Appendix A
Proof of Theorem 5.1.2

We need some preliminary results.

Lemma A.l. Forn >0, and § € H*(X, C), we have
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Two cases occur:
o If B # 0, then for k = 0 we have
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by the divisor axiom of Gromov—Witten invariants. Here any invariant with t_,
with r > 0 is vanishing.

« If B =0, then for k > 0 by the divisor axiom we have'
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So, we obtain
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"Here, we use the fact that £ is trivial on ﬂoj(X ,0) and hence has zero Chern class.
This follows from the fact that Mo,3(X,0) = X, and the forgetful morphism Mo 4(X,0) —
Mo .3(X, 0) is the projection X x Mg 4 — X.
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Lemma A.2. Let§ € H?(X, (C). We have
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Proof. By Lemma A.1, we have
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Lemma A.3. For§ € H*(X,C), we have
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Proof. Fort € H*(X,C), we have
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Consider the contribution coming from the fact that (k, 8) = (0, 0): by the mapping-
to-point axiom of Gromov—Witten invariants, we have’
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2 Also here, we use the fact that £ is trivial on ﬂo,g(X ,0).
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By the fundamental class axiom, instead, the contribution from (k, 8) # (0,0) can
be rewritten as
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Thus, we have recovered the formula
o0
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which was used in [23, Proposition 7.1] to define ®. At this point the proof is known,
and can be found in [27, Proposition 10.2.3]: the parameter % of [27] has to be
replaced by our z, and pre-composition with z#z¢1) has to be taken into account in
order to obtain formula (A.1). [ ]

We are now ready for the proof of Theorem 5.1.2.
Proof of Theorem 5.1.2. Let us compute the entries of the first row of the matrix
nO(8, z)zHz1 X,
By Lemma A.3, we have
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Using the identity of endomorphisms of H*(X, C)

"o (hFU) ozt = z7F(W*U), he H*(X,C), keN,

and the n-skew-symmetry of ©, we can rewrite the first summand as
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For the second summand, notice that
(1) the only nonzero contribution comes from A = 0,
(2) forany ¢ € H*(X, (C) we have
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(3) we have

X >, (logz)t 26tdaesTg—dinx ¢
zhz T, = Z YT 2 c1(X) T,
£=0 ’

(4) the Gromov—Witten invariant
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is nonzero only if
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So, we obtain

Zezb’ X
< UZ”zcl(X)Ta,l>
1—z¢ 0.2.8
(lOg Z) 20+deg Ty —dim X _
- ZZZ@@ —k)' M 2 <Tk5n kcl(X)eTaJ)())(,z,ﬂ
n=0k=04£{=0
anX [0 N (logz)* ¢ X
=y Y S s e (X0 Ta 155

h=0m+L+k=h

— 95" /BCI(X)Z Z tk(8+logz 1 (X)) T 1), 4-
h=0k+p= nP

Putting this all together, we obtain
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The last equality follows by Lemma A.2. This completes the proof.



