
Chapter 10

Dubrovin conjecture for Hirzebruch surfaces F2k

10.1 Aƒ-stratum and Maxwell stratum ofQH �.F2k/

Fix a point p D t1;2kT1;2k C t2;2kT2;2k of the small quantum cohomology of F2k .
The matrix form of the tensor U is given by
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The ‰-matrix at the point p is given by
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:

Proposition 10.1.1. The small quantum cohomology of Hirzebruch surfaces F2k is
contained in the 	0ƒ-stratum of QH �.F2k/. Moreover, the point p is in the Aƒ-stra-
tum of QH �.F2k/ if and only if q1 D qk1q2.

Proof. By Theorem 2.5.1, the function detƒ takes the form

detƒ.z; p/ D
z2

z2A0.p/C zA1.p/C A2.p/
;

where A0; A1; A2 are holomorphic functions on QH �.F2k/. If p is a point of the
small quantum locus, an explicit computation shows that

detƒ.z; p/ D �
1

256
.q1 � q2q

k
1 /
�1;

so that A1.p/ D A2.p/ D 0. The claim follows.
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Corollary 10.1.2. Along the small quantum locus of QH �.F2k/ the Aƒ-stratum
coincides with the Maxwell stratum MF2k .

Proof. If q1 D qk1q2, we have coalescences of canonical coordinates u1; u2; u3; u4.
Any point of the small quantum locus, however, is semisimple.

10.2 Small qDE of F2k

In the coordinates .t˛;2k/3˛D0, the grading tensor � has matrix � D diag.�1; 0; 0; 1/.
The isomonodromic system (2.7.3) is

H ev
k W

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

@�1

@z
D .2 � 2k/�3 C 2�2 C

1

z
�1;

@�2

@z
D .2k C 2/�4 C �1.2kq

k
1q2 C 2q1/;

@�3

@z
D 2�1q

k
1q2 C 2�4;

@�4

@z
D 2�2q

k
1q2 C �3.2q1 � 2kq

k
1q2/ �

1

z
�4:

In the complement of the Aƒ-stratum, it can be reduced to the single equation in �1,
the master differential equation

z4
@4�1

@z4
� z2

�
z2.8qk1q2 C 8q1/ � 1

�@2�1
@z2

� 3z
@�1

@z
�
�
�16z4.q1 � q

k
1q2/

2
� 3

�
�1 D 0:

(10.2.1)

Given a solution �1.z; t/ of equation (10.2.1), we can reconstruct a solution of the
system H ev

k
through the formulas

�2 D �
.�4.k C 1/q2z

2qk1 C 4.k C 1/q1z
2 C k � 1/

16z3.q1 � q2q
k
1 /

�1

�
.4.3k � 1/q2z

2qk1 C 4.k � 3/q1z
2 � k C 1/

16z2.q1 � q2q
k
1 /

@�1

@z
C

.k � 1/

16.q1 � q2q
k
1 /

@3�1

@z3
;

�3 D �
.�4q2z

2qk1 C 4q1z
2 C 1/

16z3.q1 � q2q
k
1 /

�1 �
.12q2z

2qk1 C 4q1z
2 � 1/

16z2.q1 � q2q
k
1 /

@�1

@z

C
1

16.q1 � q2q
k
1 /

@3�1

@z3
;

�4 D �
.4q2z

2qk1 C 4q1z
2 � 1/

8z2
�1 �

1

8z

@�1

@z
C
1

8

@2�1

@z2
:
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By looking for solution of the form

�1.z; t/ D z �ˆ.z; t/;

equation (10.2.1) can be rewritten as the (small) quantum differential equation

z.#4ˆ � 2#3ˆ/ � 8z3.q1 C q
k
1q2/Œ#

2ˆC #ˆ�C 16z5.q1 � q
k
1q2/

2ˆ D 0;

where # WD z @
@z

.

