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PREFACE

The Proceedings of the International Congress of Mathematicians 1998, held in
Berlin, are published — electronically and in print — in three volumes. Volume I
contains information on the organization of the Congress including the list of
participants, reports on the opening and closing ceremonies, the Laudationes on
the Fields Medalists and the Nevanlinna Prize Winner, and the Plenary Lectures.
Volumes II and III contain the Invited Lectures.

For the first time, the Proceedings of an ICM have been produced complete-
ly electronically — without any commercial assistance. Using the facilities of
DOCUMENTA MATHEMATICA, the contents of the Plenary and Invited Lectures
were made available without charge on the Internet, already before the Congress
started, at http://www.mathematik.uni-bielefeld.de/documenta/.

The printed versions of Volumes IT and ITI were distributed to the participants
at the beginning of the Congress. Volume I, containing material which had to be
gathered during the Congress, was printed about three months after the Congress.

We want to thank all the speakers and organizers for their cooperation which
made such fast publication possible.

October 1998 Gerd Fischer
Ulf Rehmann
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RECIPIENTS OF FIELDS MEDALS

1936

1950

1954

1958

1962

1966

1970

1974

RoLF NEVANLINNA Prize WINNERS

1982
1986

PasT FiELDS MEDALISTS
AND RoLF NEVANLINNA PRIZE WINNERS

Lars V. Ahlfors
Jesse Douglas

Laurent Schwartz
Atle Selberg

Kunihiko Kodaira
Jean-Pierre Serre

Klaus F. Roth
René Thom

Lars Hormander
John W. Milnor

Michael F. Atiyah

Paul J. Cohen
Alexander Grothendieck
Steve Smale

Alan Baker
Heisuke Hironaka
Sergei P. Novikov
John G. Thompson

Enrico Bombieri
David B. Mumford

Robert E. Tarjan
Leslie G. Valiant

1978

1982

1986

1990

1994

1990
1994

Pierre R. Deligne
Charles F. Fefferman
Grigorii A. Margulis
Daniel G. Quillen

Alain Connes
William P. Thurston
Shing-Tung Yau

Simon K. Donaldson
Gerd Faltings
Michael H. Freedman

Vladimir G. Drinfeld
Vaughan F. R. Jones
Shigefumi Mori
Edward Witten

Jean Bourgain
Pierre-Louis Lions
Jean-Christophe Yoccoz
Efim Zelmanov

Alexander A. Razborov
Avi Wigderson
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ORGANIZATION OF THE CONGRESS

MARTIN GROTSCHEL
President of the ICM’98

In 1992 the German Mathematical Society
(DMYV) invited the International Mathemati-
cal Union (IMU) to hold the 1998 International
Congress of Mathematicians in Berlin. The in-
vitation was accepted by the 1994 General As-
sembly of the IMU in Luzern, the decision an-
nounced at the 1994 Congress in Ziirich.

In January 1995 the Council (Prasidium)
of the DMV and the representatives of the
mathematical institutions in Berlin appointed
the Board of Directors of the ICM’98 Or-
ganizing Committee (Martin Groétschel (TU
and ZIB Berlin), President; Friedrich Hirze-
bruch (MPI Bonn), Honorary President; Mar-
tin Aigner (FU Berlin), Vice President; Jirgen
Sprekels (HU and WIAS Berlin), Treasurer;
Jorg Winkler (TU Berlin), Secretary) and also
founded the Verein zur Durchfihrung des In-
ternational Congress of Mathematicians 1998
in Berlin (VICM) to form a legal umbrella for the organization. In the course
of the preparations, the Board of Directors asked many colleagues to join the
organizing team. A list of its members can be found on the next pages.

Initial financial support came from the Bundesministerium fir Bildung, Wis-
senschaft, Forschung und Technologie and from the Senat von Berlin. Without
the substantial backing from these two institutions an application would have been
impossible. Other public and academic bodies, private corporations and founda-
tions, individuals and mathematical institutes supported the Congress significantly
as well. A list of donors can be found in this volume. The registration fee was DM
450 for early and DM 600 for late registration, there was no fee for accompanying
persons. The registration fees accounted for about one third of the total budget.

The scientific program of the Congress was in the hands of a Program Com-
mittee appointed by the IMU. Its members were Phillip Griffiths (Chairman), Luis
Caffarelli, Ingrid Daubechies, Gerd Faltings, Hans Féllmer, Michio Jimbo, John
Milnor, Sergei Novikov, and Jacques Tits. The committee divided the program of
the Congress into 19 sections and appointed, for each section, a panel to nominate

DOCUMENTA MATHEMATICA - EXTRA VOLUME ICM 1998 - 1



16 MARTIN GROTSCHEL

speakers. In early summer of 1997 the Program Committee selected 21 mathemati-
cians to give one-hour plenary addresses and 169 colleagues to present 45-minute
invited lectures. Five invited lecturers cancelled their talks at short notice due
to personal reasons. Two of them, however, submitted written versions of their
lectures to these Proceedings.

The Fields Medal Committee consisted of Yuri Manin (Chairman), John
Ball, John Coates, J. J. Duistermaat, Michael Freedman, Jiirg Frohlich, Robert
MacPherson, Kyoji Saito, and Steve Smale. The members of the Nevanlinna Prize
Committee were David Mumford (Chairman), Bjorn Engquist, Tom Leighton, and
Alexander Razborov. Both committees arrived at their decisions in spring 1998.

The Organizing Committee was responsible for all other activities of the
Congress. DER-CONGRESS handled accommodation, registration and related ar-
rangements as the official travel agent of the Organizing Committee.

The first day of the Congress, including the opening ceremony, took place at
the International Congress Center (ICC) of Berlin. During the opening ceremony,
attended by about 3,000 persons, the Fields Medals and the Nevanlinna Prize were
awarded. Moreover, Andrew Wiles received an IMU silver plaque in recognition
of his proof of “Fermat’s Last Theorem”. The opening ceremony was transmitted
worldwide in the Internet via MBone. In the afternoon of August 18, the work
of the Fields Medalists and the Nevanlinna Prize winner was presented in five
lectures. The manuscripts of these lectures can be found in this volume. Jiirgen
Moser concluded the first day with a plenary lecture.

All further sessions of the Congress took place on the campus of the Technische
Universitdt Berlin. The plenary lectures were held in morning sessions in the
Audimax of the TU Berlin. They were transmitted via closed-circuit television
to another large lecture hall. The 45-minute invited lectures were given in six
parallel sessions from 2 pm to 6 pm each afternoon, from August 19 to 26, except
for Sunday, August 23, which was kept {ree for excursions etc. The last day of the
Congress, August 27, consisted of four plenary addresses and the closing ceremony.

In addition to the invited and plenary lectures, 1,098 short 15-minute contri-
butions and 236 poster presentations were given. Moreover, 235 ad-hoc talks of
15 minutes length were scheduled during the Congress. Thus, ICM’98 had a total
of 1569 contributed presentations.

The organization of the Congress was, to a large extent, based on electronic
communication. Already in 1994, a World Wide Web Server on the International
Congress was set up at the Konrad-Zuse-Zentrum in Berlin. This server was con-
tinuously extended to contain up-to-date material so that every mathematician
interested in TCM’98 could look up most recent information. In addition to this,
circular letters were e-mailed to all those who preregistered for the Congress elec-
tronically. These circular letters complemented the printed First and Second An-
nouncements that were mailed out in August 1997 and January 1998, respectively,
to thousands of mathematicians worldwide.

The Organizing Committee also offered the possibility of electronic registra-
tion. Two thirds of the ICM’98 members took advantage of this facility; 95% of
the abstracts of the invited and contributed presentations were submitted elec-
tronically. Moreover, all but one of the plenary and invited speakers submitted
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their paper for the proceedings volume electronically. This made it possible to
produce Volumes II and III before the Congress, to make them available in the
Internet, and to deliver them to the participants in printed form at registration in
Berlin.

In all, 3,346 mathematicians from 98 countries participated in the Congress
together with an estimated number of 800 accompanying persons; 31 exhibitors
were present.

The Organizing Committee made significant efforts, together with the In-
ternational Mathematical Union, to give financial support for participants from
developing countries and Eastern Europe. A fund of more than DM 900,000 made
it possible to sponsor the attendance of approximately 4560 mathematicians. About
510 colleagues were invited, around 60 were unfortunately unable to attend; 93
young and 37 mature colleagues from developing countries received grants from
the IMU and the local organization, 305 persons from the support program of the
local Organizing Committee for mathematicians from Eastern Europe. Special
grants from mathematical institutions and other support programs complemented
these efforts.

The social events included a buffet lunch after the opening ceremony, an opera
performance of the Magic Flute in the Deutsche Oper on August 23, and an ICM
party on August 26. To convey some of the many facets of Berlin to the ICM’98
participants, and in particular to accompanying persons, many Berlin mathemati-
cians, their friends and spouses offered informal tours, so called footloose tours, to
points of special interest in Berlin. About 1,200 ICM’98 members and accompa-
nying persons participated in these tours.

In accordance with the Program Committee and the IMU, the Organizing
Committee opened a Section of Special Activities to cover topics of mathematical
relevance that would not fit elsewhere in the official scientific program. These
special activities included an afternoon session on electronic publishing with three
talks and a panel discussion on “The Future of Electronic Communication, Infor-
mation, and Publishing”; presentations of mathematical software on three after-
noons; several special activities related to women in mathematics including the
Emmy Noether Lecture given by Cathleen Synge Morawetz, and a panel discus-
sion “Events and Policies: Effects on Women in Mathematics”; an afternoon on
“Berlin as Centre of Mathematical Activity” (this workshop was suggested by the
International Commission on the History of Mathematics); a roundtable discus-
sion on “International Comparison of Mathematical Studies, University Degrees,
and Professional Perspectives”.

The exhibition “Terror and Exile” honored the memory of 53 Berlin mathe-
maticians who suffered under the Nazi terror; this topic was also addressed in a
gpecial session “Mathematics in the Third Reich and Racial and Political Perse-
cution”.

Other events enhanced the scope of the ICM’98 activities. The special evening
lecture of Andrew Wiles on “Twenty Years of Number Theory” on August 19
attracted an audience of about 2,300. OIlli Lehto’s book on the International
Mathematical Union was presented and an exhibition of mathematical cartoons
was shown at the TU Mathematics Library.
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A major attempt to reach out to the non-mathematical public during the
Congress were the activities in the Urania, an institution with a long tradition in
the popularization of science. These included 11 lectures on mathematics for a gen-
eral audience, the VideoMath Festival in which the VideoMath Reel, a composition
of selected short videos on mathematics, and several other mathematical films were
shown. Exhibitions on “Hands-on Mathematics” (addressing high-school students
and teachers in particular), “Mathematical Stone Sculptures”, “Mathematics and
Ceramics”, and works by high-school students on “Mathematics and the Art”
complemented the Urania activities. An additional exhibition featuring paintings
and sculptures related to mathematical objects (Innovation®) was shown at the
Ludwig-Erhard-Haus. More than 5,000 persons attended the Urania lectures and
video performances, about 10,000 visited the exhibitions in the Urania.
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THE COMMITTEES OF THE CONGRESS

ProGrAM COMMITTEE (APPOINTED BY THE IMU)

Phillip Griffiths, Chairman

Luis Caffarelli
Ingrid Daubechies
Gerd Faltings
Hans Foéllmer
Michio Jimbo
John Milnor
Sergei Novikow

Jacques Tits

19

Institute for Advanced Study, Princeton, USA;
University of Texas, Austin, USA

Princeton University, Princeton, USA
Max-Planck-Institut, Bonn, Germany
Humboldt-Universitit, Berlin, Germany
Kyoto Universtity, Kyoto, Japan
SUNY at Stony Brook, Stony Brook, USA

Landau Institute, Moscow, Russia,
and University of Maryland, USA

College de France, Paris, France

The German Mathematical Society together with representatives of the mathe-
matical institutions of Berlin appointed the President, Honorary President, Vice
President, Treasurer and Secretary (Board of Directors) of the Local Organizing
Committee, who in turn appointed the members of all further committees.

