Chapter 10

Dubrovin conjecture for Hirzebruch surfaces [

10.1 A -stratum and Maxwell stratum of QH ®(F»x)

Fix a point p = t12K Ty 5 + 122K T, 5 of the small quantum cohomology of Foy.
The matrix form of the tensor U is given by
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2 0 0 2qqu
Up) =1, kgt
2 -2k 0 0 2q1 —2kqiq>
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The canonical coordinates are given by
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Proposition 10.1.1. The small quantum cohomology of Hirzebruch surfaces ¥y is
contained in the I ?\—stmtum of QH*(IF,). Moreover, the point p is in the A p-stra-

tum of QH*(Fax) if and only if 1 = q1qa.

Proof. By Theorem 2.5.1, the function det A takes the form

22

z240(p) + zA1(p) + A2(p)’

where Ay, A1, A> are holomorphic functions on QH *(F,). If p is a point of the
small quantum locus, an explicit computation shows that

detA(z, p) =

detA(z, p) = ——(611 q24%)7".

256

so that A1 (p) = A2(p) = 0. The claim follows.
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Corollary 10.1.2. Along the small quantum locus of QH®(Far) the A a-stratum
coincides with the Maxwell stratum My, .

Proof. If g1 = qlf g, we have coalescences of canonical coordinates u1, 4y, U3, Ug.
Any point of the small quantum locus, however, is semisimple. |

10.2 Small qDE of F»x

In the coordinates (*2%)3_ | the grading tensor 4 has matrix u = diag(—1, 0,0, 1).

a=0
The isomonodromic system (2.7.3) is
0 1
e R
z z
952 k
P (2k +2)84 + §1(2kq1 92 + 2q1),
ngv: z
983 k
e 28191 q2 + 284,
z
0 1
8_24 = 264192 + 63291 — 2kq q2) — ba

In the complement of the 4 4 -stratum, it can be reduced to the single equation in &,
the master differential equation

9
4
z az4

20200k 3
z [z (897q2 + 8q1) — ]]W
z (10.2.1)
€1

=3z — (~16z%(q1 — ¢{q2)* = 3)&s = 0.

Given a solution &;(z,?) of equation (10.2.1), we can reconstruct a solution of the
system J;¥ through the formulas

(4K + Dgazqf + 4k + Dgiz> + k= 1)

& = &
1623(q1 — q24%)
_ (4Bk = Dgaz?qf + 4k =3)q122 —k + 1) 36 (k-1 %
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By looking for solution of the form
E1(z,t) =z - ®(z,1),
equation (10.2.1) can be rewritten as the (small) quantum differential equation

2(94® — 20°®) —82°(q1 + ¢ g2)[P*® + 9] + 162°(q1 — 4F42)* P =0,

—
where ¥ 1= Zg5-

10.3 Proof for QH®(F2x)

Let us specialize the system J{;¥ at the point 0 € Q H *(Fp ), for whichg; = g2 = 1:

% = (2—2]()53 + 252 + lél’
z zZ

% = (2k +2)&14 + 512k +2),
Hy: BZ

é = 251 + 2%-47

0z

R N Y

z zZ

The point p = 0 is in the # 4 -stratum of Q H *(IF,;), and so in the Maxwell stratum.
Hence, the study of monodromy data of the system of differential equations J€,’( fits
in the analysis developed in [22, 23]. In particular, the isomonodromy property is
justified by [23, Theorem 4.5]. As explained in Remark 4.5.2, we can reduce the
computation of the monodromy data of the system #; to the single case of #,). The
system ) can in turn be integrated using solutions of the isomonodromic system

of QH*(P') (see [32, Lemma 4.10]).
Proposition 10.3.1. Let ((pf), (pg)) with i = 1,2 be two solutions of system (2.7.3)
for the quantum cohomology of P, specialized at 0 € H*(P1, C), i.e.

38% =2¢2 + %‘Pl,
8& =2¢1 — i902-
0z 2z
Then the tensor product
oo
60\ () _[o
(wél)) ¢ (sﬂf)) I Re
03" o

is a solution of the system H,. |
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Remark 10.3.2. In order to explicitly compute the monodromy data of #, one could
still develop the study of solutions of the small quantum differential equation, and
then reconstruct the Stokes solutions of ]/c doing a similar argument to the one devel-
oped in [23, Section 6] for the quantum cohomology of G (2, 4).

