
Chapter 8

Dubrovin conjecture

8.1 Exceptional collections and exceptional bases

Let X be a smooth complex projective variety, and denote by Db.X/ the bounded
derived category of coherent sheaves on X , see [38, 52]. Given E;F 2 Ob.Db.X//,
define Hom�.E; F / as the C-vector space1

Hom�.E; F / WD
M
k2Z

Hom.E; F Œk�/:

An object E 2 Ob.Db.X// is said to be exceptional if Hom�.E;E/ is a one-dimen-
sional C-algebra, generated by the identity morphism.

A collection E D .E1; : : : ; En/ of objects of Db.X/ is said to be an exceptional
collection if

(1) each object Ei is exceptional,

(2) we have Hom�.Ej ; Ei / D 0 for j > i .

Moreover, an exceptional collection E is full if it generates Db.X/, i.e. any triangular
subcategory containing all objects of E is equivalent to Db.X/ via the inclusion
functor.

Consider the Grothendieck group K0.X/ � K0.Db.X//, and let � to be the
Grothendieck–Euler–Poincaré bilinear form

�.ŒV �; ŒF �/ WD
X
k

.�1/k dimC Hom.V; F Œk�/; V; F 2 Db.X/:

Definition 8.1.1. A basis .ei /niD1 of K0.X/C is called exceptional if �.ei ; ei / D 1
for i D 1; : : : ; n, and �.ej ; ei / D 0 for 1 6 i < j 6 n.

Lemma 8.1.2. Let .Ei /niD1 be a full exceptional collection in Db.X/. TheK-classes
.ŒEi �/

n
iD1 form an exceptional basis of K0.X/C .

8.2 Mutations and helices

Let E D .E1; : : : ; En/ be an exceptional collection in Db.X/. For i D 1; : : : ; n � 1
define the collections

LiE WD .E1; : : : ; Ei�1; E
0
iC1; Ei ; EiC2; : : : ; En/;

RiE WD .E1; : : : ; Ei�1; EiC1; E
00
i ; EiC2; : : : ; En/;

1Notice that the category Db.X/ is a C-linear category.
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where the objects E 0iC1; E
00
i sit in the distinguished triangles

E 0iC1Œ�1�! Hom�.Ei ; EiC1/˝Ei ! EiC1 ! E 0iC1;

E 00i ! Ei ! Hom�.Ei ; EiC1/� ˝EiC1 ! E 00i Œ1�:

Remark 8.2.1. The object E 0iC1 (resp. E 00i ) is uniquely defined up to unique isomor-
phism, because of the exceptionality of Ei (resp. EiC1), see [21, Section 3.3].

Proposition 8.2.2 ([12, 44]). For any i , with 0 < i < n, the collections LiE;RiE
are exceptional. The mutation operators Li ;Ri satisfy the following identities:

LiRi D RiLi D Id;

RiRj D RjRi if ji � j j > 1; RiC1RiRiC1 D RiRiC1Ri :

Moreover, if E is full, then also LiE and RiE are full.

Denote by ˇ1; : : : ; ˇn�1 the generators of the braid group Bn, satisfying the rela-
tions

ˇiˇiC1ˇi D ˇiC1ˇiˇiC1; ˇi ǰ D ǰˇi if ji � j j > 1:

We define the left action of Bn on the set of exceptional collections of length n by
identifying the action of ˇi with Li .

Definition 8.2.3. Let E D .E1; : : : ; En/ be a full exceptional collection. We define
the helix generated by E to be the infinite family .Ei /i2Z of exceptional objects such
that

.E1�kn; E2�kn; : : : ; En�kn/ D Eˇ ; ˇ D .ˇn�1 : : : ˇ1/
kn; k 2 Z:

Any family of n consecutive exceptional objects .EiCk/nkD1 is called a foundation of
the helix.

Lemma 8.2.4 ([44]). The following statements hold:

(1) Any foundation is a full exceptional collection.

(2) For i; j 2 Z, we have Hom�.Ei ; Ej / Š Hom�.Ei�n; Ej�n/.

The action of the braid group on the set of exceptional collections in Db.X/

admits a K-theoretical analogue on the set of exceptional bases of K0.X/C , see
[21, 44].

8.3 � -classes and graded Chern character

Let V be a complex vector bundle on X of rank r , and ı1; : : : ; ır its Chern roots, so
that cj .V / D sj .ı1; : : : ; ır/, where sj is the j -th elementary symmetric polynomial.
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Definition 8.3.1. Let Q be an indeterminate, and F 2 CŒŒQ�� be of the form

F.Q/ D 1C
X
n>1

˛nQ
n:

The F -class of V is the characteristic class yFV 2 H �.X/ defined by

yFV WD

rY
jD1

F.ıj /:

Definition 8.3.2. The �˙-classes of V are the characteristic classes associated with
the Taylor expansions

�.1˙Q/ D exp

 
�
QC

1X
mD2

.�1/m
�.m/

m
Qm

!
2 CŒŒQ��;

where 
 is the Euler–Mascheroni constant and � is the Riemann zeta function.

If V D TX , then we denote y�˙X its �-classes.

Definition 8.3.3. The graded Chern character of the complex vector bundle V is the
characteristic class Ch.V / 2 H �.X/ defined by Ch.V / WD

Pr
jD1 exp.2�

p
�1ıj /.

