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B É L A B O L L O B Ä S 

It gives me great pleasure to report on the beautiful mathematics of William 
Timothy Gowers that earned him a Fields Medal at ICM'98. 

Gowers has made spectacular contributions to the theory of Banach spaces, 
pure combinatorics, and combinatorial number theory. His hallmark is his excep
tional ability to attack difficult and fundamental problems the right way: a way 
that with hindsight is very natural but a priori is novel and extremely daring. 

In functional analysis Gowers has solved many of the best-known and most 
important problems, several of which originated with Banach in the early 1930s. 
The shock-waves from these results will reverberate for many years to come, and 
will dramatically change the theory of Banach spaces. The great success of Gowers 
is due to his exceptional talent for combining techniques of analysis with involved 
and ingenious combinatorial arguments. 

In combinatorics, Gowers has made fundamental contributions to the study of 
randomness: his tower type lower bound for Szemerédi's lemma is a tour de force. 
In combinatorial number theory, he has worked on the notoriously difficult problem 
of finding arithmetic progressions in sparse sets of integers. The ultimate aim is to 
prove Szemerédi's theorem with the optimal bound on the density that suffices to 
ensure long arithmetic progressions. Gowers proved a deep result for progressions 
of length four, thereby hugely improving the previous bound. The difficult and 
beautiful proof, which greatly extends Roth's argument, and makes clever use of 
Freiman's theorem, amply demonstrates Gowers' amazing mathematical power. 

1 BANACH SPACES 

A major aim of functional analysis is to understand the connection between the 
geometry of a Banach space X and the algebra C{X) of bounded linear operators 
from the space X into itself. In particular, what conditions imply that a space X 
contains 'nice' subspaces, and that C(X) has a rich structure? 

In order to start this global project, over the past sixty years numerous major 
concrete questions had to be answered. As Hilbert said almost one hundred years 
ago, "Wie überhaupt jedes menschliche Unternehmen Ziele verfolgt, so braucht 
die mathematische Forschung Probleme. Durch die Lösung von Problemen stählt 
sich die Kraft des Forschers; er findet neue Methoden und Ausblicke, er gewinnt 
einen weiteren und freieren Horizont." 

In this spirit, the theory of Banach spaces has been driven by a handful of 
fundamental problems, like the basis problem, the unconditional basic sequence 
problem, Banach's hyperplane problem, the invariant subspace problem, the dis
tortion problem, and the Schröder-Bernstein problem. For over half a century, 
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progress with these major problems had been very slow: it is due to Gowers more 
than to anybody else that a few years ago the floodgates opened, and with the 
solutions of many of these problems the subject now has a 'spacious, free horizon'. 

If a space (infinite-dimensional separable Banch space) X can be represented 
as a sequence space then an operator T e C{X) is simply given by an infinite 
matrix, so it is desirable to find a basis of the space. A Schauder basis or simply 
basis of a space X is a sequence (en)%L1 C X such that every vector x G X has a 
unique representation as a norm-convergent sum x = Y^=i anGn- In 1973, solving 
a forty year old problem, Enfio [4] proved that not every separable Banach space 
has a basis, so our operators cannot always be given in this simple way. On the 
other hand, it is almost trivial that every Banach space contains a basic sequence: 
a sequence (xn)^=1 that is a basis of its closed linear span. 

The relationship between an operator T e JC(X) and closed subspaces of X 
can also be very involved. In the 1980s Enfio [5] and Read [22] solved in the nega
tive the invariant subspace problem for Banach spaces, and a little later Read [23] 
showed that this phenomenon can arise on a 'nice' space as well: he constructed 
a bounded linear operator on l\ that has only trivial invariant subspaces. 