Theorem 10.3.3. The central connection matrix of Q H*® (I, ), computed at the point

0 € QH*(IF5k), with respect to an oriented admissible line £ of slope ¢ € 7, 37”[ and
for a suitable choice of the determination of the W-matrix, is equal to
1 1 1 1
2m 2n 2n 2n
- Y — Y Y Y
co I+ I+ p p
k= | _Gk=D=im) imk=yk+y _; , y=vk y=vk |°
b b T b
2y—im)? 2y(y—im) 2y(y—im) 2y2
b4 /1 b/ b4

and the corresponding Stokes matrix is equal to

1 =2 =2 4
0 1 0 =2
S = 0 0 1 =2
0 0 0 1

The matrix Cy, is the matrix associated with the morphism
I, : Ko(Fa)c — H*(Fak, C),
1 ~ .
(7] T, U e~ mie1®0 y Ch(.F),
with respect to
* an exceptional basis € := (Ei);‘=1 of Ko(Fax)c,
* the basis (T,-,2k)13=0 of H®* (5, C).
The exceptional basis € is the one obtained by acting on the exceptional basis
(101 [0(=3)]. [0 (=) [0 (53¢ + £3)
with the element (J.', b) € (Z/2Z)* x B4, where
L anEnr ey ik =2p 1,
(L L(=DP(=DP)  ifk =2p,
by = k.
Proof. We divide the proof into three steps.

Step 1. Let us first show that for suitable choices of the oriented line £ and W-matrix,
the central connection matrix computed at the point 0 € QH *(IFy) is given in the
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following form:

1 1 1 1

2 2 2 2

7 Y _q Y Y Y

Co = L+ 1+ T T
el P R (10.3.1)

! 4 T ! 4 T

2(y—im)?  2y(y—im) 2y(@—im) 2y>

m T m T

According to [21, Corollary 6.11], the central connection matrix C of QH*(P')

computed at the point 0, with respect to an oriented line £ of slope ¢ € |7, 37”[ and

with respect to the following choice of W-matrix
I A
o — (ﬁ s )
l l ’
V22

equals

C e i ( 1 1 )
C V2 2y —wi) 2y)
This is the matrix associated with the morphism
Iz Ko(PHe — H* (P!, C),
[Z] — l—]f“];, Ue ™ ®D y Cch(.F),
(2m)2

with respect to the bases
+ ([09],[0(1)]) of Ko(P1)c (the Beilinson basis),
* (1,0)of H*(P!,C).
By taking the Kronecker tensor square C ®2, we obtain the central connection matrix
of QH*(P! x P!) computed at the point 0, with respect to the same line £ (which is

still admissible) and with respect to the choice of the W-matrix given by the Kronecker
tensor square \IJ(;@Z:

_1 _1 _1 _1

21 2 2 2

_y-iw _Yy _y-iw _Yy

®2 __ b 4 T b4 k14
™= _y-iw _y=im _Y _Yy
T 4 T T

_2@—im?  _2y(y—im) _2y(y—im) _ 2y?

T 4 T o

By changing all the signs of the rows of the Kronecker tensor square \1189 2 i.e. acting
with (=1, —1,—1,—1) € (Z/27Z)* on C®2, we obtain the matrix —C ®? associated
with the morphism

pipi: Ko(P' x P — H* (P! x P!, C),

1 ~ .
(7] S Tpie U et ®IXPY | Cp (),
v
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written with respect to the bases

« ([0].10(1,0)],[0(0, )], [O(1, D)) of Ko(P' x P')c,

e (lL,o®1,1®0,00)of H*(P! xP!,C) = H*(P!,C)®2.

See [21, Proposition 5.11]. In the notations introduced before for Hirzebruch surfaces,
this exceptional collection is

(0.0(29). 0(29). 0(=5 + £9)).

It is a 3-block exceptional collection,' coherently with the fact that 0 € QH *(FFp) is
a semisimple coalescing point, see [23, Section 6] and [21, Remark 5.4]. In particular,
the braids 5,3 and ﬂz_’ 13 act as a mere permutation of the central objects, and of the
two central columns of the matrix —C ®2. Such a permuted matrix is exactly the
matrix Cp in (10.3.1), and it corresponds to the matrix associated with the morphism
I, with respect to the collection

(0,0(£9), 0(£9), 0(23 + £9)).