10.3 Proof forQH �.F2k/

Let us specialize the system H ev
k

at the point 0 2 QH �.F2k/, for which q1 D q2 D 1:

H 0k W

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

@�1

@z
D .2 � 2k/�3 C 2�2 C

1

z
�1;

@�2

@z
D .2k C 2/�4 C �1.2k C 2/;

@�3

@z
D 2�1 C 2�4;

@�4

@z
D 2�2 C �3.2 � 2k/ �

1

z
�4:

The point p D 0 is in the Aƒ-stratum of QH �.F2k/, and so in the Maxwell stratum.
Hence, the study of monodromy data of the system of differential equations H 0

k
fits

in the analysis developed in [22, 23]. In particular, the isomonodromy property is
justified by [23, Theorem 4.5]. As explained in Remark 4.5.2, we can reduce the
computation of the monodromy data of the system H 0

k
to the single case of H 00. The

system H 00 can in turn be integrated using solutions of the isomonodromic system
of QH �.P1/ (see [32, Lemma 4.10]).

Proposition 10.3.1. Let .'.i/1 ; '
.i/
2 / with i D 1; 2 be two solutions of system (2.7.3)

for the quantum cohomology of P1, specialized at 0 2 H 2.P1;C/, i.e.8̂<̂
:
@'1

@z
D 2'2 C

1

2z
'1;

@'2

@z
D 2'1 �

1

2z
'2:

Then the tensor product

 
'
.1/
1

'
.1/
2

!
˝

 
'
.2/
1

'
.2/
2

!
D

0BBBBB@
'
.1/
1 � '

.2/
1

'
.1/
1 � '

.2/
2

'
.1/
2 � '

.2/
1

'
.1/
2 � '

.2/
2

1CCCCCA
is a solution of the system H 00.
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Remark 10.3.2. In order to explicitly compute the monodromy data of H 0ev one could
still develop the study of solutions of the small quantum differential equation, and
then reconstruct the Stokes solutions of H 0

k
doing a similar argument to the one devel-

oped in [23, Section 6] for the quantum cohomology of G.2; 4/.

Theorem 10.3.3. The central connection matrix ofQH �.F2k/, computed at the point
0 2 QH �.F2k/, with respect to an oriented admissible line ` of slope ' 2 ��

2
; 3�
2
Œ and

for a suitable choice of the determination of the ‰-matrix, is equal to

Ck D

0BBBB@
1
2�

1
2�

1
2�

1
2�

�i C 

�

�i C 

�



�



�

�
.k�1/.
�i�/

�
i�k�
kC


�
�i C 
�
k

�

�
k
�

2.
�i�/2

�
2
.
�i�/

�
2
.
�i�/

�
2
2

�

1CCCCA ;
and the corresponding Stokes matrix is equal to

S D

0BB@
1 �2 �2 4

0 1 0 �2

0 0 1 �2

0 0 0 1

1CCA :
The matrix Ck is the matrix associated with the morphism

D�F2k WK0.F2k/C ! H �.F2k;C/;

ŒF � 7!
1

2�
y��F2k [ e

��ic1.F2k/ [ Ch.F /;

with respect to

• an exceptional basis E WD .Ei /
4
iD1 of K0.F2k/C ,

• the basis .Ti;2k/3iD0 of H �.F2k;C/.

The exceptional basis E is the one obtained by acting on the exceptional basis�
ŒO�; ŒO.†2k2 /�; ŒO.†

2k
4 /�; ŒO.†

2k
2 C†

2k
4 /�

�
with the element .J�1

k
; bk/ 2 .Z=2Z/

4 ÌB4, where

Jk WD

´
.1; 1; .�1/pC1; .�1/p/ if k D 2p C 1;

.1; 1; .�1/p; .�1/p/ if k D 2p;

bk WD ˇ
k
3 :

Proof. We divide the proof into three steps.

Step 1. Let us first show that for suitable choices of the oriented line ` and‰-matrix,
the central connection matrix computed at the point 0 2 QH �.F0/ is given in the
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following form:

C0 WD

0BBBB@
1
2�

1
2�

1
2�

1
2�

�i C 

�
�i C 


�


�



�

�i C 

�



�

�i C 

�



�

2.
�i�/2

�
2
.
�i�/

�
2
.
�i�/

�
2
2

�

1CCCCA : (10.3.1)

According to [21, Corollary 6.11], the central connection matrix C of QH �.P1/
computed at the point 0, with respect to an oriented line ` of slope ' 2 ��

2
; 3�
2
Œ and

with respect to the following choice of ‰-matrix

‰0 D

 
1p
2

1p
2

ip
2
�

ip
2

!
;

equals

C WD
i
p
2�

�
1 1

2.
 � �i/ 2


�
:

This is the matrix associated with the morphism

D�P1 WK0.P
1/C ! H �.P1;C/;

ŒF � 7!
i

.2�/
1
2

y��P1 [ e
��ic1.P

1/
[ Ch.F /;

with respect to the bases

• .ŒO�; ŒO.1/�/ of K0.P1/C (the Beilinson basis),

• .1; �/ of H �.P1;C/.