ORGANIZING COMMITTEE

Martin Grotschel
Friedrich Hirzebruch
Martin Aigner
Jiirgen Sprekels
Jorg Winkler

Rolf Mohring

Ehrhard Behrends
Gerhard Berendt

A. Beutelspacher
Jochen Briining
Wolfgang Dalitz
Gerd Fischer

Gerd Frey

Ulrich Fuchs
Stephan Hartmann
Christian Hege
Christoph Helmberg
Karl-Heinz Hoffmann
Bettina Kasse
Herbert Kurke
Eberhard Letzner
Jutta Lohse

DOCUMENTA MATHEMATICA - EXTRA VOLUME ICM 1998 - 1

President

Honorary President
Vice President
Finances

Secretary

Local Arrangements

FU Berlin
FU Berlin
Giessen

HU Berlin
ZIB Berlin
Disseldorf
Essen

FU Berlin
TU Berlin
ZIB Berlin
ZIB Berlin
TU Miinchen
ZIB Berlin
HU Berlin
FU Berlin
WIAS Berlin

ZIB and TU Berlin

Bonn

FU Berlin

WIAS and HU Berlin

TU Berlin

TU Berlin
Sabine Marcus TU Berlin
Sybille Mattrisch ZIB Berlin
Hans-Otfried Miiller Dresden
Winfried Neun ZIB Berlin
Volker Nollau Dresden
Konrad Polthier TU Berlin
Elke Pose TU Berlin
Ulf Rehmann Bielefeld
Werner Rémisch HU Berlin
Vasco Schmidt FU Berlin
Renate Schubert TU Berlin
Ralph-Hardo Schulz FU Berlin
Margitta Teuchert WIAS Berlin
Michael Walter ZIB Berlin
Christiane Weber Dresden
Giinter M. Ziegler TU Berlin
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LocAL SCIENTIFIC COMMITTEE

Michael E. Pohst,
Chairman

Glinter Albinus

Helmut Alt

Klaus Dieter Bierstedt

Alexander Bobenko
Peter Deuflhard

Jean-Dominique
Deuschel
Frank Duzaar
Dirk Ferus
Bernold Fiedler
Karl-Heinz Foérster
Herbert Gajewski
Joachim Grater
Jens Gustedt
Klaus Hulek
Heinz Adolf Jung
Markus Klein
Eberhard Knobloch
Helmut Koch
Hermann Kénig
Sabine Koppelberg

TU Berlin

WIAS Berlin
FU Berlin
Paderborn
TU Berlin
ZIB and

FU Berlin

TU Berlin
HU Berlin
TU Berlin
TU Berlin
TU Berlin
WIAS Berlin
Potsdam
TU Berlin
Hannover
TU Berlin
Potsdam
TU Berlin
HU Berlin
Kiel

FU Berlin
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Ralf Kornhuber
Jirg Kramer
Herbert Kurke
Joachim Naumann

Michael Nussbaum
Erich Ossa

Christian Pommerenke

Hans-Jiirgen Promel
Siegfried Préfidorf
Lutz Recke

Klaus R. Schneider
Riidiger Schultz
Wolfgang Schulz

Bert-Wolfgang Schulze

Martin Schweizer
Rudolf Seiler
Wilhelm Singhof
Helmut Strade
Gernot Stroth
Fredi Troltzsch
Elmar Vogt
Robert Weismantel
Gilinter M. Ziegler

Registration of the participants

FU Berlin
HU Berlin
HU Berlin
HU Berlin
WIAS Berlin
Wuppertal
TU Berlin
HU Berlin
WIAS Berlin
HU Berlin
WIAS Berlin
Leipzig

HU Berlin
Potsdam

TU Berlin
TU Berlin
Diisseldorf
Hamburg
Halle
Chemnitz
FU Berlin
Magdeburg
TU Berlin
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LisT oF DONORS

The Organizing Committee is greatly indebted to all those who have supported
the congress either by monetary contributions or by donating goods and services.
Without these generous donations it would have been impossible to launch ICM’98.
We would like to thank the following sponsors cordially:

PUBLIC AND ACADEMIC BODIES

Bundesministerium fiir Bildung, Wissenschaft, Forschung und Technologie
Senat von Berlin

Deutsche Forschungsgemeinschaft

Sichsisches Staatsministerium fiir Wissenschaft und Kunst

Alexander von Humboldt-Stiftung

Berlin-Brandenburgische Akademie der Wissenschaften

International Mathematical Union

Deutsche Mathematiker-Vereinigung

European Mathematical Society

Deutsche Gesellschaft fiir Versicherungsmathematik
Berliner Mathematische Gesellschaft

PRIVATE CORPORATIONS AND FOUNDATIONS

Allianz Lebensversicherungs-AG
Siemens AG

Stemmler-Stiftung
Mollgaard-Stiftung

Silicon Graphics

Deutsche Telekom

Storage Tek

Herlitz AG

Deutsche Bank AG
Springer-Verlag

Nikkei Culture

Walter und Eva Andrejewski-Stiftung
Minolta

Sender Freies Berlin

SUN Microsystems

Berliner Verkehrsbetriebe
Daimler-Benz-Stiftung

T-Mobil
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OPENING CEREMONY

The opening ceremony of the Congress was held at the International Congress
Center on Tuesday, August 18, 1988, starting at 10:00. Some of the talks were
gwen in German, with an English translation on slides. Here we reproduce the
English versions.

DaAviD MUMFORD

President of the International Mathematical Union

Minister Riittgers,

State Secretaries Staudacher
and Hauser,

Governing Mayor Diepgen,
Professors Hoffmann, Hirzebruch
and Grotschel,

fellow mathematicians,

ladies and gentlemen:

Let me welcome you to the ICM’98, the 23rd
International Congress of Mathematicians. It
is a great honor and a great pleasure to open
this Congress.

First I would like to congratulate the Orga-
nizing Committee for the superb job they have
done in bringing to life this Congress. I have
always been aware that the ICMs were major
undertakings but only in the last four years,
watching from the sidelines the huge number
of decisions, negotiations and problems and the vast array of details that the Or-
ganizers have dealt with, did I appreciate all that this means. It has been a truly
monumental task to which dozens of Professors and hundreds of assistants have
devoted the major part of their lives for the last several years. But they have put
together what we call in the U.S. a blockbuster of a Congress. Secondly, I want
to say that I also did not appreciate how large and how crucial was the financial
assistance from the host country in keeping these Congresses affordable to all re-
searchers in mathematics. So I would like to especially thank our German hosts for
their truly remarkable financial support. We will see in a few minutes the extent
and the many sources, private and public, of this magnanimous contribution.
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Thirdly, T want to say that T am accustomed, as a mathematician, to being
in a nearly invisible field of work. Mathematics is neither a hard Science whose
discoveries are widely broadcast nor an Art, which delights a major part of the
public. So T am especially pleased that our Congress here in Berlin has attracted
the attention of the Federal Minister of Education and Science, the State Secre-
taries of the German President and the Ministry of Finance and the Governing
Mayor of Berlin. I am further delighted that there is a stronger public awareness
here in Berlin of mathematics and of our Congress than I can recall at any previous
Congresses. During this Congress we have an opportunity to present mathemat-
ics to people engaged in other professions and the organizing committee has put
together an exciting program to accomplish this, as you will hear shortly. Let me
do my part by saying a few words about how mathematics relates to the broader
cultural world.

Mathematics is usually explained and justified to the world at large by giving
examples of important inventions that could not have been made without its help.
This is embodied in the myth that we mathematicians concern ourselves with
eternal truths, which we hand on to physicists, who pass them on to chemists
and engineers, etc. who finally pass them on to mankind as a whole. There are
definitely important examples of ideas passing along this chain (in fact in both
directions!) but I also think it is a rather narrow view to isolate mathematics
on such a pedestal. There is a more socially grounded view, which says that
mathematics and mathematicians are deeply embedded in human culture and are
tied to the Arts in particular where the love of abstraction also flourishes. Let me
illustrate this.

At the beginning of this century, the great German mathematician David Hilbert
carried out his extremely influential dissection of the axioms of Euclidean geometry
into their logical components. Was it a coincidence that at the same time, the
French impressionists were dissecting the light and color of painting into their
basic components? In the 20’s and 30’s, the Bauhaus school of architecture was
building in Germany human habitations along minimalist lines. And Bourbaki
in France was rebuilding mathematics in its most abstract possible setting. It is

Opening Ceremony
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amusing to work out more parallels between mathematics and the broad trends
in human culture, such as the discovery that randomness could be more effective
than precise planning, by the artist Jackson Pollock and the mathematician N. C.
Metropolis at roughly the same time. But I will content myself with the assertion
that the most widely renowned mathematical achievement of the last four years,
the solution of Fermat’s 300-year-old problem, is the quintessential post-modern
theorem. The basic qualities of what is known as post-modern art and architecture
are their conscious combination of idioms from every era in the past. And, indeed,
Wiles’ proof combines ideas from almost every branch of classical mathematics
- number theory proper, algebraic geometry, Lie group theory and analysis; and
its roots go back to Kronecker’s famous vision, his ‘Jugendtraum’; in the 19th
century.

Although the links are sometimes hidden, mathematics is tightly woven with
all of art and science. I wish the Congress success as a forum for the exchange of
ideas between mathematicians and the citizens of this remarkable city as well as
between mathematicians themselves. Welcome to this celebration of the best of
mathematics at the close of the 20th century!

I propose that we elect by acclamation, here and now, Professor Martin
Grotschel as President of the 1998 International Congress of Mathematicians and
I call him to the stage.

MARTIN GROTSCHEL
President of the ICM’98

Herr Minister,

Herr Regierender Biirgermeister,
verehrte Staatssekretire,

ladies and gentlemen:

I am very grateful for your vote. It is truly an
honor to preside over ICM’98, the 23rd Inter-
national Congress of Mathematicians.

On behalf of the Local Organizing Com-
mittee I would like to welcome you all to
ICM’98, in particular, to this opening cer-
emony at the International Congress Center
(ICC) of Berlin.

An international congress such as this is,
in the language of marketing, a very “complex
product.” Many groups, distributed all over
the world, take part in the planning and prepa-
ration. T would like to reveal a few.

The General Assembly of the International
Mathematical Union chose Berlin as the site of ICM’98 at its meeting in Luzern
in 1994.
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One of the first efforts of the Organizing Committee was to find a suitable
logo. We were fortunate that a flash of genius of our designer team Ott & Stein
produced a beautiful arrangement of the number 1998, the year of our congress,
written in Roman numerals. Please watch the short video on my left to see how
ICM and ICC, the abbreviation of the name of the building we currently occupy,
show up magically.

During the last four years the preparation of ICM’98 proceeded in close con-
tact with the IMU Executive Committee, in particular, with IMU President David
Mumford and IMU Secretary Jacob Palis. This was and still is an outstanding
cooperation. I would like to thank both, David and Jacob, for their excellent and
continuing support.

The IMU appointed the Fields Medal and the Nevanlinna Prize Committee.
Their achievements will be unveiled in about 90 minutes.

The committee that is most important for the scientific success of the congress
is the Program Committee. It was chaired by Phillip Griffiths, its members are
shown on the slide above me.

The Program Committee has chosen 21 plenary speakers and 169 invited
speakers in 19 sections. Their selection was based on 19 international panels, that
also received support from other scientific societies.

I believe that this choice of leading experts, who are going to report on the
mathematical achievements of the last years in their field of interest, is why most
of the about 3500 members of this congress have gathered.