8.4 Statement of the conjecture

Let X be a Fano variety. In [31] Dubrovin conjectured that many properties of the
qDE of X , in particular its monodromy, Stokes and central connection matrices, are
encoded in the geometry of exceptional collections in Db.X/. The following conjec-
ture is a refinement of the original version in [31].

Conjecture 8.4.1 ([21]). Let X be a smooth Fano variety of Hodge–Tate type.

(1) The quantum cohomologyQH �.X/ has semisimple points if and only if there
exists a full exceptional collection in Db.X/.

(2) If QH �.X/ is generically semisimple, then for any oriented ray ` of slope
' 2 Œ0; 2�Œ there is a map from the set of `-chambers to the set of helices
with a marked foundation.

(3) Let �` be an `-chamber and E` D .E1; : : : ; En/ the corresponding excep-
tional collection (the marked foundation). Denote by S and C Stokes and
central connection matrices computed in �` with respect to a basis .T˛/n˛D1
of H �.X;C/.

(a) The matrix S is the inverse of the Gram matrix of the �-pairing in
K0.X/C with respect to the exceptional basis ŒE`�,

.S�1/ij D �.Ei ; Ej /:
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(b) The matrix C coincides with the matrix associated with the C-linear
morphism

D�X WK0.X/C ! H �.X/;

F 7!
.
p
�1/d

.2�/
d
2

y��X exp.��
p
�1c1.X//Ch.F /;

where d WD dimC X , and d is the residue class d .mod 2/. The matrix
is computed with respect to the exceptional basis ŒE`� and the pre-fixed
basis .T˛/n˛D1.

Remark 8.4.2. If point (3.b) holds true, then automatically also point (3.a) holds
true. This follows from identity (4.4.2) and the Hirzebruch–Riemann–Roch theorem,
see [21, Corollary 5.8].

Remark 8.4.3. In [9], A. Bayer suggested dropping any reference toX being Fano in
the formulation of the Dubrovin conjecture. He proved indeed that the semisimplicity
of the quantum cohomology preserves under blow-ups at any number of points. It
follows that point (1) of Conjecture 8.4.1 (the qualitative part) still holds true after
blowing up X at an arbitrary number of points, which may yield a non-Fano variety.
To the best of our knowledge, however, there is no non-Fano example for which both
the Stokes and central connection matrices have been explicitly computed. In Chap-
ters 10 and 11 we will provide the first example, in the case of Hirzebruch surfaces.

Remark 8.4.4. Assume the validity of points (3.a) and (3.b) of Conjecture 8.4.1.
The action of the braid group Bn on the Stokes and central connection matrices
(cf. Lemma 4.6.2) is compatible with the action of Bn on the marked foundations
attached at each `-chambers. Different choices of the branch of the ‰-matrix corre-
spond to shifts of objects of the marked foundation. The matrix M�10 is identified
with the canonical operator �WK0.X/C ! K0.X/C , ŒF � 7! .�1/d ŒF ˝ !X �. Equa-
tions (4.4.4) imply that the connection matrices C .m/, with m 2 Z, correspond to
the matrices of the morphism D�X with respect to the foundations .E` ˝ !

˝m
X /Œmd�.

The statement S .m/ D S coincides with the Hom-periodicity described in point (2)
of Lemma 8.2.4, see [21, Theorem 5.9].

Remark 8.4.5. Conjecture 8.4.1 relates two different aspects of the geometry of
X , namely its symplectic structure (Gromov–Witten theory) and its complex struc-
ture (the derived category Db.X/). Heuristically, Conjecture 8.4.1 follows from the
homological mirror symmetry conjecture of M. Kontsevich, see [21, Section 5.5].

Remark 8.4.6. In the paper [54] it was underlined the role of �-classes for refining
the original version of Dubrovin’s conjecture [31]. Subsequently, in [34] and [36,
�-conjecture II] two equivalent versions of point (3.b) above were given. However, in
both these versions, different choices of solutions in Levelt form of the qDE at z D 0
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are chosen with respect to the natural ones in the theory of Frobenius manifolds, see
[21, Section 5.6].

Remark 8.4.7. Point (3.b) of Conjecture 8.4.1 allows to identifyK-classes with solu-
tions of the joint system of equations (2.7.1)–(2.7.2). Under this identification, Stokes
fundamental solutions correspond to exceptional bases of K-theory. In the approach
of [26,75], where the equivariant case is addressed, such an identification is more fun-
damental and a priori: it is defined via explicit integral representations of solutions
of the joint system of qDE and qKZ equations.

Remark 8.4.8. Note that the existence of a map between `-chambers and helices
with a marked foundation, discussed in point (2) of Conjecture 8.4.1, is an important
aspect of the Dubrovin conjecture. A careful study of such a correspondence may hide
several delicate open problems. Consider, for instance, the study of injectivity and
surjectivity of such a map. This study is closely related (possibly equivalent) to the
study of the freeness and transitivity of the braid group action on the set of exceptional
collections. These are well-known open problems, whose answer is known in a few
special cases only, see [44]. In the remaining sections of this paper, we will address
the study of point (3) of Conjecture 8.4.1, but not of point (2).