Although a basis (e„)J^=1 of a space X leads to a representation of the oper
ators on X as matrices, it does not guarantee that C(X) has a rich structure. For 
example, it does not guarantee that C(X) contains many non-trivial projections. 
Thus, if x = Y^=i an^n and en = 0,1, then Y^=i e»ai»en need not even converge. 
Similarly, a permutation of a basis need not be a basis, and if J2^=i °«en is con
vergent and 7T : N —> N is a permutation then X ^ i air(n)eir(n) need not converge. 
A basis is said to be unconditional if it does have these very pleasant properties; 
equivalently, a basis (en)^=1 is unconditional if there is a constant C > 0 such 
that, if {an)n=i a n d (A„)™=1 are scalar sequences with |A„| < 1 for all n, then 

m m 

Il ^2 Anonen | | < C|| ^ o n e „ | | . 
n = l ro=l 

Also, a sequence {xn)^L1 is an unconditional basic sequence if it is an unconditional 
basis of its closed linear span. The standard bases of Co and £p, 1 < p < oo, are 
all unconditional (and symmetric). 

An unconditional basis guarantees much more structure than a basis, so it is 
not surprising that even classical spaces like C([0,1]) and L\ fail to have uncon
ditional bases. However, the fundamental question of whether every space has a 
subspace with an unconditional basis (or, equivalently, whether every space con
tains an unconditional basic sequence) was open for many years, even after Enflo's 
result. 

The search for a subspace with an unconditional basis is closely related to the 
search for other 'nice' subspaces. For example, it is trivial that not every space 
contains a Hilbert space, but it is far from clear whether every space contains Co 
or £p for some 1 < p < oo. Indeed, this question was answered only in 1974, when 
Tsirelson [28] constructed a counterexample by a clever inductive procedure. This 
development greatly enhanced the prominence of the unconditional basic sequence 
problem. 
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The breakthrough came in the summer of 1991, when Gowers and Maurey [17] 
independently constructed spaces without unconditional basic sequences. As the 
constructions and proofs were almost identical, they joined forces to simplify the 
proofs and to exploit the consequences of the result. The Gowers-Maurey space 
XQM is based on a construction of Schlumprecht [25] that eventually enabled 
Odell and Schlumprecht [21] to solve the famous distortion problem. Odell and 
Schlumprecht constructed a space isomorphic to £2 that contains no subspace al
most isometric to £2 • The main difficulty Gowers and Maurey had to overcome in 
order to make use of Schlumprecht 's space Xs was that Xs itself had an uncon
ditional basis. 

Johnson observed that the proofs could be modified to show that the Gowers-
Maurey space not only has no unconditional basic sequence, but it does not even 
have a decomposable subspace either: no subspace of XQM can be written as a topo
logical direct sum of two (infinite-dimensional) subspaces. Thus the space XQM is 
not only the first example of a non-decomposable infinite-dimensional space, but 
it is also hereditarily indecomposable. Equivalently, every closed subspace Y of 
XQM is such that every projection in C(Y) is essentially trivial: either its rank or 
its corank is finite. To appreciate how exotic a hereditarily indecomposable space 
is, note that a space X is hereditarily indecomposable if and only if the distance 
between the unit spheres of any two infinite-dimensional subspaces is 0: if Y and 
Z are infinite-dimensional subspaces then 

i n f { | | y - * | | : y£Y, z€Z, \\y\\ = \\z\\ = 1} = 0. 

In fact, Gowers and Maurey [16] showed that if X is a complex hereditarily 
indecomposable space then the algebra £(X) is rather small. An operator S G 
C{X) is said to be strictly singular if there is no subspace Y C X such that the 
restriction of S to Y is an isomorphism. Equivalently, S G C{X) is strictly singular 
if for every (infinite-dimensional) subspace Y C X and every e > 0 there is a vector 
y G r w i t h | | 5 j / | | < e | | j / | | . 

THEOREM. Let X be a complex hereditarily indecomposable space. Then every 
operator T G C{X) is a linear combination of the identity and a strictly singular-
operator. 