Some statistics: The ICM’98 participants come from 98 countries; 1% are
from Australia, 2% from Africa, 12% from Asia, 20% from America, and 65 %
from Europe. About 12 % of the members are female, 10 % of the participants are
students.

Staudacher, Ziegler, Diepgen, Aigner, Rittgers, Hirzebruch, Hoffmann
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Whatever scientific committees do and plan, it is impossible to launch an event
such as this one without substantial financial support. The Organizing Committee
is greatly indebted to many public and academic bodies, private corporations and
foundations, and a large number of individuals for monetary contributions and
the donation of goods and services. The slides above me show the major donors.
Representatives of most of our benefactors are present at this moment. Thank
you very much !

Thanking individuals in speeches like this is always a sensitive matter. Never-
theless, I would like to make an exception here and mention one person specifically.
Our sincere thanks go to Hermann Schunck of the Federal Ministry of Education,
Science, Research, and Technology, who was a mainstay and backed the organiza-
tion politically wherever he could. For the group theoretists among you: he is the
person after whom Schunck classes are named, an outgrowth of his PhD thesis,
written in 1967 in his “former life.”

One outcome of our fund drives and those of IMU makes us very proud. The
donation of more than DM 900 000 enabled us to financially support the participa-
tion of about 460 mathematicians from developing countries and Eastern Europe.
The sponsored colleagues have been selected from 1500 excellent applications and
strengthened our scientific program considerably. They particularly contribute to
the more than 1200 short communications and poster presentations that will, in
addition to the invited lectures, be given at this meeting,.

Everything T have reported so far was similar at former congresses. I believe
that three features distinguish TCM’98 from previous ICMs.

First, it is the first time that extensive use of electronic communication, infor-
mation, and organization was made. Almost everybody in this room has received
e-mail from me. Many of you have corresponded with my colleagues and me by
electronic means. This way we were able to stay in touch with our “customers.”
We have taken up various suggestions, avoided some mistakes and were able to
repair others quickly. Quite a few “thank you letters” indicate that many of you
felt well informed about the progress of the planning.

Some statistics may highlight the “electronic revolution”: two thirds of the
ICM’98 participants registered electronically, 95 % mailed their abstracts electron-
ically, and only one of all plenary and invited papers was not submitted electron-
ically. This made it possible to produce the proceedings before the congress and
make them available in the Internet, except, of course, for the part that deals with
the present Opening Ceremony.

Second, the Local Organizing Committee, in cooperation with IMU, has added
an additional section, called the Section of Special Activities, where topics are cov-
ered that are of mathematical relevance but do not fit into the traditional scien-
tific program. There will be talks, presentations, and round table discussions on
electronic publishing, mathematical software, activities related to women, inter-
national comparison of mathematical studies, and a series on Berlin as a centre of
mathematical activity.

Third, the International Congress was extended to the general non-mathe-
matical public. This was considered a matter of utmost importance by all members
of the Organizing Committee. The activities going on these days are too numerous
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to be mentioned here in detail. We have rented the Urania building to attract the
Berliners to listen to mathematical talks. There will be several exhibitions, music
performances etc. related to mathematics. We hope that these activities will not
only be of interest for the general public but also for the ICM members and their
accompanying persons.

To give you an idea of what to expect, let us watch a preview of the VideoMath
Festival film that will be shown several times during the congress at the Urania.

I invite you all to this festival and the other activities at the Urania.

At the end of my words of welcome, I would like to thank my colleagues in the
Organizing Committee. They are all volunteers and have done the organizational
work in addition to their usual duties. They have joined forces enthusiastically
and have given their best to make ICM’98 an exceptional event. Let’s hope that
our dreams come true.

Welcome to ICM’98, welcome to Berlin. We wish you a successful conference
and a pleasant stay, thank you very much!!

KARL-HEINZ HOFFMANN

President of the German Mathematical Society

Dear Mr. President Mumford,
ladies and gentlemen,
dear guests:

For the first time in 94 years the International
Congress of Mathematicians returns to Ger-
many. In the name of the German Mathemat-
ical Society I welcome you to Berlin.

My special greetings go to the State Secre-
tary, Wilhelm Staudacher, who is representing
the President of the Federal Republic of Ger-
many today, as well as to the Minister of Education, Science, Research and Tech-
nology, Dr. Jiirgen Riittgers. I also extend a warm welcome to the Governing
Mayor Eberhard Diepgen, representing the Land of Berlin.

Ladies and Gentlemen! In 1912, that is eight years after the ICM held in
Heidelberg, we read in an essay of the Austrian-Bohemian writer Robert Musil:

Mathematics (as a science) is the bravery of pure reason, one of the few we have
today. ... It can be said that we live entirely on the results. ... This whole
being that runs ... and stands around us not only depends on mathematics for its
comprehensibility, but has effectively been created by her, rests in its ... existence
upon her.

A look at the program of the ICM’98 supports this assessment in an impressive
way.
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The broad spectrum of talks on pure and applied mathematics is supple-
mented by sections like Mathematical Software and by events for a non-professional
audience as, for example, the VideoMath Festival and various exhibitions.

Mathematics is art and culture, but it is also the foundation of our technology
based world. The Enquete Commission of the American Academy of Science has
concluded:

High Technology is essentially mathematical technology.

Mathematics has not only given birth to her extremely successful daughter, com-
puter science, but mathematical methods are also used in their own rights and
thus have become the backbone of modern technology. Let me mention in this
connection computer tomography, robotics, aeronautics and space science, semi-
conductor technology, and material sciences.

Contrary to a general belief, well trained mathematicians are not only wanted
in the academic field, but also in business, banks, and insurance companies. The
Federal Institute for Employment in Niirnberg has recently reported that there are
as many vacant positions for mathematicians as there are mathematicians seeking
employment. The broad education that mathematicians receive provides them
with the flexibility which is a characteristic of modern working environments. In
view of all this, the support which mathematics receives in Germany from the Ger-
man Research Council DFG, the Max Planck Society, private foundations, industry
and from the Federal Ministry for Education, Science, Research and Technology is
an investment for the future. We are grateful for that. These measures of support
have led to the creation of research centers, exemplified in the foundation if insti-
tutions, as well as the Research Networks, the SFBs (Sonderforschungsbereiche),
Programs of the DFG, and Joint Projects of the BMBF (Ministry of Science and
Technology):

o 2 Max Planck Institutes: the MPI for Mathematics in Bonn and the MPI
for Mathematics in the Sciences in Leipzig.

e The Institute for Applied Analysis and Stochastics of the Leibniz Society in
Berlin.

e The “Konrad-Zuse-Zentrum fiir Informationstechnik” in Berlin.

e 7 SFBs of the DFG in the fields of Algebraic Geometry, Partial Differential
Equations, Differential Geometry, Discrete Mathematics, Scientific Comput-
ing, and Mathematical Modelling with a total budget of DM 13 Million per
year.

¢ 4 Programs of the DFG in the fields of Dynamical Systems, Optimization,
Stochastic Systems, and Conservation Equations with a total budget of DM
11 Million.

e A Program of the BMBF for the advancement of joint projects between
universities and industry.
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Students as well as academics from Germany and abroad will find a rich vein of
mathematicial research in our universities. Although the media often deplore the
lack of international collaboration in science in Germany, this criticism does not
apply to mathematics.

We are happy to demonstrate this fact by having the International Congress
of Mathematicians in Berlin.

We are especially grateful to Professor Friedrich Hirzebruch, who, by his rep-
utation and his personal integrity, has helped decisively to restore the position
of German mathematicians within the international community. As President of
the German Mathematical Society I ask you to elect by acclamation Professor
Friedrich Hirzebruch as Honorary President of the ICM’98. Let me again welcome
you and wish you all an interesting scientific program and exciting days in the
reunited Berlin.

View over Berlin from the Technical University
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FRIEDRICH HIRZEBRUCH
Honorary President of the ICM’98

Many thanks for the honour just bestowed on
me. At the closing session in Ziirich, I invited
the congress to Berlin on behalf of the German
Mathematical Society (DMV). The Organizing
Committee in Berlin under Professor Martin
Grotschel has worked hard and very efficiently
using the most modern developments of elec-
tronic communication. As honorary president
of this committee I had to do very little, but
I had ample chance to admire their work. I
wish to thank Professor Groétschel and all mem-
bers of his committee very much, especially for
making the honorary presidency so easy for me.
In 1904 the Congress was in Heidelberg, sup-
ported by Kaiser Wilhelm and the Grand Duke
of Baden. This time our support comes from
the Federal Republic of Germany and the Land
Berlin. We are grateful for the generous support. I welcome Staatssekretdr Wil-
helm Staudacher, who will read a message of the President of Germany, who agreed
to be the protector of this Congress. The Federal support comes through the Min-
ister of Education, Science, Research, and Technology. I welcome the Minister
Dr. Jirgen Riittgers. The Land Berlin is represented by its Governing Mayor
Eberhard Diepgen. We thank the Technical University and its president Professor
Hans-Jiirgen Ewers for letting us use the University as venue of the Congress. In
1990 the German Mathematical Society (DMYV) celebrated its 100th anniversary.
Our application to issue a special postage stamp on this event was turned down.
We are all the happier that for this congress a special stamp will be issued and
Staatssekretdr Hansgeorg Hauser will present it to us.

I mentioned the 100th anniversary of the DMYV. Its first president was Georg
Cantor, the founder of set theory. He was an ardent fighter for the establishment
of the International Mathematical Congress. From the founding years of the DMV
up to Nazi times, mathematics in Germany was leading internationally. Among
the presidents of the Society in this period were Felix Klein, Alexander Wilhelm
von Brill, Max Noether, David Hilbert, Alfred Pringsheim, Friedrich Engel, Kurt
Hensel, Edmund Landau, Erich Hecke, Otto Blumenthal, and Hermann Weyl.

Alfred Pringsheim died in Ziirich in 1941 at the age of 90 after having es-
caped from Germany. Edmund Landau lost his chair in Géttingen in 1934. Otto
Blumenthal was deported to the concentration camp Theresienstadt, where he
died in 1944. Hermann Weyl, president of our society in 1932, emigrated to the
United States in 1933. He worked at the Institute for Advanced Study in Prince-
ton together with Albert Einstein, Kurt Godel, John von Neumann, who were all
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members of our society.

David Hilbert died in Gottingen in 1943. Hermann Weyl wrote an obituary
published in the middle of the war in Great Britain and the United States. I
quote: “Not until many years after the first world war, after Felix Klein had
gone and Richard Courant had succeeded him, towards the end of the sadly brief
period of the German Republic, did Klein’s dream of the Mathematical Institute
at Gottingen come true. But soon the Nazi storm broke and those who had laid
the plans and who taught there besides Hilbert where scattered over the earth, and
the years after 1933 became for Hilbert years of ever deepening tragic loneliness.”

To those “scattered over the earth” belongs Emmy Noether, the famous
Gottingen mathematician, daughter of Max Noether, president of the German
Mathematical Society in 1899.

It is not possible for me here to analyse the behaviour of the DMV and its
members during the Nazi time, or its reaction to the Nazi time after the war.
When we began to prepare the present congress, it was clear for us that we “must
not forget.” My generation should be unable to forget. Many of my age have
good friends all over the world where parents or other family members were killed
in Auschwitz. We must teach the next generation “not to forget.” The German
Mathematical Society has announced a special activity during this congress to hon-
our the memory of the victims of the Nazi terror. I read from this announcement
and ask you to participate:

In 1998, the ICM returns to Germany after an intermission of 94 years.
This long interval covers the darkest period in German history. Therefore, the
DMV wants to honour the memory of all those who suffered under the Nazi terror.
We shall do this in the form of an exhibition presenting the biographies of 53
mathematicians from Berlin who were victims of the Nazi regime between 1933 ond
1945. The fate of this small group illustrates painfully well the personal sufferings
and the destruction of scientific and cultural life; it also sheds some light on the
instruments of suppression and the mechanism of collaboration.

