
d2N

Jd��.ı C .c1.X/ � c1.E// log z/
sY
iD1

hdi�;d�
�iY

mD1

.di�Cm/

D

X
d2N

Jd��.ı/z
d.`�

P
di /Cc1.X/�c1.E/

sY
iD1

d �diY
mD1

.di�Cm/

D

X
d2N

Jd��.ı/z
d.`�

P
di /C.`�

P
di /�

sY
iD1

�.1C di�C ddi /

�.1C di�/
: (7.2.3)

On the one hand, from (7.2.2), one can see that JX .ı C log z � c1.X///jQD1;„D1 is
the analytification yJX of the series JX 2F`.X/, concentrated at c1.X/ D `�, defined
by

JX .Z/ D
X
d2N

Jd��.ı/Z
d`˚c1.X/:

On the other hand, one recognizes in equation (7.2.3) the analytification of the itera-
tion of Laplace transforms

IX;Y WD
sY
iD1

1

�.1C di�/
�

�
L `�

Ps
iD1

di
ds

; ds

`�
Ps�1
iD1

di

ı � � � ıL `�d1�d2
d2

;
d2
`�d1

ıL `�d1
d1

;
d1
`

ŒJX �
�
;

(7.2.4)

which is an element of F `�
Ps
iD1

di
`

.X/. By Theorems 5.3.1, 5.3.4, 6.5.1, and Propo-
sition 5.3.5, we have

JY .�
�ı C c1.Y / log z/jQD1

„D1

D ��yIX;Y .ı C .c1.X/ � c1.E/// exp.�zH.ı/jQD1/;

where H.ı/ is defined in Proposition 5.3.5. Thus, the components of the right-hand
side, with respect to any basis of H �.Y;C/, span the space of master functions
�i�ı.Y /, by Corollary 5.1.3. The factor ��

Qs
iD1 �.1C di�/

�1 coming from (7.2.4)
can be eliminated by a change of basis of H �.Y;C/. By H �.X;C/-linearity of the
Laplace .˛; ˇ/-transforms, the claim follows by setting cı WD H.ı/jQD1.
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Remark 7.2.2. Integral (7.2.1) is convergent for any z 2 fC�. This follows from the
exponential asymptotics of Theorem 4.3.2 for z !1, the Fano assumption on Y
(i.e.

Ps
jD1 dj < `), and the asymptotics jˆ.z/j < C jlog zjdimC X for z ! 0C (see

Theorem 5.1.2 and Corollary 5.1.3).

Remark 7.2.3. Formula (7.2.4) generalizes [37, Lemma 8.1].

7.3 Integral representations of the second kind

Let X1; : : : ; Xh be Fano smooth projective varieties. Assume that detTXj D L
˝ j̀

j

for ample line bundles Lj . Let Y be a smooth subvariety of X WD
Qh
jD1Xj defined

as the zero locus of a regular section of the line bundle

E D
h

�
jD1

L
˝dj
j ;

where the numbers dj 2 N� are such that dj < j̀ for any j D 1; : : : ; h.
By Künneth isomorphism, any element of H 2.X;C/ is of the form

ı D

hX
iD1

1˝ � � � ˝ ıi ˝ � � � ˝ 1 with ıi 2 H 2.Xi ;C/.

Denote by �WY ! X the inclusion.

Theorem 7.3.1. Let ı 2 H 2.X;C/, ıi 2 H 2.Xi ;C/ be as above, and let �ıi .Xi /

be the corresponding space of master functions of QH �.Xi /. There exists a rational
number cı 2 Q such that the space of master functions ���ı.Y / is contained in image
of the C-linear map P.`;d/W

Nh
jD1 �ıj .Xj /! O.fC�/ defined by

P.`;d/Œˆ1; : : : ; ˆh�.z/ WD e
�cızL˛;ˇŒˆ1; : : : ; ˆh�.z/;

where

.˛;ˇ/ D

�
`1 � d1

d1
; : : : ;

`h � dh

dh
I
d1

`1
; : : : ;

dh

`h

�
:

In other words, any element of ���ı.Y / is of the form

e�cız
Z 1
0

hY
jD1

ĵ

�
z
j̀�dj

j̀ �

dj

j̀

�
e�� d� (7.3.1)

for some ĵ 2 �ıj .X/ with j D 1; : : : ; h. Moreover, cı ¤ 0 only if dj D j̀ � 1 for
some j .