In conclusion, we have proved that, for suitable choices of £ and W, the central con-
nection matrix computed at 0 € QH *(IFy) is

1 1 1 1

2 2 2 2

7 Y i Y 4 Y

Co = I+ 1+ T E
- _q Y Y 7 Y Y ’

2(y—im)?  2y(y—im) 2y(@y—im) 2y?

T T T T

which coincides with the matrix associated with the collection
(0.0(29).0(=9). 0(29 + =)).

Step 2. Equations (9.3.5) and Proposition 4.5.1 imply that the central connection
matrix computed at 0 € Q H* (I, ), with respect to the same choices of £ and W, is

1 1 1 1
2w 2 2 2w
—q Y —q Y 4 Y
C _ ! + g ! + g b g g
k=1 _G—D-in) ink—yk+y —i + y—yvk  y—yk
T b3 g g
2(y—in)? 2y(y—im) 2y(y—in) 2y?
T b g b g g
! An exceptional collection (E1, ..., Ey) is a k-block exceptional collection if it is possible
to decompose it into k exceptional sub-collections B, ..., By, called blocks, such that
* they are consecutive, i.e. of the form 81 = (E1,....E;,), B2 = (Ej +1.---. Ejy), ...,
Br = (Ejj_+1,....Ej ), withl < ji < jo <. < jr <n,

* we have Hom®*(E;, E;) = 0if E; and E; belong to a same block Bj,.

In particular, inside each block B, mutations act as permutations of exceptional objects. See
[21, Section 3.6.4], and references therein.
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The corresponding Stokes matrix is independent of &, and it is equal to

1 -2 -2 4
0 1 0 -2

S=lo 0 1 — (10.3.2)
0 0 0 1

Step 3. Let us define the matrix J; € (Z/2Z)* as follows:

AL DI ) itk =2p 41,
Tl L (D2 (=1P) itk =2p.

We claim that by acting on Ci Ji with the braid B3 k we obtain the matrix associated
with [ - and with respect to the exceptional collection

(0.0(2%), 0(235), 0z + £3)).

namely the matrix

1 1 1 1

2w 2w 2w 2n

g Y g Y e Y

E, = I+ T L+ T T T
k=1 k-D@y—in) izk—-yk+y _ (=Dy—in) izk—yk+y

T T T T
2(y—in)? 2y(y—im) 2y(in(k—1)+y) 2y(inxk+y)

I3 T I3 T

Note that the claim is equivalent to the following statement: the matrix A? (Ji - S - J¢),
with 8 = B3% and S as in (10.3.2), is equal to

10 0 0

_ 01 0 0

E;'Cr i = 00 k41 k|7 (10.3.3)
00 —k 1—k

Given a generic 4 x 4 unipotent upper triangular matrix X, the action of subsequent
powers of the braid B3, or of its inverse 83!, simply changes the sign of the entry in
position (3, 4): more precisely, we have

(X134 = (—1)"[X]34 if p = B5E".

For example, by acting twice with the braid 3 we have

1 a b c 1 a ¢ b—cf 1 a b—cf c+ f(b—cf)

0 1 d e 01 e d—ef 0 1 d—ef e+ f(d—ef)
[ d [ d

00 1 f 001 ~—f 00 1 f

0 0 0 1 0 0 0 1 0 0 0 1
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In particular, the matrix A# (X), with g = B5 k_is equal to

(1o 0 o0
01 0 0

. — Xaa.

[{o 0 (=1)/x 1| *TT A
“Noo 1 o0

In the case X = J - S - Ji, we have
x = (=112,

So, in conclusion, we have to prove that the following identity holds for all £k = 0:

(L0 0 0 10 0 0
I 0 1 0 ol o1 o o |,
I11o o (—1yitkt 00 k+1 & k-
=\o o i 0 00 —k 1—k

We prove the claim by induction on k. The base case k = 0 is evidently true. Let us
assume that the statement holds true for k£ — 1, and let us prove it for k. We have

A 0 0
1—Io 1 0 0
o 0 (=1)/tkt1y
0 0 1 0
AR 0 0 1 0 0 0
_ 0 1 0 0 01 0 0
_‘Flo 0 (=1)/*tk+1p 00 —2 1
i 0 0 1 0 00 1 0
1 0 0 0 1 0 0 0
~lo1 o 0 J 01 0 0
“loo k k—t1t]"*"lo o —2 1|
0 0 1—-k 2—k 00 1 0

and in both cases k even/odd, the last term is easily seen to be equal to (10.3.3). =