In addition, there will be a special session entitled “Mathematics in the Third
Reich and Racial and Political Persecution” with two telks given by Joel Lebowitz
{Rutgers University), “Victims, Oppressors, Activists, and Bystanders: Scientists’
Response to Raciol and Political Persecution,” and Herbert Mehrtens (Technische
Hochschule Braunschweig), “Mathematics and Mathematicians in Nazi Germany.
History and Memory.”

Of the 53 mathematicians from Berlin honoured in the exhibition, three are
here with us as guests of the Senate of Berlin and the German Mathematical
Society. I greet them with pleasure and thanks. They are

Michael Golomb, United States,
Walter Ledermann, Great Britain,
Bernhard Neumann, Australia.

The last student of the famous Berlin mathematician Issai Schur is Feodor
Theilheimer who lives in the United States. It is a pleasure to welcome his daughter
Rachel Theilheimer. Schur and Theilheimer both belong to the 53 mathematicians
honoured in the exhibition.
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In addition, T welcome
Franz Alt,

driven away from Vienna, who emigrated to the United States and is with us today
as a guest of the DMV.

In 1961 I became president of the DMV as successor of Ott-Heinrich Keller
from Halle in the German Democratic Republic (DDR). The wall had just been
built. The Mathematical Society of the DDR was founded. In 1990 I was president
again and had to work for the reintegration of the DDR society into the DMV.

We look hopefully into the future and are happy as the reunited DMV to host
the congress.

Progress and future of mathematics are represented by the laureates of the
Fields medal and the Nevanlinna prize. It will be a great honour and pleasure for
me to hand over the Fields medals to the winners.

Musical Break
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GREETINGS FROM FEDERAL PRESIDENT
RoMmaAN HERZOG

(READ BY STATE SECRETARY WILHELM STAUDACHER,
DIRECTOR OF THE OFFICE OF THE FEDERAL PRESIDENT)

As patron of the congress, I have the plea-
sure of welcoming to Berlin the participants
from all over the world who have come here
for the 23rd International Congress of Math-
ematicians. Unfortunately, I cannot be with
you in person today and have therefore asked
State Secretary Wilhelm Staudacher to convey
my greetings to you.

For us Germans it is a source of great
pleasure that the International Mathematical
Congress is being held in Germany, the first time since 1904. Tt is hard to conceive
of a more appropriate setting for this congress than the capital of our reunified
country. As mathematicians, you will likely focus more on the furtherance of sci-
ence rather than on historical retrospect. Nevertheless, all of you will be aware
that Berlin symbolizes the division of Germany, for the city was itself divided by
a wall, but it also symbolizes the reunification of Germany as a democratic state
with scientific freedom.

Here in Berlin we also remember that this city, along with Gottingen, was
once a leading international center of mathematics, until the Nazi regime forced
many scientists into exile or even murdered them. Mathematics in Germany was
not able to recover from this terrible loss for a long time. It required the work
of an entire generation - as represented by you, Professor Hirzebruch - to put
mathematics in Germany back to the world map. Often the very scientists who
had been driven into exile were the ones who helped in this process.

Our good progress is demonstrated by the award of the Fields Medal to Pro-
fessor Faltings in 1986. And a current sign is the recognition expressed in the
decision to let Berlin host this congress. For this I am most grateful.

The significance of mathematics is impossible to overestimate. For mathe-
matics, often regarded as an ivory-tower subject, has in recent decades developed
into a field of scholarship cutting across disciplinary boundaries, with increasing
importance for the economy and society at large. This applies not just to the
ever-more-powerful computers, but also to the direct penetration of mathematics
into new domains.

The connection between physics and mathematics has always been of fun-
damental importance. In their origins hardly distinguishable from one another,
these two disciplines have once again become especially closely linked. New math-
ematical theories emerge from ideas in physics, and the communication of physical
results is impossible without mathematics.
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One outstanding offspring of mathematics is computer science, without which
life in the modern world is unimaginable. Materials science, chemistry, biology,
and medicine cannot manage without mathematical methods. This congress will
illustrate all of these fields of application. It will no doubt once again become
clear that the solution of each problem throws up new questions, whose solution,
in turn, often requires the development of new theories. One very pleasing outcome
of this congress can thus already now be predicted: Mathematicians will never be
without something to work on.

I also hope that the accompanying program will be a great success, a program
in which you attempt to make the significance of mathematics clear to a broad
public, especially through a series of evening lectures. The recently released results
of the TIMMS Study have shown us that the mathematics performance of German
pupils could certainly be better. For the knowledge-based society of the future, a
solid grounding in mathematics is vitally important. So much remains to be done
in this respect.

The Fields Medal and Nevanlinna Prize are awarded in recognition of out-
standing accomplishment in research. I congratulate the young mathematicians
who will be so honored. To be among those who have received this distinction is
a great achievement within the international mathematical community.

I wish you all stimulating, productive, and enjoyable days in Berlin.

JURGEN RUTTGERS

Federal Minister of Education, Science, Research, and Technology

Herr Préasident Mumford,

Herr Professor Grotschel,

Herr Regierender Biirgermeister,
dear ladies and gentlemen:

101 years after their first international
congress, and two years before the turn of the
millennium, mathematicians from all over the
world have gathered here in Berlin.

In the name of the Federal Government I
wish to welcome you to the old and new capital
of Germany.

A few years ago the two parts of the city and the two parts of Germany were
reunified. I invite you to experience with us how a new spirit of openness and of
universality has inspired Berlin. We view your holding the congress here as an
acknowledgement of this spirit. At the same time this Congress underlines the
importance of Berlin as a center of science.

We can look back to a century of grand scientific achievements and progress.
Especially in the last few years several problems have been solved which mathe-
maticians had struggled with for a long time. As one example, let me mention the
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proof of Fermat’s conjecture — an event where the level of public attention was
in remarkable contrast to that of the public understanding, which did not dimin-
ish the excitement! Less spectacular signs of progress in mathematics, however,
hardly get to the attention of the public. Because of this, the vitality of your sci-
ence is often wrongfully considered to be quite low by uninformed contemporaries.
In spite of this perception, mathematics is a vital, an extremely vital science. In
manifold ways it reaches into our modern life. The importance of mathematics
reaches far beyond its own speciality: Mathematics is something like a common
language. It creates the possibility of precise communication between the natu-
ral sciences and the engineering sciences and more and more also the social and
economic sciences. Mathematics is — beyond this — a key technology of our times.
A country that wants to survive the global race for knowledge and its uses needs
mathematics of the scientifically highest quality. It also needs a mathematically
well-educated public. Because of this I have set for myself a goal: Together with
the state ministers of science and culture I want to press for a strenghtening of
basic mathematical education in Germany. For this, three points are necessary:

e We have to redefine the curriculum.
e We have to change the education of teachers.

e Finally, we have to reach standards of quality control that secure a uniformly
high level of mathematical education in the different Federal states.

We should achieve also something else, which in practice is reached by committed
teachers in particular cases, but is far away from being widespread: the enjoyment
of mathematics. I had the opinion research institute EMNID asgk young Germans
what kind of knowledge they felt to be important for their future life, in particular
for their working life. Here mathematics came in third place, immediately after the
disciplines “computer skills” and “foreign languages.” 84% of the young German
women and men up to age 29 think that it is important to start life with a solid
knowledge of mathematics. When pupils are asked their opinion about the school
subject of mathematics, however, then the results are a disaster: Most of them
think that math is dreadful. Now those who know me know that one of my basic
theses is the following: It is not the main task of school to provide amusement
to pupils; real learning may also be strenuous. By the way, this politically quite
contested thesis has also been tested in our youth opinion poll and received the
clear consent of 67% of the young people — this has been a surprise to many
education liberals! In so far the educational challenge is how to create curricula
and methods of teaching that do not cut out effort or circumvent it, but that would
motivate the effort. I want to work on this together with my colleagues from the
Federal states. We will have achieved our goal only when in a school yard we find
“Math is cool!” as a graffiti on the wall.

Mathematical knowledge is important, in particular, in view of information
and communication technologies. These technologies are the motor of our devel-
opment from an industrial to a knowledge-based society. In the opposite direction,
the development of computers has also provided a new tool to mathematics, not
only as a machine for computing, but also as an instrument for the investigation
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and modelling of complex interactions. Thus equipped, mathematicians nowadays
work on problems in economics, transportation, and society that not long ago
were thought to be insolvable. One just has to tell it to the people out there: Tt
is mathematicians who are dealing with traffic jams, health insurance, and other
problems for whose solution there is a very high public interest. Let me tell you
about one example here in Berlin: Not long ago the complete public transport
system of Berlin was carefully analyzed and mathematically modelled. The result
was that there is a potential for savings of more than 100 million Marks every
year. Or equivalently: there is a chance to drastically improve the quality of the
transportation system, while keeping the old budget. If you note that the German
Science Foundation supports mathematics in Germany with an annual total of
about 20 million Marks, then this seems to be well-invested money! I assume that
the 5% increase of the funds for the German Science Foundation, as just approved
by the Federal cabinet, will also benefit mathematics.

My ministry and the German Science Foundation have recently demonstrated
that money is not the only way to show support for science. We have initiated
a prize for excellent junior scientists whom we want to give a special opportu-
nity to do independent scientific work. We have named the prize after Emmy
Noether, as we wanted to honor this great scientist who has substantially influ-
enced mathematics in this century. Emmy Noether had to leave Germany in 1933,
without receiving the scientific recognition she would have deserved. Her name
is essentially unknown to the public. I hope that this will change with the new
Emmy Noether Prize. Mathematics depends on free, basic, theoretical research
like hardly any other science. Mathematics is based on scientific curiosity. As
probably the oldest science it is a basic part of our culture. Because of this I
want to assure you today that I consider it as a part of my duty to see to it that
basic research in mathematics and top-notch mathematical research receive a high
priority in scientific politics.

We stand at the beginning of the knowledge-based society of the 21st century.
We experience change that is as drastic as the industrial revolution 200 years
ago. Of course, knowledge has always played a decisive role in the development
of society. But in the future, knowledge will gain in importance as never before.
While in an agrarian society land and labor decided about agricultural success, in
a knowledge-based society the information about genetical codes of plants will be
decisive for success of a harvest and the return it generates. While in an industrial
society machines and steel defined the value of a car, already today it is the
knowledge that is stored in the micro-electronics of the car controls that matters.
Politically, for me, the development of a knowledge-based society is connected
with the chance to replace the technocracy of the machine age by a truly “human”
organization of life and work. Since only humans themselves can be the producers,
transmitters and consumers of knowledge, they themselves — for the first time in
history — move completely into the center. More than with any other achievement
of our civilization, because of this we have reason for optimism! The knowledge
society is no utopia. It is the name for changes in our society that can already today
be seen and experienced. Mathematics and its offspring, computer science, have
initiated this change. In the future, mathematics can also, beyond its manifold

DOCUMENTA MATHEMATICA - EXTRA VOLUME ICM 1998 - 1



38 OPENING CEREMONY

technical functions, give direction as a means of communication, as a form of
rational argument and discussion, and as a means for the solution of the problems
of society.

I wish the last International Congress of Mathematicians in this century a
good and successful program!

EBERHARD DIEPGEN

Governing Mayor of Berlin

Sehr geehrter Herr Riittgers,
Herr Staudacher,

Herr Ewers,

Herr Mumford,

dear ladies and gentlemen:

It is a great honor for me to welcome you to
Berlin. The city does not see such a conven-
tion of high-power scientists every day, and it
is a pleasure to host this congress of mathe-
maticians from all over the world.