Gowers [9] was the first to solve Banach 's hyperplane problem when he constructed 
a space with an unconditional basis that is not isomorphic to any of its hyperplanes 
or even proper subspaces. The theorem above implies that every complex heredi
tarily indecomposable space answers Banach's hyperplane problem since it is not 
isomorphic to any of its proper subspaces. In fact, Ferenczi [7] showed that a 
complex Banach space X is hereditarily indecomposable if and only if for every 
subspace Y C X, every bounded linear operator from Y into X is a linear com
bination of the inclusion map and a strictly singular operator. Recently, Argyros 
and Felouzis [1] showed that every Banach space contains either £\ or a subspace 
that is a quotient of a hereditarily indecomposable space. 

It was not by chance that in order to construct a space without an uncondi
tional basis, Gowers and Maurey constructed a hereditarily indecomposable space. 
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As shown by the following stunning dichotomy theorem of Gowers [12], having an 
unconditional basis or being hereditarily indecomposable are the only two 'pure 
states' for a space. 

THEOREM. Every infinite-dimensional Banach space contains an infinite-dimen
sional subspace that either has an unconditional basis or is hereditarily indecom
posable. 

Gowers based his proof of the dichotomy theorem on a combinatorial game played 
on sequences and subspaces. In order to describe this game, we need some 
definitions. Given a space X with a basis (en)%L1, the support of a vector 
a = X ^ i ° n e « G A" is supp(a) = {n : an ^ 0}. A vector a = E^Li a " e » 
precedes a vector b = 2 ^ L i °n^n if n < m for all n G supp(a) and m G supp(ò). A 
block basis is a sequence x\ < x-i < • • • of non-zero vectors, and a block subspace 
is the closed linear span of a block basis. For a subspace Y c X, write ^2{Y) 
for the set of all sequences (XJ)™ of non-zero vectors of norm at most 1 in F with 
xi < ••• < xn. Call a set a C ^2(X) large if er fl XX-̂ 0 ^ 0 for every (infinite-
dimensional) block subspace Y. For a set a C 2 PO a n d a sequence A = (c^)?^ 
of positive reals, the enlargement of a by A. is 

0"A = {{xi)i G 5 ^ P 0 : \\xi-yi\\<5i, l<i<n, for some (y^)" G a}. 

And now for the two-player game (o~,Y) defined by a set a C J2(X) and a 
block subspace Y a X. The first player, Hider, chooses a block subspace Y\ c Y\ 
the second player, Seeker, replies by picking a finitely supported vector y\ G Y\. 
Then Hider chooses a block subspace Y2 CY, and Seeker picks a finitely supported 
vector ?/2 G Y2. Proceeding in this way, Seeker wins the (a, Y)-game if, at any 
stage, the sequence (yi)" is in a. Hider wins if he manages to make the game go 
on for ever. Clearly, Seeker has a winning strategy for the (IT, Y) game if a is big 
when measured by Y. 

The combinatorial foundation of Gowers' dichotomy theorem is then the fol
lowing result [12]. 

THEOREM. Let X be a Banach space with a basis and let a C XX^O ^e large. 
Then for every positive sequence A there is a block subspace Y c X such that 
Seeker has a winning strategy for the {u\,Y)-game. 

The beautiful proof of this result bears some resemblence to arguments of Galvin 
and Prikry [8] and Ellentuck [3] concerning Ramsey-type results for sequences. 

Gowers' dichotomy theorem has been the starting point of much new research 
on Banach spaces. For example, it can be used to tackle the still open problem 
of classifying minimal Banach spaces. A Banach space is minimal if it embeds 
into all of its infinite-dimensional subspaces. Casazza et al [2] used the dichotomy 
theorem to show that every minimal Banach space embeds into a minimal Banach 
space with an unconditional basis. Hence, a minimal space is either reflexive or 
embeds into CQ or £\. 
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The Schröder-Bernstein problem asks whether two Banach spaces are neces
sarily isomorphic if each is a complemented subspace of the other. In [13] Gowers 
gaver the first counterexample, and later with Maurey [16] constucted the following 
further examples with even stronger paradoxical properties. 