By taking the Kronecker tensor square C˝2, we obtain the central connection matrix
of QH �.P1 � P1/ computed at the point 0, with respect to the same line ` (which is
still admissible) and with respect to the choice of the‰-matrix given by the Kronecker
tensor square ‰˝20 :

C˝2 D

0BBBB@
�
1
2�

�
1
2�

�
1
2�

�
1
2�

�

�i�
�

�


�

�

�i�
�

�


�

�

�i�
�

�

�i�
�

�


�

�


�

�
2.
�i�/2

�
�
2
.
�i�/

�
�
2
.
�i�/

�
�
2
2

�

1CCCCA :
By changing all the signs of the rows of the Kronecker tensor square ‰˝20 , i.e. acting
with .�1;�1;�1;�1/ 2 .Z=2Z/4 on C˝2, we obtain the matrix �C˝2 associated
with the morphism

D�P1�P1 WK0.P
1
� P1/C ! H �.P1 � P1;C/;

ŒF � 7!
1

2�
y��P1�P1 [ e

��ic1.P
1�P1/

[ Ch.F /;
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written with respect to the bases

• .ŒO�; ŒO.1; 0/�; ŒO.0; 1/�; ŒO.1; 1/�/ of K0.P1 � P1/C ,

• .1; � ˝ 1; 1˝ �; � ˝ �/ of H �.P1 � P1;C/ Š H �.P1;C/˝2.

See [21, Proposition 5.11]. In the notations introduced before for Hirzebruch surfaces,
this exceptional collection is�

O;O.†04/;O.†
0
2/;O.†

0
2 C†

0
4/
�
:

It is a 3-block exceptional collection,1 coherently with the fact that 0 2 QH �.F0/ is
a semisimple coalescing point, see [23, Section 6] and [21, Remark 5.4]. In particular,
the braids ˇ2;3 and ˇ�12;3 act as a mere permutation of the central objects, and of the
two central columns of the matrix �C˝2. Such a permuted matrix is exactly the
matrix C0 in (10.3.1), and it corresponds to the matrix associated with the morphism
D�F0 with respect to the collection�

O;O.†02/;O.†
0
4/;O.†

0
2 C†

0
4/
�
:

In conclusion, we have proved that, for suitable choices of ` and ‰, the central con-
nection matrix computed at 0 2 QH �.F0/ is

C0 D

0BBBB@
1
2�

1
2�

1
2�

1
2�

�i C 

�
�i C 


�


�



�

�i C 

�



�

�i C 

�



�

2.
�i�/2

�
2
.
�i�/

�
2
.
�i�/

�
2
2

�

1CCCCA ;
which coincides with the matrix associated with the collection�

O;O.†02/;O.†
0
4/;O.†

0
2 C†

0
4/
�
:

Step 2. Equations (9.3.5) and Proposition 4.5.1 imply that the central connection
matrix computed at 0 2 QH �.F2k/, with respect to the same choices of ` and ‰, is

Ck D

0BBBB@
1
2�

1
2�

1
2�

1
2�

�i C 

�

�i C 

�



�



�

�
.k�1/.
�i�/

�
i�k�
kC


�
�i C 
�
k

�

�
k
�

2.
�i�/2

�
2
.
�i�/

�
2
.
�i�/

�
2
2

�

1CCCCA :

1An exceptional collection .E1; : : : ; En/ is a k-block exceptional collection if it is possible
to decompose it into k exceptional sub-collections B1; : : : ;Bk , called blocks, such that

• they are consecutive, i.e. of the form B1 D .E1; : : : ; Ej1/, B2 D .Ej1C1; : : : ; Ej2/, : : : ,
Bk D .Ejk�1C1; : : : ; Ejk /, with 1 6 j1 < j2 < � � � < jk 6 n,

• we have Hom�.Ej ; Ei / D 0 if Ei and Ej belong to a same block Bh.