Of course, we in Berlin have not invented computing. This was not necessary
thanks to the earlier work of the Babylonians and Greeks. But we have learned
how to compute over the course of the centuries, even if one has to admit that
mathematicians in Prussia were at first not very well-liked. In the kings “Ta-
bakskollegium” they sometimes had to bear the brunt of rude jokes. But don’t
worry, today none of you will be soaked in beer. We also do not necessarily follow
Goethe, who said about an acquaintance: “He is a mathematician and therefore
stubborn.” For stubbornness can also be a virtue.

Such rude manners directed towards the purest of all sciences have changed
long ago. Gottfried Wilhelm Leibniz, Pierre de Maupertuis and Leonhard Euler
are the persons who testify to this, scientists who have brought brilliance to our
region. And they are not the only ones. We can also name Albert Einstein, Max
Planck, and, of course, Karl Weierstrafl and Konrad Zuse, the great pioneer of
computer technology. Of course these are names of the past. The terrible drain
caused by emigration and war recall wistfully nostalgic memories. And yet: Berlin
has once again become a mecca of mathematics and not only of this. The city is
a first-rate center of science.

Besides the three universities, three large research centers, five Max Planck,
three Fraunhofer, and thirteen “Blue List”-institutes are all devoted to research.
The extra-university institutions have a budget of roughly 750 million Marks per
year. Last year four of the thirteen renowned Leibniz Prizes of the German Science
Foundation went to Berlin. Beyond this we are making great strides in connecting
research, high technology and the economy. Remarkable achievements have been
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reached at the science and business center in Adlershof and also at the life-sciences
campus in Berlin-Buch.

There would be much more to talk about such as the interdisciplinary research
groups with an emphasis in material sciences, information, communication, and
transportation technology were there more time. Even this brief mention should
point out to you that the place for your international congress is well-chosen,
because the more than three thousand participants will find in Berlin a science
and research climate which can inspire and which is intended to inspire.

“Numbers are the heart of all things,” said Pythagoras, and he was probably
right. But you will certainly not protest if I add to the great Greek: Numbers are
not everything.

You have come to a city which is in the midst of a radical transition. Berlin is
experiencing changes that you can witness in hardly any other metropolis on this
continent. In a few months Berlin will again be the seat of the German government.
Already now you can admire many buildings of the government, center. You will
realize at the same time how international the city has become — although Berlin
had acquired an international flair long before, not only due to the presence of the
Allies. More and more Berlin is becoming a congress, conference and exhibition
city. The world is often a guest on the Spree River, a fact of which we are proud.

Use your congress-free time to also get to know the changing and changed
Berlin. Look around in the city and discover its diversity. This, without doubt, is
also one aspect of taking part in a congress in Berlin.

I wish you a meeting that is successful and valuable in many ways, and I hope
you will often come back to Berlin.

HaNs-JURGEN EWERS

President of the Technische Universitit Berlin

Ladies and gentlemen,
meine Damen und Herren:

I am proud and happy to welcome all of you not
only to Berlin, but also, beginning tomorrow,
to the Technical University of Berlin, for a great
ten-day celebration of mathematics. My hope
and my wish is that you recognize this not only
as “just” a congress, but that you view it as a
festival, a big celebration, an “event.” Mathe-
matics itself will be the center and the object of
this celebration: What is called pure mathematics will be celebrated because of its
inherent beauty, and the Fields Medals will be given in recognition of spectacular
contributions to its progress. I am happy and proud that the largest part of this
celebration of mathematics will take place at my university.
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Certainly you have heard many talks before that start with the words “T am
not a mathematician, but ....” In my case, this half-sentence has a lot of possible
continuations. As a president of a technical university, the Technische Universitit
Berlin, T can certainly refer to the engineering perspective of mathematics. Even
if they don’t like it, engineers speak of mathematics and use mathematics with
great respect. They also recognize that there is an enormous trend for the further
mathematization of the engineering sciences: in public transport and scheduling,
in the planning and control of factory halls, in medical and biomedical technology.
There is math in it, there is a lot of math in it, and in some cases (mathematicians
might claim) there is hardly anything but math in it! At my university and
elsewhere all over the world, mathematicians are putting their momentum and
their energy into this trend with great success!

It is true that the public usually does not recognize the power of mathemat-
ics. This is only partially because mathematical research typically takes place in
libraries or at the Oberwolfach Institute much more than in the streets or on TV.
But if mathematics is to live and to flourish, then in the long run it will have to
be visible in the streets or at least on TV. In that respect, it is quite remarkable
that at this International Congress of Mathematicians, perhaps for the first time,
an extensive series of lectures and events is directed towards the general public.
There are posters in the subways, as you may have seen, and there are lectures
at the URANIA Public Lecture Institute on topics ranging from the mathemat-
ics of detecting cancer to the mathematics of the CD-player. So at this ICM,
mathematics goes public — and this is good and necessary!

This Congress moves to the TU Berlin tomorrow. I hope that you will feel
welcome and that you will regard the TU Berlin as a nice environment for a great
congress. You may notice signs of deterioration, of buildings not being quite kept
up to their standards — take this as a mark of the typical Berlin charm, or more
seriously as a sign of the massive budget cuts at all Berlin Universities, which make
it even hard to maintain the buildings. Nevertheless, we haven’t stepped back to
the times of Konrad Zuse, who built the first electronic computer at home, in his
parents’ living room, rather than at a university research lab.

After all, it’s not the buildings that count but the people who live and work in
them. From the mathematics building at TU, you have a great view to East Berlin.
But we have more than just the view: our math department is proud to play an
active role in research efforts, travel, and exchange that bridges East and West.
Intensive collaboration between West Berlin and East Berlin has become com-
mon place, as in the joint research project “Geometry and Physics” between the
Technical University and the Humboldt University. The mathematicians in Berlin
see themselves positioned at a central place, where the relations and exchange to
Warsaw, Moscow and Prague are as important as the contacts and collaboration
with Paris, Oxford, and the United States. And now, for these two weeks, we are
happy and proud to assume the role of the “center of the Mathematical world”
here in Berlin.

Mathematics may make the world go round. But I am an economist, and I
am also a university president. In both functions I dearly know that money makes
the world go round, as well. This implies, “as a corollary,” that without money,
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and without a lot of public and private support, this great mathematical party
would not have been possible. Speaking on behalf of the host institution for all
those at the party, let me thank all the private and public sponsors of the event
who made and will make this celebration of mathematics possible.

And to all of you, let me now say: Welcome to Berlin! Welcome to the
Technical University of Berlin!

Mathematics Building of the Technical University
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HansGeEORG HAUSER
Parliamentary State Secretary at the Federal Ministry of Finance

PRESENTATION OF THE SPECIAL STAMP
ON THE OccASION oF ICM’98

Dear Prof. Mumford,
Prof. Hirzebruch,
Prof. Grotschel,
ladies and gentlemen:

The International Congress of Mathematicians
is taking place this year for the 23rd time. The
first congress was held in Ziirich in 1897.

It surely has not happened very often that
the finance minister of the country hosting the
congress has participated in the opening cere-
mony. To explain my presence today, I could
say that even representatives of the finance
ministry must know how to add.

Now, T expect that mathematicians would surely object to this last remark,
noting that — while they must also occasionally add — thinking is much more
important. But let me assure you that even the representatives of the finance
ministry have to be able to think, too!

Well, at any rate, I am here: For although the federal postal service has been
privatized and the postal ministry eliminated, responsibility for the issuance of
stamps has remained under state control and has been delegated to the finance
ministry.

Following the good example of the congresses in Moscow in 1966, Helsinki
in 1978, Warsaw in 1982, Kyoto in 1990, and Ziirich in 1994, a commemorative
stamp is being issued to mark this mathematical congress. Ladies and gentlemen,
I have the pleasure today of presenting this stamp to you.

As you can see, the most prominent feature of the stamp is the number 110. I
asked a mathematician about the special properties of this number and his answer
was the following: “This is the number that resulted from the perfect square 100
after the cost of sending a letter was recently increased by 10%.” He continued,
“It’s more interesting to note that this number can be represented as the sum of
three squares in exactly three ways:

1+ 94100
254+36+ 49
44254 817

The graphic artist Norbert Hochtlen from Munich, designer of the stamp, has
also chosen to represent the decimal expansion of 7 in a sequence of concentric
rings; if you look closely, you will see that the expansion becomes more precise as
the rings become larger.
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More than 4000 years ago the Babylonians
recognized that the ratio of the circumference
of a circle to its diameter is always a certain
constant, the value of which is approximately
equal to 3. They held the value, more exactly,
to be 33 = 3.125. Although the Babylonians
did not use a decimal system of notation, in the
system we use, their value is correct up to the
first decimal place.

In the Old Testament account of the con-
struction of the Temple (as commissioned by
King Solomon), 7 has the value 3. Let me quote
the relevant verse:

Ker-KongreB 1998 Berlin
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And he made the molten sea of ten cubits from brim to brim, round
in compass, and the height thereof was five cubits; and o line of thirty
cubits did compass it round about. (I Kings 7:23 and II Chronicles 4:2)

Owing to the special use of Hebrew letters in the two places where this text
appears, experts believe it is possible to conclude that the value of 333/106 =
3.141509... for m was then known. As our commemorative stamp shows, this
value is correct up to the first four decimal places.

The approximate value of 22/7 = 3.1428.... is due to Archimedes (ca. 287
212 B.C.). Mentioning his name gives me the opportunity to congratulate the new
recipients of the Fields Medal, upon which the portrait of Archimedes is depicted.
I also congratulate the recipient of the Nevanlinna Prize.

I'should note that, with the help of computers, it has recently become possible
to determine several thousand million decimal places in the expansion of =.

Over the centuries, many people have tried in vain to square the circle, that is,
beginning with a circle, to use compass-and-straightedge constructions to construct
a square of equal area. These efforts continued even after Lindemann showed in
1881 that 7 is transcendental, so that squaring the circle is impossible. Having to
square the circle is nonetheless a task which is all-too-familiar to politicians.

This brings me to the large square on the stamp. If you measure its sides
carefully, you will discover that it is nearly a square, as the sides have lengths
177 and 176, in appropriate units. This “near-square” has been decomposed into
various perfect squares, the sides of which are all whole numbers; for example, the
red squares have sides of length 99, 57, and 34.

Ladies and gentlemen, I must express my admiration for the field of mathe-
matics. Not only because it can find such square partitions, but also because such
discoveries have found application in the construction of networks.

Please allow me to note one further point about the design. As you can see,
the small squares are all colored. Though there are many squares, it suffices to
use only four colors, which calls to mind the famous Four Color Theorem. In this
form the “near-square” on the new stamp was already used as the logo for the
1987 annual conference of the German Mathematical Society, a logo designed by
the Berlin graphic artist Johanne Nalbach.
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I would like to ask you to think back for a moment to the year 1987 in Berlin.
At that time, the conference took place at the Technical University, where you will
be gathering beginning tomorrow for the sessions of this international congress.

In 1987, Berlin was still divided. The mathematicians from East Berlin could
not, take part. But some participants crossed the border into East Berlin in order
to meet colleagues there.

Only a few years later, in 1992, another annual conference of the German
Mathematical Society took place in Berlin—this time, in a newly re-united city.
The conference was held at the Humboldt University, in what had been East Berlin.
To me, as well as to many others, the re-unification of Germany still seems today
to be nothing short of a miracle. Yet without this miracle, the current congress
could not now be taking place in Berlin.

I thus hope that, in addition to savoring the mathematical program, you will
take a bit of time to enjoy the sites of this unified city of Berlin.

I now have the pleasure to present the first issue of the stamp commemorating
the International Congress of Mathematicians in Berlin to

o the President of the International Mathematical Union, Prof. David Mum-
ford, of Brown University in Providence, Rhode Island, in the United States,

e the Honorary President of ICM’98, Prof. Friedrich Hirzebruch, of the Max
Planck Institute for Mathematics in Bonn,

e and to the President of ICM’98, Prof. Martin Grotschel, of the Technical
University and the Konrad-Zuse-Zentrum in Berlin.