THEOREM. For every n > 1 there is a Banach space Xn such that two finite-
codimensional subspaces of Xn are isomorphic if and only if they have the same 
codimension modulo n. Also, there is a Banach space Zn such that two product 
spaces Zr

n and Z^ are isomorphic if and only if r and s are equal modulo n. 

For n > 2, the space Zn can be used to solve the Schröder-Bernstein problem; 
even more, with X = Z3 and Y = Z3 © Z3 we have Y(BY = Z\^ Z3 = X. Thus 
not only are X and Y complemented subspaces of each other, but X = Y © Y and 
Y = X © X. However, X = Z3 and Y = Z\ are not isomorphic. 

The last result we shall discuss here is Gowers' solution of Banach's homo
geneous spaces problem. A space is homogeneous if it is isomorphic to all of its 
subspaces. Banach asked whether there were any examples other than £2. Gowers 
proved the striking result that homogeneity, in fact, characterizes Hilbert space 
[12]. 

THEOREM. The Hilbert space £2 is the only homogeneous space. 

To prove this, Gowers could make use of results of Szankowski [25], and Ko-
morowski and Tomczak-Jaegermann [19] that imply that a homogeneous space 
with an unconditional basis is isomorphic to £2. What happens if X is homoge
neous but does not have an unconditional basis? By the dichotomy theorem, X has 
a subspace Y that either has an unconditional basis or is hereditarily indecompos
able. Since X = Y and X does not have an unconditional basis, Y is hereditarily 
indecomposable. But this is impossible, since a hereditarily indecomposable space 
is not isomorphic to any of its proper subspaces, let alone all of them! 

2 ARITHMETIC PROGRESSIONS 

In 1936 Erdös and Turän [6] conjectured that, for every positive integer k and 
ö > 0, there is an integer N such that every subset of { 1 , . . . , N} of size at least 
ON numbers contains an arithmetic progression of length k. In 1953 Roth [24] used 
exponential sums to prove the conjecture in the special case k = 3: this was one of 
the results Davenport highlighted in 1958 when Roth was awarded a Fields Medal. 
In 1969 Szemerédi found an entirely combinatorial proof for the case k = 4, and 
six years later he proved the full Erdös-Turân conjecture. Szemerédi's theorem 
trivially implies van der Waerden's theorem. 

In 1977 Fürstenberg [7] used techniques of ergodic theory to prove not only 
the full theorem of Szemerédi, but also a number of substantial extensions of it. 
This proof revolutionized ergodic theory. 

In spite of these beautiful results, there is still much work to be done on the 
Erdös-Turân problem. Write f(k,6) for the minimal value of N that will do in 
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Szemerédi's theorem. The proofs of Szemerédi and Fürstenberg give extremely 
weak bounds for f(k, S), even in the case k = 4. In order to improve these bounds, 
and to make it possible to attack some considerable extensions of Szemerédi's 
theorem, it would be desirable to use exponential sums to prove the general case. 

Recently, Gowers [15] set out to do exactly this. He introduced a new notion of 
pseudorandomness, called quadratic uniformity and, using techniques of harmonic 
analysis, showed that a quadratically uniform set contains about the expected 
number of arithmetic progressions of length four. In order to find arithmetic 
progressions in a set that is not quadratically uniform, Gowers avoided the use of 
Szemerédi's uniformity lemma or van der Waerden's theorem, and instead made 
use of Weyl's inequality and, more importantly, Freiman's theorem. This theorem 
states that if for some finite set A c Z the sum A + A = {a + b : a, b G A} is not 
much larger than A then A is not far from a generalized arithmetic progression. 
By ingenious and involved arguments Gowers proved the following result [14]. 

THEOREM. There is an absolute constant C such that 

/ (4,<5)<expexpexp((l /5) c) . 