In particular, inside each block Bh, mutations act as permutations of exceptional objects. See
[21, Section 3.6.4], and references therein.
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The corresponding Stokes matrix is independent of k, and it is equal to

S D

0BB@
1 �2 �2 4

0 1 0 �2

0 0 1 �2

0 0 0 1

1CCA : (10.3.2)

Step 3. Let us define the matrix Jk 2 .Z=2Z/4 as follows:

Jk WD

´
.1; 1; .�1/pC1; .�1/p/ if k D 2p C 1;

.1; 1; .�1/p; .�1/p/ if k D 2p:

We claim that by acting on CkJk with the braid ˇ�k3 we obtain the matrix associated
with D�F2k and with respect to the exceptional collection�

O;O.†2k2 /;O.†
2k
4 /;O.†

2k
2 C†

2k
4 /
�
;

namely the matrix

Ek WD

0BBBB@
1
2�

1
2�

1
2�

1
2�

�i C 

�

�i C 

�



�



�

�
.k�1/.
�i�/

�
i�k�
kC


�
�
.k�1/.
�i�/

�
i�k�
kC


�

2.
�i�/2

�
2
.
�i�/

�
2
.i�.k�1/C
/

�
2
.i�kC
/

�

1CCCCA :

Note that the claim is equivalent to the following statement: the matrixAˇ .Jk �S �Jk/,
with ˇ D ˇ�k3 and S as in (10.3.2), is equal to

E�1k CkJk D

0BB@
1 0 0 0

0 1 0 0

0 0 k C 1 k

0 0 �k 1 � k

1CCA � Jk : (10.3.3)

Given a generic 4 � 4 unipotent upper triangular matrix X , the action of subsequent
powers of the braid ˇ3, or of its inverse ˇ�13 , simply changes the sign of the entry in
position .3; 4/: more precisely, we have

ŒXˇ �3;4 D .�1/
nŒX�3;4 if ˇ D ˇ˙n3 :

For example, by acting twice with the braid ˇ3 we have0BB@
1 a b c

0 1 d e

0 0 1 f

0 0 0 1

1CCA 7!
0BB@
1 a c b � cf

0 1 e d � ef

0 0 1 �f

0 0 0 1

1CCA 7!
0BB@
1 a b � cf c C f .b � cf /

0 1 d � ef e C f .d � ef /

0 0 1 f

0 0 0 1

1CCA :
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In particular, the matrix Aˇ .X/, with ˇ D ˇ�k3 , is equal to

kY
jD1

0BB@
1 0 0 0

0 1 0 0

0 0 .�1/jx 1

0 0 1 0

1CCA ; x D X3;4:

In the case X D Jk � S � Jk , we have

x D .�1/kC12:

So, in conclusion, we have to prove that the following identity holds for all k > 0:

kY
jD1

0BB@
1 0 0 0

0 1 0 0

0 0 .�1/jCkC12 1

0 0 1 0

1CCA D
0BB@
1 0 0 0

0 1 0 0

0 0 k C 1 k

0 0 �k 1 � k

1CCA � Jk :
We prove the claim by induction on k. The base case k D 0 is evidently true. Let us
assume that the statement holds true for k � 1, and let us prove it for k. We have

kY
jD1

0BB@
1 0 0 0

0 1 0 0

0 0 .�1/jCkC12 1

0 0 1 0

1CCA

D

2664k�1Y
jD1

0BB@
1 0 0 0

0 1 0 0

0 0 .�1/jCkC12 1

0 0 1 0

1CCA
3775 �

0BB@
1 0 0 0

0 1 0 0

0 0 �2 1

0 0 1 0

1CCA

D

0BB@
1 0 0 0

0 1 0 0

0 0 k k � 1

0 0 1 � k 2 � k

1CCA � Jk�1 �
0BB@
1 0 0 0

0 1 0 0

0 0 �2 1

0 0 1 0

1CCA ;
and in both cases k even/odd, the last term is easily seen to be equal to (10.3.3).