Thank you.

Hauser presenting ICM’98 commemorative stamp
to Hirzebruch, Mumford, Gritschel (from left)
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PRESENTATION OF THE FIELDS MEDALS
AND A SPECIAL TRIBUTE
BY
YUri I. MANIN
CHAIRMAN OF THE FIELDS MEDAL COMMITTEE

I would like to thank our hosts for their hospitality and the efforts they invested
in the organization of this Congress.

The international community of mathematicians, amply represented here,
never bothered much about self-definitions. If pressed, I would choose as such
Georg Cantor’s famous motto:

Das Wesen der Mathematik liegt in threr Freiheit
—The essence of mathematics is its freedom—
—CyTb Maremaruku — ¢cBo6OIA—

FiELDS MEDAL AND PRIZE

Now we turn to the award of Fields Medals and
a special tribute.

The history of the Fields Prize goes back to
1924, when the President of the International
Congress of Mathematicians in Toronto, Pro-
fessor John Charles Fields, suggested to estab-
lish two gold medals, to be awarded for out-
standing discoveries in mathematics. His pro-
posal was accepted by the Ziirich Congress in
1932, and the first medals were given at the
Oslo Congress 1936. Starting with the Har-
vard Congress in 1950, two, and after 1966 two
to four medals were awarded at every successive
ICM.

When Fields expounded his vision of the
prize, he brought up two important issues. He wanted it to be “of a character as
purely international and impersonal as possible.” And he wished it to be given
“in recognition of work already done” and also as “an encouragement for further
achievement on the part of recipients and a stimulus to renewed efforts on the part
of others.”

The designer of the medal did his best in order to express symbolically Pro-
fessor Fields’ first wish. You can see the result of his efforts, complete with Latin
inscriptions and their translation. In particular, Fields’ name does not appear on
the medal.

As for the second point, the words “encouragement for further achievement”
were taken to mean that the recipients must be reasonably young.
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Fields Medal

COMMITTEE '98

The Fields Medal Committee '98 appointed by the Executive Committee of the
International Mathematical Union consisted of Professors John Ball, John Coates,
J. J. Duistermaat, Michael Freedman, Jiirg Fréhlich, Robert MacPherson, Kyoji
Saito, Steve Smale, and myself as chairman. Since this was to be the last Interna-
tional Congress of Mathematicians before the year 2000, we felt somewhat like a
collective Santa Claus of the swiftly expiring millennium.

As all the Committees before us, we tried to select the most daring, profound,
and stimulating research done by young mathematicians.

As all the Committees before us, we agreed, not without hesitations and
doubts, to follow the established tradition and to interpret the word “young” as
“at most forty in the year of the Congress.”

Prize WINNERS

The selection process involved long deliberations and difficult choices. We acknowl-
edge with gratitude the assistance of many colleagues who helped us to reach the
unanimous decision to award four Fields Medals to the following mathematicians
(in alphabetical order):

RICHARD BORCHERDS,

WILLIAM TIMOTHY GOWERS,

MaxiM KONTSEVICH,

CurTis MCMULLEN.
A special tribute of the Executive Committee of the IMU is awarded to

ANDREW WILES.
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Shor, Wiles, McMullen, Kontsevich, Gowers, Borcherds

On behalf of the Committee, I offer to all of them our warmest congratulations.
The work of the Prize winners which won the international recognition will be
described in more detail at the afternoon session.

Before we start the awarding ceremony, I would like to invoke a personal
recollection. Many years ago a friend of mine was going abroad to receive his
first international prize. He was excited, delighted, and worried about the proper
behavior on such occasion. So we decided to consult the great book by the great
wise Miss Manners, treating all sorts of good manners in difficult situations.

With initial surprise turning to admiration, we learned that Miss Manners
reserved her most enlightening suggestion not for the award winners, but for all
of us present at the ceremony, who don’t get any prizes this time.

Her advice was: “Take it easy, have fun and enjoy your life!”

R1CHARD BORCHERDS

For his contributions to algebra, the theory of authomorphic forms, and mathe-
matical physics, including the introduction of vertex algebras and Borcherds’ Lie
algebras, the proof of the Conway-Norton moonshine conjecture and the discovery
of a new class of automorphic infinite products.
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WiLLiaM TIMOTHY GOWERS

For his contributions to functional analysis and combinatorics, developing a new
vision of infinite-dimensional geometry, including the solution of two of Banach’s
problems and the discovery of the so called Gowers’ dichotomy: every infinite di-
mensional Banach space contains either a subspace with many symmetries (tech-
nically, with an unconditional basis) or a subspace every operator on which is
Fredholm of index zero.

MaxiM KONTSEVICH

For his contributions to algebraic geometry, topology, and mathematical physics,
including the proof of Witten’s conjecture of intersection numbers in moduli spaces
of stable curves, construction of the universal Vassiliev invariant of knots, and
formal quantization of Poisson manifolds.

Curtis MCMULLEN

For his contributions to the theory of holomorphic dynamics and geometrization of
three-manifolds, including proofs of Bers’ conjecture on the density of cusp points
in the boundary of the Teichmiiller space, and Kra’s theta-function conjecture.

ANDREW WILES

I am happy to announce
that the Executive Com-
mittee of the IMU decided
to produce a commemora-
tive silver plaque as a spe-
cial tribute given to An-
drew Wiles on the occasion
of his sensational achieve-
ment.

Everybody knows
what Andrew Wiles
proved. I will say it in
Pierre Fermat’s own words:

“...] nullam in infinitium ultra quadratum potestatem in duas ejusdem
nominis fas est dividere.”

Unfortunately this plaque is too small to write Wiles’ proof down.
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PRESENTATION OF THE ROLF NEVANLINNA PRIZE
BY
DAviD MUMFORD
CHAIRMAN OF THE ROLF NEVANLINNA PRIZE COMMITTEE

The Rolf Nevanlinna Prize was established by the International Mathematical
Union with funds donated by the University of Helsinki for the most outstanding
work in “Mathematical Aspects of Information Science” and has been awarded
four times in 1983, 1986, 1990 and 1994. It is given at the ICM’s with the belief
that Information Science — including here theoretical computer science, analysis of
algorithms, scientific computing, optimization and related fields — are all in essence
part of the umbrella of mathematics. A Committee consisting of Bjorn Engquist,
F. Thomas Leighton, Alexander Razborov and myself as chairman decided on this
year’s prize. We solicited a wide variety of opinions and, after much deliberation,
are awarding this prize to:

PETER SHOR.

He found many deep and remarkable re-
sults prior to 1994 in the analysis of com-
binatorial algorithms, many with a geo-
metric flavor such as his discovery with
Lagarias of a tiling of 10-dimensional Eu-
clidean space by cubes with no common
faces. Since 1994, he has been the prin-
cipal driving force behind the develop-
ment of quantum computing. First he
put it on the map, so to speak, by fac-
toring numbers fast (thus breaking the
RSA encryption scheme) by a quantum computer. And second he has led a ma-
jor assault on error correction and fault tolerance in this new situation, the main
obstacles to the realization of quantum computing. Let me invite Professor Olli
Lehto to present the award on behalf of the University of Helsinki.

Rolf Nevanlinna Medal
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An den Herrn Bundesprisidenten LIN

Professer Dr. Roman Herzog

Berhin

Fax: 39084717
Berlin, den 18, Augusl 1998

Sehr verehrter Herr Bundesprisident!
Am Dicnstag, dem 9. August 1904, fand in Heidelberg ein Bankett statt, von dem
folgendes Huldigungstelegranmnm abgesandt wurde:

An des Kaiscrs Majestiit, Berlin.

Dem machtvolten Herrscher des Deulschen Reiches, dem unermiidlichen Schimmer des
Friedens sendet der zum erstenmal auf deutschem Boden versammelte Internationale

Mathematiker-Kongrel ehrerbietigste Huldigung.

Im Aufirage: Prof. Weber.  Prof. Krazer.

Heute am Dienstag, dem18. August 1998, schreiben wir Ihnen von unserem Bankett aus
wic folgt:
An den Bundcspriisidenten, Berlin.

Diem hichsten Reprisentantcn der Bundesrepublik Deutschland, der filr die
Bemiihungen seines Landes um Frieden und Freundschaft in der Welt steht, sendet
der zum zweitenmal auf deutschem Boden versaminelle Internationale Mathenatiker-

Kongre cregcbenste Grilfie und Dank fiir das Grufiwort bei der hentigen Er6ffoung,

N A .
5}’( ?rdhj'd Téem..:z_.e__ éﬁi JQ%%{QM {g'{’g,uw{/w&

M. Gritschel F. Hirzebruch K.-H. Heffrnann D. Mumford
ICM %8 General OMfice bl +48-30- 31424105 Berliner Bank
Praf, Or, Jiéeg Winkler fax: +40- 3031421602 Ancount Na.
FB Mathematik MaA 8-2 e-mail: J42RBE22800
T4 Berlin winkler @ math.tu-herlin.de ELZ 100 200 00

SBtrafe des 17 Juni 135
L - 10623 Berhin
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An den Regierenden Bilirgenmeister
. BER
Herni Eberhard Dicpgen
LIN
Berlm

Fax: 24013019

Berlin, den 18. August 1998

Sehr verehrier Herr Regierender Biirgermeister!

Am Dienstag, dem 9. August 1904, fand in Heidelberg ein Bankett start, von dem

folgendes Huldigungstelegramm abgesandt wurde:

An szinc Kdnigliche Hoheit den GroBherzog von Baden, St. Mornitz-Bad.

Dem allverchrien Fiirsten und Herm des schinen Tandes, dessen Gastfreunschaft wir

geniefien, dem warmherzigen Beschiitzer von Kunst und Wissenschaft huldigen wir

in Verehrung und Dankbarkeit.

Die zum T Tnternationalen Kongref} in Heidelberg versammetten Mathematiker.

Im Auftrage: Prof. Weber.  Prof. Krazer.

Heute am Dienstag, dem 18, August 1998, schreiben wir ihnen von unserem Bankell aus

wie folgl:-

An den Regierenden Biirgermeister von Berlin,

Dem verchrten Blirgermeister des schénen Landes, dessen Gastfrenndschaft wir

geniefen, dem warmherzigen Beschiitzer von Kunst und Wissenschalt, danken wir

von Herzen, insbesonders fiir die Ansprache bei der heutigen Erdffoung.

Die zum XX11L Internationalen KengreB in Berlin versammelten Mathematiker und

Mathematikerinnen.

Lo | .
4 %ﬂhfli Tl bl ey (S Aok A

M. Grotschel

JCW 98 General Office
Prof. Dr. Jérg Winklar
FB Mathematik MA B-2
TU Berlin

Steaba des 170 Funi 138
D-10522 Berlin

F. Hirzebruch K.-H. Hoffmann

tal: +43-30-3742 4105

fax: -49-30-3142 1604
a-mail;

winkler & math.tu-berlin.de

D Mumford
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A3IBEEZE2E00

BLZ 100 200 Q0
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Opening Reception during the lunch break
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CLosING CEREMONY

The closing ceremony was held on Thurday, August 27, 1998, starting at
15.00 in the main lecture hall of the TU Berlin

Davib MUMFORD, President of the International Mathematical Union,
addressed the audience as follows:

We have come to the end now of what I believe was a remarkable and very suc-
cessful Congress. As President of the IMU, it is my very pleasant duty first to
congratulate the local organizing committee for their role in this.

