Appendix A

Proof of Theorem 5.1.2

We need some preliminary results.

Lemma A.1. For $n \ge 0$, and $\delta \in H^2(X, \mathbb{C})$, we have

$$\langle\!\langle \tau_n T_\alpha, 1 \rangle\!\rangle_0(\delta) = \frac{1}{(n+1)!} \left(\int_X T_\alpha \cup \delta^{n+1} \right) + \sum_{\beta \neq 0} \sum_{\nu \geq 0} \frac{\mathbf{Q}^\beta e^{\int_\beta \delta}}{\nu!} \langle \tau_{n-\nu} T_\alpha \cup \delta^\nu, 1 \rangle_{0,2,\beta}^X.$$

Proof. We have

$$\langle\!\langle \tau_n T_\alpha, 1 \rangle\!\rangle_0(\delta) = \frac{\partial}{\partial t^{\alpha, n}} \frac{\partial}{\partial t^{0, 0}} \mathcal{F}_0^X \bigg|_{\delta} = \sum_{k=0}^{\infty} \sum_{\beta} \frac{\mathbf{Q}^{\beta}}{k!} \langle \tau_n T_\alpha, 1, \delta \dots, \delta \rangle_{0, k+2, \beta}^X.$$

Two cases occur:

• If $\beta \neq 0$, then for $k \geq 0$ we have

$$\langle \tau_n T_{\alpha}, 1, \delta \dots, \delta \rangle_{0,k+2,\beta}^X = \sum_{\mu+\nu=k} \frac{k!}{\mu!\nu!} \left(\int_{\beta} \delta \right)^{\mu} \langle \tau_{n-\nu} T_{\alpha} \cup \delta^{\nu}, 1 \rangle_{0,2,\beta}^X,$$

by the divisor axiom of Gromov–Witten invariants. Here any invariant with τ_{-r} with r > 0 is vanishing.

• If $\beta = 0$, then for k > 0 by the divisor axiom we have

$$\langle \tau_n T_\alpha, 1, \delta \dots, \delta \rangle_{0,k+2,0}^X = \langle \tau_{n-k+1} T_\alpha \cup \delta^k, 1, \delta \rangle_{0,3,0} = \left(\int_X T_\alpha \cup \delta^k \right) \delta_{k,n+1}.$$

So, we obtain

$$\begin{split} \langle\!\langle \tau_{n} T_{\alpha}, 1 \rangle\!\rangle_{0}(\delta) &= \frac{1}{(n+1)!} \left(\int_{X} T_{\alpha} \cup \delta^{n+1} \right) \\ &+ \sum_{\beta \neq 0} \sum_{k \geq 0} \frac{\mathbf{Q}^{\beta}}{k!} \sum_{\mu + \nu = k} \frac{k!}{\mu! \nu!} \left(\int_{\beta} \delta \right)^{\mu} \langle \tau_{n-\nu} T_{\alpha} \cup \delta^{\nu}, 1 \rangle_{0,2,\beta}^{X} \\ &= \frac{1}{(n+1)!} \left(\int_{X} T_{\alpha} \cup \delta^{n+1} \right) \\ &+ \sum_{\beta \neq 0} \sum_{\nu \geq 0} \frac{\mathbf{Q}^{\beta} e^{\int_{\beta} \delta}}{\nu!} \langle \tau_{n-\nu} T_{\alpha} \cup \delta^{\nu}, 1 \rangle_{0,2,\beta}^{X}. \end{split}$$

¹Here, we use the fact that \mathcal{L}_1 is trivial on $\overline{\mathcal{M}}_{0,3}(X,0)$ and hence has zero Chern class. This follows from the fact that $\overline{\mathcal{M}}_{0,3}(X,0)\cong X$, and the forgetful morphism $\overline{\mathcal{M}}_{0,4}(X,0)\to \overline{\mathcal{M}}_{0,3}(X,0)$ is the projection $X\times \overline{\mathcal{M}}_{0,4}\to X$.

Lemma A.2. Let $\delta \in H^2(X, \mathbb{C})$. We have

$$J_X(\delta) = e^{\frac{\delta}{\hbar}} + \sum_{\alpha} \sum_{\beta \neq 0} \sum_{n=0}^{\infty} \sum_{k+p=n} \hbar^{-(n+1)} \frac{\mathbf{Q}^{\beta} e^{\int_{\beta} \delta}}{p!} \langle \tau_k T_{\alpha} \cup \delta^p, 1 \rangle_{0,2,\beta}^X T^{\alpha}.$$

Proof. By Lemma A.1, we have

$$J_X(\delta) = 1 + \sum_{\alpha} \sum_{n=0}^{\infty} \frac{\hbar^{-(n+1)}}{(n+1)!} \left(\int_X T_{\alpha} \cup \delta^{n+1} \right) T^{\alpha}$$

$$+ \sum_{\alpha} \sum_{\beta \neq 0} \sum_{n=0}^{\infty} \sum_{k+p=n} \hbar^{-(n+1)} \frac{\mathbf{Q}^{\beta} e^{\int_{\beta} \delta}}{p!} \langle \tau_k T_{\alpha} \cup \delta^p, 1 \rangle_{0,2,\beta}^X T^{\alpha}$$

$$= e^{\frac{\delta}{\hbar}} + \sum_{\alpha} \sum_{\beta \neq 0} \sum_{n=0}^{\infty} \sum_{k+p=n} \hbar^{-(n+1)} \frac{\mathbf{Q}^{\beta} e^{\int_{\beta} \delta}}{p!} \langle \tau_k T_{\alpha} \cup \delta^p, 1 \rangle_{0,2,\beta}^X T^{\alpha}. \quad \blacksquare$$