Proof. Set �i WD c1.Li / and let ��i 2 H2.Xi ;Z/ be its Poincaré dual homology class,
for any i D 1; : : : ; h. By the Künneth isomorphism, and by the universal property of
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coproduct of algebras (i.e. tensor product), we have injective2 maps

H �.Xi ;C/! H �.X;C/:

In order to ease the computations, in the next formulas we will not distinguish an
element of H �.Xi ;C/ with its image in H �.X;C/. So, for example we will write

c1.E/ D

hX
pD1

dp�p:

The same will be applied for elements in H2.X;Z/.
We have

JX .ı C c1.X/ log z/jQD1
„D1

D

hO
iD1

JXi .ıi C c1.Xi / log z/jQD1
„D1

D

hO
iD1

X
ki2N

Ji;ki��i
.ıi /z

ki`iC`i�i ; (7.3.2)

where
Ji;ki��i

.ıi / D e
ıi
X
˛;j

h�jT˛;i ; 1i
Xi
0;2;ki�

�
i

T ˛i :

Analogously, from (5.3.2), we deduce the formula

IX;Y .ı C .c1.X/ � c1.E// log z/jQD1
„D1

D

X
k1;:::;kh2N

hO
iD1

Ji;ki��i
.ıi /z

ki .`i�di /C.`i�di /�i

�

h
P
p dp�p ;

P
p kp�

�
piY

mD1

�X
p

dp�p Cm

�

D

X
k1;:::;kh2N

hO
iD1

Ji;ki��i
.ıi /z

ki .`i�di /C.`i�di /�i

�

P
p dpkpY
mD1

�X
p

dp�p Cm

�

D

X
k1;:::;kh2N

hO
iD1

Ji;ki��i
.ıi /z

ki .`i�di /C.`i�di /�i

�
�.1C

P
p dpkp C

P
p dp�p/

�.1C
P
p dp�p/

: (7.3.3)

2In particular, we have inclusions Fk.Xj /! Fk.X/.
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Each element in the tensor product (7.3.2) can easily be recognized as the analytifi-
cation yJXi of a series JXi 2F`i .X/, for each i D 1; : : : ; h. The function in equation
(7.3.3) can be identified with the analytification of the Laplace .˛;ˇ/-multitransform

IX;Y D

 
hO
iD1

1

�.1C
P
p dp�p/

!
[X L˛;ˇ

"
hO
iD1

JXi

#
; (7.3.4)

where

.˛;ˇ/ D

�
`1 � d1

d1
; : : : ;

`h � dh

dh
I
d1

`1
; : : : ;

dh

`h

�
:

The series IX;Y can be seen as an element of F�.X/, with � D .`i � di /hiD1, via the
Künneth isomorphism. By Theorems 5.3.1, 5.3.4, 6.5.1, and Proposition 5.3.5, we
have

JY .�
�ı C c1.Y / log z/jQD1

„D1

D ��yIX;Y .ı C .c1.X/ � c1.E/// exp.�zH.ı/jQD1/:

Thus, the components of the right-hand side, with respect to any basis of H �.Y;C/,
span the space of master functions ���ı.Y /, by Corollary 5.1.3. Notice that the factor
��
Ns
iD1 �.1C

P
p dp�p/

�1 coming from (7.3.4) can be eliminated by a change of
basis of H �.Y;C/. By H �.X;C/-linearity of the Laplace .˛;ˇ/-multitransform, the
claim follows by setting cı WD H.ı/jQD1.

Remark 7.3.2. Integral (7.3.1) is convergent for any z 2 fC�. This follows from the
exponential asymptotics of Theorem 4.3.2 for z !1, the assumption dj < j̀ for
any j D 1; : : : ; h, and the asymptotics j ĵ .z/j < C jlog zjdimC Xj for z ! 0C (see
Theorem 5.1.2 and Corollary 5.1.3).

Remark 7.3.3. Formula (7.3.4) generalizes [37, Lemma 8.1].

7.4 Master functions as Mellin–Barnes integrals

When applied to the case of Fano complete intersections in products of projective
spaces, Theorems 7.2.1 and 7.3.1 give explicit Mellin–Barnes integral representations
of solutions of the qDE.