I would like to underline several aspects of the Congress which I felt were
especially successful. Firstly, in the entire pre-congress stage, the organizers have
used email most effectively, putting on virtually everyone’s desk the current plans,
events, speakers as soon as announced and the registration form. Moreover, their
ability to produce two thirds of the Proceedings before the Congress and one third
immediately after (held back only by those like me who didn’t write their speeches
beforehand) is a remarkable demonstration of the potential to publish a major
book at minimal cost with no commercial assistance.

Another great success is the quality of the presentations. I want to congrat-
ulate the Program Committee for their selections, the speakers on the clarity of
their talks and the Organizing Committee for their instructions and suggestions
to the speakers (that I’'m sure were listened to from my own conversations with
many of the speakers).

Still another area in which the organizers have succeeded beyond all expec-
tations is in public relations. Both with unprecedented press coverage and with a
beautiful array of programs at Urania, they have reached major groups of Berlin-
ers, of Germans and of the World. (My wife reports reading of the Fields Medals
in the Boston Globe.)

Finally, I'd like to say that the physical arrangements seem to me to have
been near ideal: many large lecture rooms in close proximity, transport passes,
etc. Underlying all this, invisible but obviously vital, is probably the largest sum
of money ever raised for an ICM. Tts use in helping hundreds attend the Congress
will be detailed later.

For this great job, I want now to propose a round of applause for the Orga-
nizers. BUT, as in all human activities, an institution cannot rest on its laurels.
The Congress is really for you and we want your feedback. Taking our clue from
the Organizers, we would like everyone who wishes to send us electronically their
comments, suggestions and proposals. You can reach the IMU at “imu@impa.br.”

My second duty is to report to you on the General Assembly (G. A.) of the
IMU that took place in Dresden over the weekend preceding the Congress. Many
of you may be unaware of the institutional infrastructure that supports the stately
procession of International Congresses, so let me quickly sketch this. The IMU is
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an organization whose members are countries — about 60 of them — which are repre-
sented by ‘adhering organizations’, National Academies or Mathematical Societies.
Each of them sends delegates to the G. A. which precedes each Congress and here
the whole chain of committees starts and the control rests. The G. A. elects
the President, Secretary and Executive Committee, which in turn appoints the
Program Committee (which appoints panels in every subfield), Fields Medal and
Nevanlinna Prize Committees and works with the Organizing Committee of the
next Congress. The goal, I should add, is to spread decision making over as large
and as representative a group as possible.

At this point, I want to report to you the decisons taken at the Dresden
G. A. The first decision is that:

ICM 2002 will be held in Beijing, China.

The President of the Chinese Mathematical Society, Professor K. C. Chang, will
give further information in a few minutes.
Secondly, the G. A. passed a resolution in support of diversity:

Building on the resolutions adopted at the 1986 and 1990 General Assemblies, the
IMU shall continue to endeavour to attract the participation of all mathematicians.
Subfields of mathematics and traditionally underrepresented groups should not be
overlooked in IMU activilies.

Thirdly, the G. A. adopted an ‘enabling resolution’ to form a Committee on Elec-
tronic Information and Communication. This resolution reads:

1. In the last decade, the internet has been transforming our communication and
commerce. In the world of science, the internet is radically changing the modes
of information transfer at all levels. Communication on hand-written and printed
paper, distribution via postel mail and libraries is o system which has been stable
for many centuries. We cannot foresee clearly the new system which is evolving
except thot it will involve electronic media and it will radically alter the economics
of communication. This transformation will certainly be global and will affect
mathematicol research on all continents.

2. We strongly believe that the IMU can play several important roles during this
transition. Among these are:

i) it can provide a forum where all parties, i. e., all countries and oll inter-
est groups (individual researchers, professional societies, publishers, and li-
braries) can discuss the issues and it can publish proceedings to increase
general understanding of all the issues involved,

i) it can recommend and promote international standards on electronic com-
munication among mathematicians, when needed,

iti) it can act as a liaison between regional, national and local groups, coordinat-
ing their initiatives and discussions.
3. We therefore propose that the GA establish o
Committee on Electronic Information and Communication (CEIC)
to accomplish its objectives whose terms of reference and initial additional mem-
bership will be decided by the ad hoc committee consisting of John Ewing, Martin
Grdtschel, Peter Michor, David Mumford and Jacob Palis and sent by mail ballot
to the adhering organizations for approval.
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I am happy to report that this Committee is nearly in place and that Peter Michor
has agreed to be its chairman for the next four years.

Fourthly, the G. A. elected as the next President of the IMU Professor Jacob
Palis and as Secretary Professor Phillip Griffiths and T wish to congratulate them
and wish them great success. The following are the full slates which were elected
for various Committees and Commissions of the Union:

IMU ExXEcUTIVE COMMITTEE

President: J. Palis Brazil
Vice-Presidents: 5. Donaldson United Kingdom

S. Mori Japan
Secretary: P. Griffiths USA
Members: V. Arnold Russia

J. M. Bismut France

B. Engquist Sweden

M. Grotschel Germany

M. Raghunathan India
ex-officio: D. Mumford, Past President USA

INTERNATIONAL COMMISSION ON MATHEMATICIAL INSTRUCTION (ICMT)

President;: Hyman Bass USA
Vice-Presidents: M. Artigue France

N. Aguilera Argentina
Secretary: B. Hodgson Canada
Members: G. Leder Australia

Y. Namikawa, Japan

I. Scharygin Russia

J. P. Wang China
ex-officio: Miguel de Guzman, Past President  Spain

President of IMU
Secretary of IMU

CoMMISSION ON DEVELOPMENT AND EXCHANGE (CDE)

Chairman: Rolando Rebolledo Chile
Secretary: Herb Clemens USA
Members: A. A. Ashour Egypt

K. C. Chang China

P. Cordaro Brazil

J.-P. Gossez Belgium

Q. Nakoulima Guadeloupe

T. Sumada Japan
ex-officio: M. S. Narasimhan, Past Chairman India

President of IMU
Secretary of IMU

INTERNATIONAL COMMISSION OF THE HISTORY OF MATHEMATICS (ICHM)
Jan P. Hogendijk (Netherlands) and Karen Parshall (USA)

I would now like to call on Jacob Palis to say a few words.
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JAcoB PaALIS, President of the IMU for 1999-2002, addressed the audi-
ence as follows:

Dear colleagues,

ladies and gentlemen:

It’s a great honor for me to become the next
President of the International Mathematical
Union, a fundamental institution for the devel-
opment of mathematics in the world. To have
good mathematics in all regions, in all coun-
tries, is precisely a main goal of the Union: we
shall pursue and achieve it together.

The Executive Committee and the Commissions of the Union will be engaged
in this major goal. As part of such an effort, IMU members, through their math-
ematical societies and research agencies, have been contributing to our Special
Development Fund; especially the US, Brazil, UK, Japan and France. Through
the Fund and Local Organizing Committee, we were able to finance the partic-
ipation at the ICM of about 100 young and 40 senior mathematicians from the
Developing World. Actually, the Local Organizing Committee did more: it also
made possible the presence of more than 300 mathematicians from the former So-
viet Union and Eastern Europe. To talk about this, I wish to call to the podium
Prof. ANATOLY M. VERSHIK (President of St. Petersburg Mathematical Society,
Head of the Laboratury of the Mathematical Institute of the Russian Academy of
Sciences).

ANATOLY M. VERSHIK addressed the audience as follows:

Dear Colleagues:

More than three hundred participants of our
congress have arrived from Russia and the for-
mer Soviet Union (fSU). Almost all of them
have obtained the special grants or partial fi-
nancial support from the Organization Com-
mittee or other funds which that Committee
was able to use. These are the results of the ef-
forts of the Committee and all of us thank the
organizers of the congress and the International
Mathematical Union for this support.

This Congress is the second International Congress of Mathematicians (of
course except Moscow Congress in ’66) with such a wide presence of mathemati-
cians from Russia and the fSU. It was impossible to imagine such a big group from
those countries at a congress even 10 years ago. Everybody understands how im-
portant it is, especially for young mathematicians, to have the possibility to take
part in a meeting of such a high scientific level, to listen to the talks of prominent
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scientists about recent studies, to present their own achievements, to obtain new
information and to look for new problems.

Those over 40 perhaps remember how limited the attendance of Soviet math-
ematics at the international congresses in the sixties, seventies and eighties was.
Even invited speakers could not obtain the permission from “very high scientific”
organizations for going abroad, e. g., I was an invited speaker at the Congress 74
in Vancouver but approximately 15 other invited speakers from Russia could not
visit that congress. It was common at that time to have a gap in the schedule
instead of the lectures of Soviet mathematicians or to entrust the reading of the
lecture to some of the foreign colleagues. Moreover, even Fields Medalists from
Russia (Novikov — Nice 70, Margulis — Helsinki *78) did not visit these congresses
and did not receive the medal during the ceremony because they had not obtained
permission for that!

The international mathematical community tried to help our mathematics
and mathematicians in those days many times but it was impossible and hopeless.
Indeed, the reasons for such stupid behaviour of Soviet authority were political or
something similar to that. The result of that policy was the separation between
the remarkable mathematical schools which had developed in the Soviet Union
and in the worldwide mathematical community.

Now fortunately we do not need any permissions of authorities and there
are no obstacles for going abroad, for having contact with our colleagues, for
collaboration with them and for visiting the conferences and congresses. But we
face completely new problems which are more understandable — for all that we need
financial support. For that matter the International Mathematical Community has
shown very deep and clear understanding of our problems, in this situation they
can help and they do help. There are many examples of such help and two excellent
ones are our visit to the Congress in Berlin and the previous Congress in Ziirich.

Thank you very much. Needless to say how important this help is for us!
Especially nowadays when the sole existence of the mathematics in our countries
is in such a danger.

In a rather solemn way I can say that our mathematics must survive and will
survive and the international solidarity of mathematicians is a guarantee for that.

JACOB PALIS continued his speech as follows:

Also as part of our strategy to achieve the goal of having good mathematics
throughout the world, we have proposed, and the General Assembly has approved
unanimously, a change in our statutes, to have multinational mathematical soci-
eties and unions to be affiliated with IMU in order to facilitate joint actions in
their respective region. The same applies to professional associations and in this
respect emerges our second main objective: the unity of mathematics in its diver-
sity of themes. We should have good mathematics, beyond being pure or applied
and this should reflect in the ICMs, as in the present one.

Finally, T wish to ask the mathematicians of the world to participate in our
multiple activities of the World Mathematical Year 2000.

Thank you.

Now I'm very pleased to invite K. C. Chang.
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KuNG CHIN CHANG, President of the Chinese Mathematical Society,
addressed the audience as follows:

Ladies and gentlemen:

It is a great pleasure and honor for me to invite all of
you, on behalf of the Chinese Mathematical Society, to
the next ICM at Beijing, a city interweaving historical
tradition with modern fascination.

All the past congresses were held in developed coun-
tries. Now, the next congress, the first in the new century,
will be held for the first time in a developing country.
This will add a new chapter to Prof. Olli Lehto’s book
“Mathematics Without Borders.”

We are grateful to the Executive Committee and the
General Assembly of IMU for the decision on the site of
Beijing. To host such an important congress is not only a great chance, but also
a big challenge. However, the successful experience of the previous congresses, in
particular, of the Berlin congress with such high levels of hospitality and efficiency,
will be very useful for us.

In the past two decades, many mathematicians all over the world, and most
of the members of the Executive Committee of IMU have visited China. Their
suggestions and ideas in organizing the congress are warmly welcome. With the
help of IMU and the cooperation of mathematicians throughout the world, the
Chinese mathematicians, who are eager to make the congress a success, will do
their best to make your attendance fruitful and enjoyable.

I am looking forward to seeing you all in Beijing in the year 2002.
The last speaker was MARTIN GROTSCHEL, President of the ICM’98:

At the first International Congresses it has been a tradition to commemorate
the mathematicians who have deceased in the previous years. We would like to
resume this tradition today. Following a German custom, I would like to ask you
to stand up for a few moments and remain in silence while I read some words of
remembrance.