Lemma A.3. For $\delta \in H^2(X, \mathbb{C})$, we have

$$Z_{\text{top}}(\delta, z)T_{\alpha} = e^{z\delta} \cup z^{\mu}z^{c_{1}(X)}T_{\alpha} + \sum_{\beta, \neq 0} \sum_{\lambda} e^{\int_{\beta} \delta} \left\langle \frac{ze^{z\delta}}{1 - z\psi} \cup z^{\mu}z^{c_{1}(X)}T_{\alpha}, T_{\lambda} \right\rangle_{0, 2, \beta}^{X} T^{\lambda}.$$
(A.1)

Proof. For $\tau \in H^{\bullet}(X, \mathbb{C})$, we have

$$\Theta(\tau, z)T_{\alpha} = \sum_{\varepsilon} \Theta(\tau, z)_{\alpha}^{\varepsilon} T_{\varepsilon}
= \sum_{\lambda} \frac{\partial \theta_{\alpha}}{\partial t^{\lambda}} \Big|_{(\tau, z)} T^{\lambda}
= \sum_{\lambda} \sum_{p=0}^{\infty} z^{p} \langle\!\langle \tau_{p} T_{\alpha}, 1, T_{\lambda} \rangle\!\rangle_{0}(\tau)|_{Q=1} T^{\lambda}
= \sum_{\lambda} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{z^{p}}{k!} \langle \tau_{p} T_{\alpha}, 1, T_{\lambda}, \tau, \dots, \tau \rangle_{0, 3+k, \beta}^{X} T^{\lambda}.$$

Consider the contribution coming from the fact that $(k, \beta) = (0, 0)$: by the mapping-to-point axiom of Gromov–Witten invariants, we have²

$$\sum_{\lambda} \sum_{p=0}^{\infty} z^{p} \langle \tau_{p} T_{\alpha}, 1, T_{\lambda}, \rangle_{0,3,0}^{X} T^{\lambda} = \sum_{\lambda} \sum_{p=0}^{\infty} z^{p} \left(\int_{X} T_{\alpha} \cup T_{\lambda} \right) \delta_{0,p} T^{\lambda}$$
$$= T_{\alpha}.$$

²Also here, we use the fact that \mathcal{L}_1 is trivial on $\overline{\mathcal{M}}_{0,3}(X,0)$.

By the fundamental class axiom, instead, the contribution from $(k, \beta) \neq (0, 0)$ can be rewritten as

$$\sum_{\lambda} \sum_{p=0}^{\infty} \sum_{k=1}^{\infty} \sum_{\beta \neq 0} \frac{z^{p}}{k!} \langle \tau_{p-1} T_{\alpha}, T_{\lambda}, \boldsymbol{\tau}, \dots, \boldsymbol{\tau} \rangle_{0, 2+k, \beta}^{X} T^{\lambda}.$$

Thus, we have recovered the formula

$$\Theta(\boldsymbol{\tau}, z) = \operatorname{Id} + \sum_{\lambda} \sum_{p=0}^{\infty} z^{p+1} \langle \langle \tau_p(-), T_{\lambda} \rangle \rangle_0(\boldsymbol{\tau})|_{\mathbf{Q}=1} T^{\lambda},$$

which was used in [23, Proposition 7.1] to define Θ . At this point the proof is known, and can be found in [27, Proposition 10.2.3]: the parameter \hbar of [27] has to be replaced by our z, and pre-composition with $z^{\mu}z^{c_1(X)}$ has to be taken into account in order to obtain formula (A.1).

We are now ready for the proof of Theorem 5.1.2.

Proof of Theorem 5.1.2. Let us compute the entries of the first row of the matrix

$$\eta\Theta(\delta,z)z^{\mu}z^{c_1(X)}$$
.

By Lemma A.3, we have

$$\begin{split} \left[\eta\Theta(\delta,z)z^{\mu}z^{c_{1}(X)}\right]_{\alpha}^{1} &= \eta\left(1,\Theta(\delta,z)z^{\mu}z^{c_{1}(X)}T_{\alpha}\right) \\ &= \eta\left(1,e^{z\delta}\cup z^{\mu}z^{c_{1}(X)}T_{\alpha}\right) \\ &= \eta\left(1,e^{z\delta}\cup z^{\mu}z^{c_{1}(X)}T_{\alpha}\right) \\ &+ \sum_{\beta\neq0}\sum_{\lambda}e^{\int_{\beta}\delta}\left\langle\frac{ze^{z\delta}}{1-z\psi}\cup z^{\mu}z^{c_{1}(X)}T_{\alpha},T_{\lambda}\right\rangle_{0,2,\beta}^{X}T^{\lambda}\right) \\ &= \eta(1,e^{z\delta}\cup z^{\mu}z^{c_{1}(X)}T_{\alpha}) \\ &+ \eta\left(1,\sum_{\beta\neq0}\sum_{\lambda}e^{\int_{\beta}\delta}\left\langle\frac{ze^{z\delta}}{1-z\psi}\cup z^{\mu}z^{c_{1}(X)}T_{\alpha},T_{\lambda}\right\rangle_{0,2,\beta}^{X}T^{\lambda}\right). \end{split}$$