In other words, if A c { l , . . . , iV} has size at least \A\ = SN > 0 and 
N > expexpexp((l /5) c) , then A contains an arithmetic progression of length 
4. 

The bound in this theorem is imcomparably better than the previous best bounds. 
The entirely new approach of Gowers raises the hope that one could prove 

the full theorem of Szemerédi with good bounds on f(k,ö). In fact, there is even 
hope that Gowers' method could lead to a proof of the Erdös conjecture that if 
A C N is such that XaeA V a = °° then A contains arbitrarily long arithmetic 
progressions. The most famous special case of this conjecture is that the primes 
contain arbitrarily long arithmetic progressions. 

3 COMBINATORICS 

The basis of Szemerédi's original proof of his theorem on arithmetic progressions 
was a deep lemma that has become an extremely important tool in the study of the 
structure of graphs. This result, Szemerédi's uniformity lemma, states that the 
vertex set of every graph can be partitioned into boundedly many pieces V\,..., Vu 
such that 'most' pairs (Vi, Vj) are 'uniform'. In order to state this lemma precisely, 
recall that, for a graph G = (V,E), and sets U, W C V, the density d(U, W) is 
the proportion of the elements (u, w) of U x W such that uw is an edge of G. For 
e, ö > 0 a pair (U, W) is called (e, S)-uniform if for any U' C U and W C W with 
\U'\ > S\U\ and \W'\ > 6\W\, the densities d(U',W) and d(U,W) differ by at 
most e/2. 

Szemerédi's uniformity lemma [27] claims that for all e,S, r\ > 0 there is a 
K = K(e, 6, n) such that the vertex set of any graph G can be partitioned into at 
most K sets U±,..., Uk of sizes differing by at most 1, such that at least (1 — r])k2 

of the pairs (Ui,Uj) are (e, £)-uniform. 
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Loosely speaking, a 'Szemerédi partition' V(G) = \Ji=1 Ui is one such that 
for most pairs (Ui,Uj) there are constants ajj such that if U[ C Ui and U'- C Uj 
are not too small then G contains about aij|t/?| |t/j | edges from U[ to Uj. In some 
sense, Szemerédi's uniformity lemma gives a classification of all graphs. The main 
drawback of the lemma is that the bound K(e, 6, rf) is extremely large: in the case 
e = ö = T], all we know about K(e,e,e) is that it is at most a tower of 2s of 
height proportional to e~5. This is an enormous bound, and in many applications 
a smaller bound, say of the type e€ would be significantly more useful. As the 
lemma is rather easy to prove, it was not unreasonable to expect a bound like this. 

It was a great surprise when Gowers [14] proved the deep result that K(e, ö, n) 
is of tower type in I/o, even if e and n are kept large. 

THEOREM. There are constants CQ,5Q > 0 such that for 0 < ö < 6Q there is a 
graph G that does not have a (1/2, ö, 1/2)-uniform partition into K sets, where K 
is a tower of 2s of height at most co<5-1'16. 

It is well known that even exponential lower bounds are hard to come by, let 
alone tower type lower bounds, so this is a stunning result indeed! The proof, 
which makes use of clever random choices to construct graphs whose small sets 
of vertices do not behave like subsets of random graphs, goes some way towards 
clarifying the nature of randomness. It also indicates that any proof of an upper 
bound for K(e, ô, r/) must involve a long sequence of refinements of partitions, each 
exponentially larger than the previous one. 

This sketch has been all too brief, and a deeper study of Gowers' work would 
be needed to properly appreciate his clarity of thought and mastery of elaborate 
structures. However, I hope that enough has been said to give some taste of 
his remarkable mathematical achievements. In the theory of Banach spaces, not 
only has he solved many of the main classical problems of the century, but he 
has also opened up exciting new directions. In combinatorics, too, he has tackled 
some of the most notorious questions, bringing about their solution with the same 
exceptional blend of combinatorial power and technical skill. Hilbert would surely 
agree that Gowers has given us wider and freer horizons. 
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