Theorem 7.4.1. Let Y be a Fano complete intersection in Pn�1 defined by h homo-
geneous polynomials of degrees d1; : : : ; dh. There exists a unique c 2 Q such that
any master functions in �0.Y / is a linear combination of the Mellin–Barnes integrals

Gj .z/ D
e�cz

2�
p
�1

Z


�.s/n
hY
kD1

�.1 � dks/z
�.n�

Ph
kD1 dk/s'j .s/ ds
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for j D 0; : : : ; n � 1. The path of integration  is a parabola of the form

Re s D ��1.Im s/2 C �2;

for suitable �1; �2 2 RC, such that  encircles the poles of �.s/n, and separates them
from the poles of the factors �.1 � dks/. The functions 'j are given by

• for n even:
'j .s/ WD exp

�
2�
p
�1js

�
; j D 0; : : : ; n � 1;

• for n odd:

'j .s/ WD exp
�
2�
p
�1js C �

p
�1s

�
; j D 0; : : : ; n � 1:

Moreover, c ¤ 0 only if
P
k dk D n � 1.

Proof. The functions

gj .z/ WD
1

2�
p
�1

Z


�.s/nz�ns'j .s/ ds; j D 0; : : : ; n � 1;

are a basis of the space of master functions �0.Pn�1/, see [46, Lemma 5]. The result
follows by applying Theorem 7.2.1 to the case X D Pn�1, ` D n.

Theorem 7.4.2. Let Y be a Fano hypersurface of Pn1�1 � � � � � Pnh�1 defined by
a homogeneous polynomial of multi-degree .d1; : : : ; dh/. There exists a unique c 2 Q
such that any master function in �0.Y / is a linear combination of the multi-dimen-
sional Mellin–Barnes integrals

Hj .z/ WD
e�cz

.2�
p
�1/h

Z
�i

"
hY
iD1

�.si /
ni'iji .si /

#

� �

 
1 �

hX
iD1

disi

!
z�

Ph
iD1.ni�di /si ds1 : : : dsh

for j D .j1; : : : ; jh/ 2
Qh
iD1¹0; : : : ; ni � 1º. The paths i are parabolas of the form

Re si D ��1;i .Im si /
2
C �2;i ;

for suitable �1;i ; �2;i 2 RC, so that they encircle the poles of the factors �.si /ni . The
function 'iji is defined as follows:

• for ni even:

'iji .si / WD exp
�
2�
p
�1jisi

�
; ji D 0; : : : ; ni � 1;

• for ni odd:

'iji .si / WD exp
�
2�
p
�1jisi C �

p
�1si

�
; ji D 0; : : : ; ni � 1:

Moreover, c ¤ 0 only if di D ni � 1 for some i D 1; : : : ; h.
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Proof. The result follows by application of Theorem 7.3.1 to the case Xi D Pni�1,
`i D ni . For each factor Pni�1 a basis of the space �0.Pni�1/ is given by the integrals

giji .z/ WD
1

2�
p
�1

Z
i

�.s/ni z�ni s'iji .s/ ds; ji D 0; : : : ; ni � 1:

Example. Consider the complex Grassmannian G WD G.2; 4/: it can be realized as
a quadric in P5, by Plücker embedding. It can be shown that the space �0.G/ is the
space of solutions ˆ of the qDE given by

#5ˆ � 1024z4#ˆ � 2048z4ˆ D 0; # WD z
d

dz
: (7.4.1)

By Theorem 7.4.1, any solution of (7.4.1) is a linear combination of the functions

Gj .z/ D
1

2�
p
�1

Z


�.s/6�.1 � 2s/z�4s exp
�
2�
p
�1js

�
ds; j D 0; : : : ; 5:

Recalling the reflection and duplication formulas for �-function (see e.g. [64]),

�.z/�.1 � z/ D
�

sin.�z/
; �.2z/ D ��

1
2 22z�1�.z/�

�
z C

1

2

�
;

it is easy to see that the function

G0.z/ D
2�

3
2

2�
p
�1

Z


�.s/5

�
�
s C 1

2

� 4�s

sin.2�s/
z�4s ds

is a solution of (7.4.1). In [23, Section 6] the solutions

ˆ1.z/ D
1

2�
p
�1

Z


�.s/5

�
�
s C 1

2

�4�sz�4s ds
and

ˆ2.z/ D
1

2�
p
�1

Z


�.s/5�

�
1

2
� s

�
ei�s4�sz�4s ds

of equation (7.4.1) were found and studied. It is not difficult to see that ˆ1 and ˆ2
are linear combinations of the functions Gj .

Remark 7.4.3. This example can be extended to Grassmannians G.k; n/ and other
families of partial flag varieties. In the case of Grassmannians it gives different inte-
gral representations of solutions with respect to those obtained from the quantum
Satake identification [42, 55]. More in general, it would be interesting to do a com-
parison with the integral representations of solutions obtained from the Abelian–
Nonabelian correspondence [14].