Using the identity of endomorphisms of $H^{\bullet}(X, \mathbb{C})$

$$z^{-\mu}\circ (h^k\cup)\circ z^\mu=z^{-k}(h^k\cup),\quad h\in H^2(X,\mathbb{C}),\quad k\in\mathbb{N},$$

and the η -skew-symmetry of μ , we can rewrite the first summand as

$$\begin{split} \eta(1, e^{z\delta} \cup z^{\mu} z^{c_1(X)} T_{\alpha}) &= \eta(1, z^{\mu} e^{\delta} z^{c_1(X)} T_{\alpha}) \\ &= \eta(z^{-\mu}(1), e^{\delta} z^{c_1(X)} T_{\alpha}) \\ &= z^{\frac{\dim_{\mathbb{C}} X}{2}} \int_{X} e^{\delta} z^{c_1(X)} T_{\alpha}. \end{split}$$

For the second summand, notice that

- (1) the only nonzero contribution comes from $\lambda = 0$,
- (2) for any $\varphi \in H^{\bullet}(X, \mathbb{C})$ we have

$$\frac{ze^{z\delta}}{1-z\psi}\cup\varphi=\sum_{n=0}^{\infty}\sum_{k=0}^{n}\frac{z^{n+1}}{(n-k)!}\psi^{k}\delta^{n-k}\varphi,$$

(3) we have

$$z^{\mu} z^{c_1(X)} T_{\alpha} = \sum_{\ell=0}^{\infty} \frac{(\log z)^{\ell}}{\ell!} z^{\frac{2\ell + \deg T_{\alpha} - \dim X}{2}} c_1(X)^{\ell} T_{\alpha},$$

(4) the Gromov-Witten invariant

$$\langle \tau_k \delta^{n-k} c_1(X)^{\ell} T_{\alpha}, 1 \rangle_{0,2,\beta}^X$$

is nonzero only if

$$2k + 2(n-k) + 2\ell + \deg T_{\alpha} = 2\dim_{\mathbb{C}} X + 2\int_{\beta} c_1(X) - 2.$$

So, we obtain

$$\begin{split} & \left\langle \frac{ze^{z\delta}}{1 - z\psi} \cup z^{\mu}z^{c_{1}(X)}T_{\alpha}, 1 \right\rangle_{0,2,\beta}^{X} \\ &= \sum_{n=0}^{\infty} \sum_{k=0}^{n} \sum_{\ell=0}^{\infty} \frac{(\log z)^{\ell}}{\ell!(n-k)!} z^{n+1 + \frac{2\ell + \deg T_{\alpha} - \dim X}{2}} \langle \tau_{k} \delta^{n-k} c_{1}(X)^{\ell} T_{\alpha}, 1 \rangle_{0,2,\beta}^{X} \\ &= z^{\frac{\dim X}{2}} z^{\int_{\beta} c_{1}(X)} \sum_{h=0}^{\infty} \sum_{m+\ell+k=h} \frac{(\log z)^{\ell}}{\ell!m!} \langle \tau_{k} \delta^{m} c_{1}(X)^{\ell} T_{\alpha}, 1 \rangle_{0,2,\beta}^{X} \\ &= z^{\frac{\dim X}{2}} z^{\int_{\beta} c_{1}(X)} \sum_{h=0}^{\infty} \sum_{k+p=h} \frac{1}{p!} \langle \tau_{k} (\delta + \log z \cdot c_{1}(X))^{p} T_{\alpha}, 1 \rangle_{0,2,\beta}^{X}. \end{split}$$

Putting this all together, we obtain

$$\begin{split} & \left[\eta \Theta(\delta, z) z^{\mu} z^{c_1(X)} \right]_{\alpha}^{1} \\ &= z^{\frac{\dim X}{2}} \left(\int_{X} e^{\delta} z^{c_1(X)} T_{\alpha} \right. \\ & \left. + \sum_{\beta \neq 0} e^{\int_{\beta} \delta} z^{\int_{\beta} c_1(X)} \sum_{h=0}^{\infty} \sum_{k+p=h} \frac{1}{p!} \langle \tau_k (\delta + \log z \cdot c_1(X))^p T_{\alpha}, 1 \rangle_{0,2,\beta}^{X} \right) \\ &= z^{\frac{\dim X}{2}} \int_{X} T_{\alpha} \cup J_{X}(\delta + \log z \cdot c_1(X)) \Big|_{\substack{Q=1 \\ h=1}} \end{split}$$

The last equality follows by Lemma A.2. This completes the proof.