It is impossible to list here all mathematicians who have died in the last four
years, even if we restrict the list to the most prominent ones. I have chosen six
colleagues who, I believe, represent all those who we will miss in the future:

HANSGEORG JEGGLE. Jeggle has been a professor at TU Berlin since 1971 and
has been dean of the Faculty of Mathematics for many years. He was killed in a
car crash on August 22, 1998.

FRrRANGOIS JAEGER. Jaeger, an expert in combinatorics and combinatorial knot
theory, had been selected by the ICM’98 Program Committee as an Invited Speaker
in Section 13 “Combinatorics”. He died on August 18, 1997 on the day when the
ICM’98 invitation was mailed to him.
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ANDRE WEIL, a towering figure of our field, whose name came up in many of the
plenary and invited presentations of this Congress. Weil died on August 6, 1998.

PauL ErDOS. Erdds was among the most productive mathematicians of all time
and probably the most highly connected individual of us all. He died at a confer-
ence in Warsaw on September 22, 1996.

Finally, I would like to mention that two Fields medalists have deceased within
the last four years.

LARS AHLFORS, the first recipient of a Fields Medal in 1936, died on October 11,
1996.

KuntHiKO KODAIRA, who received a Fields Medal in 1954, died on July 26, 1997.

Thank you for paying respect to the deceased colleagues. Please sit down again.

Ladies and Gentlemen, dear Colleagues:

One of the last sentences of my Opening Speech was:

“We would like to make ICM’98 an exceptional event. Let us hope that

our dreams come true.”
I think our dreams came true.

However, not everything went exactly as planned. For instance, last night’s
ICM party was going to be staged as an open air party on the greens behind the
Math Building. Bad weather made a rescue operation necessary. The available
facilities were, unfortunately, not really optimal for good queue management. I
apologize for these inconveniences and a few others that came up during the last 10
days. Some participants, in fact, told me that they were happy that misfortunes
such as these occured. In their opinion, they made the ICM organization look
more human.

T consider this as a compliment and would like to thank again all my colleagues
in the Organizing Committee, our students, secretaries, spouses, children, and
friends who have helped to run ICM’98 smoothly.

I have received a lot of additional requests. Participants would like to buy
videos of the Opening Ceremony, of some of the Plenary Presentations, etc. We
will consider all these issues in the near future, and I will write to you another
Circular Letter to let you know what we can do and offer. One offer will be made
right after the end of this Ceremony. We will show in the lecture hall H 104
the ICM’98 Special produced by channel B1 of Sender Freies Berlin which was
broadcast on TV last week.

The ICM’98 Proceedings will be sold and distributed after the Congress by
DOCUMENTA MATHEMATICA and the American Mathematical Society.

This is the right occasion to thank the many mathematical societies around
the world who have generously helped the ICM’98 Organizing Committee dis-
tribute information about ICM’98 and advertise the Congress. This has been a
very promising sign of international cooperation. I also consider it very positive
that the IMU has decided to integrate the regional mathematical unions, such as
the European Mathematical Society or the currently forming Asian Mathematical
Union, into its activities. And I believe that electronic information and communi-
cation, another topic taken up by the IMU, will considerably foster joint work of
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mathematicians from around the world, so that we can also reach those groups and
countries that seem somewhat isolated. Additional efforts, however, are necessary
on all sides.

It was somewhat difficult for me to attend lectures. But I managed to partici-
pate in most of the Plenary Addresses. I am grateful to all speakers that they have
made efforts, in some cases really remarkable efforts, to address a broad mathe-
matical audience. These lectures certainly formed the scientific backbone of our
Congress. I would also like to thank those who have presented posters or gave
short presentations. That’s where most of the communication and discussion took
place.

Many words of thanks have been said. I believe that only one word of thanks is
left. No congress, however well organized, can be successful without enthusiastic
participants. That is what you all have been. When officials of this university
noticed that on Saturday at 6 p.m. there were still 1500 persons attending lectures
they were really convinced that this Congress is an unusual event. I think that
the participants of this Congress found the right mixture between leisure, fun, and
hard work, and that many of us go home with a lot of new ideas and new friends.

Thank you very much for coming to Berlin and participating in ICM’98.

I declare the 23rd International Congress of Mathematicians closed.

Members of the organization teams:
Gratschel, Behrends, Briining, Sprekels, Hartmann, Winkler, Aigner,
Mumford, Palis, Hirzebruch, Méhring, Rehmann, Teuchert
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THE WORK OF RICHARD EWEN BORCHERDS

PETER GODDARD

1 INTRODUCTION

Richard Borcherds has used the study of certain exceptional and exotic algebraic
structures to motivate the introduction of important new algebraic concepts: ver-
tex algebras and generalized Kac-Moody algebras, and he has demonstrated their
power by using them to prove the “moonshine conjectures” of Conway and Norton
about the Monster Group and to find whole new families of automorphic forms.

A central thread in his research has been a particular Lie algebra, now known
as the Fake Monster Lie algebra, which is, in a certain sense, the simplest known
example of a generalized Kac-Moody algebra which is not finite-dimensional or
affine (or a sum of such algebras). As the name might suggest, this algebra appears
to have something to do with the Monster group, i.e. the largest sporadic finite
simple group.

The story starts with the observation that the Leech lattice can be interpreted
as the Dynkin diagram for a Kac-Moody algebra, £L,. But L is difficult to
handle; its root multiplicities are not known explicitly. Borcherds showed how to
enlarge it to obtain the more amenable Fake Monster Lie algebra. In order to
construct this algebra, Borcherds introduced the concept of a vertex algebra, in
the process establishing a comprehensive algebraic approach to (two-dimensional)
conformal field theory, a subject of major importance in theoretical physics in the
last thirty years.

To provide a general context for the Fake Monster Lie algebra, Borcherds has
developed the theory of generalized Kac-Moody algebras, proving, in particular,
generalizations of the Kac-Weyl character and denominator formulae. The denom-
inator formula for the Fake Monster Lie algebra motivated Borcherds to construct
a “real” Monster Lie algebra, which he used to prove the moonshine conjectures.
The results for the Fake Monster Lie algebra also motivated Borcherds to explore
the properties of the denominator formula for other generalized Kac-Moody alge-
bras, obtaining remarkable product expressions for modular functions, results on
the moduli spaces of certain complex surfaces and much else besides.

2 THE LEECH LATTICE AND THE KAC-MoOODY ALGEBRA L

We start by recalling that a finite-dimensional simple complex Lie algebra, L,
can be expressed in terms of generators and relations as follows. There is a non-
singular invariant bilinear form (,) on £ which induces such a form on the rank £
dimensional space spanned by the roots of £. Suppose {a; : 1 < i <rankf}is a
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basis of simple roots for £. Then the numbers a;; = (a;, ;) have the following
properties:

a; > 0, (1)
Gi; =  Qji, (2)
a; < 0 ifi#j, (3)
2ai5/a;; € L. (4)

The symmetric matrix A = (a;;) obtained in this way is positive definite.
The algebra £ can be reconstructed from the matrix A by the system of
generators and relations used to define L,

lei, fi] = ha, lei, f;]=0 fori#j, (5)
[hi, e;] = aizey, [his 3] = —aij f5, (6)
Ad(e;)™ (e;) = Ad(fi)™ (f;) =0, for ny; =1 - 2a;5/a. (7)

These relations can be used to define a Lie algebra, £ 4, for any matrix A satisfying
the conditions (1-4). L4 is called a (symmetrizable) Kac-Moody algebra. If A4 is
positive definite, £ 4 is semi-simple and, if A is positive semi-definite, £ 4 is a sum
of affine and finite-dimensional algebras.

Although Kac and Moody only explicitly considered the situation in which
the number of simple roots was finite, the theory of Kac-Moody algebras applies
to algebras which have a infinite number of simple roots. Borcherds and others [1]
showed how to construct such an algebra with simple roots labelled by the points
of the Leech lattice, Ay. We can conveniently describe Ay, as a subset of the unique
even self-dual lattice, Il 1, in 26-dimensional Lorentzian space, R*>!. Tl ; is the
set, of points whose coordinates are all either integers or half odd integers which

have integral inner product with the vector (1,...,1;1) € R?>!, where the norm
of z = (z1,2a,... ,Ta5;70) is 2% = 27 + 23 + ... + 235 — 2.

The vector p = (0,1,2,...,24;70) € IIs5 1 has zero norm, p? = 0; the Leech
lattice can be shown to be isomorphic to the set {z € IIy5; : - p = —1} modulo

displacements by p. We can take the representative points for the Leech lattice to
have norm 2 and so obtain an isometric correspondence between A7 and

{7‘6112571 17"/):—1,7‘2:2}. (8)

Then, with each point r of the Leech lattice, we can associate a reflection
x = op(z) = z — (r - &)r which is an automorphism of IIy5;. Indeed these
reflections o, generate a Weyl group, W, and the whole automorphism group of
ITy5,1 is the semi-direct product of W and the automorphism group of the affine
Leech lattice, which is the Dynkin/Coxeter diagram of the Weyl group W. To
this Dynkin diagram can be associated an infinite-dimensional Kac-Moody alge-
bra, L, generated by elements {e,, fr, by : 7 € Ap} subject to the relations (5-7).
Dividing by the linear combinations of the h, which are in the centre reduces its
rank to 26.

The point about Kac-Moody algebras is that they share many of the properties
enjoyed by semi-simple Lie algebras. In particular, we can define a Weyl group,

DOCUMENTA MATHEMATICA - EXTRA VOLUME ICM 1998 - I - 99-108



THE WORK OF RICHARD EWEN BORCHERDS 101

W, and for suitable (i.e. lowest weight) representations, there is a straightforward
generalization of the Weyl character formula. For a representation with lowest
weight A, this generalization, the Weyl-Kac character formula, states

= > det(w)w(e”“)/e” [Ta-esm, (9)

weWw a>0

where p is the Weyl vector, with p -7 = —r?/2 for all simple roots r, m,, is the
multiplicity of the root «, the sum is over the elements w of the Weyl group W,
and the product is over positive roots «, that is roots which can be expressed as
the sum of a subset of the simple roots with positive integral coeflicients.

Considering even just the trivial representation, for which A = 0 and xg =1,
yields a potentially interesting relation from (9),

Z det(w)w(e”) = e H (1—e*)™. (10)

weWw a>0

Kac showed that this denominator identity produces the Macdonald identities in
the affine case. Kac-Moody algebras, other than the finite-dimensional and affine
ones, would seem to offer the prospect of new identities generalizing these but the
problem is that in other cases of Kac-Moody algebras, although the simple roots
are known (as for L), which effectively enables the sum over the Weyl group to
be evaluated, the root multiplicities, m, are not known, so that the product over
positive roots cannot be evaluated.

No general simple explicit formula is known for the root multiplicities of £
but, using the “no-ghost” theorem of string theory, I. Frenkel established the bound

1.
My S P24(1 - 5052), (11)

where py(n) is the number of partitions of n using k colours. This bound is
saturated for some of the roots of L, and, where it is not, there is the impression
that that is because something is missing. What seems to be missing are some
simple roots of zero or negative norm. In Kac-Moody algebras all the simple roots
are specified by (1) to be of positive norm, even though some of the other roots
they generate may not be.

3 VERTEX ALGEBRAS

Motivated by Frenkel’s work, Borcherds introduced in [3] the definition of a vertex
algebra, which could in turn be used to define Lie algebras with root multiplicities
which are explicitly calculable. A vertex algebra is a graded complex vector space,
V = @,z Va, together with a “vertex operator”, a(z), for each a € V, which is a
formal power series in the complex variable z,

a(z) = Z Az for a € V,, (12)

where the operators a,, map V,, — V,,_,, and satisfy the following properties:
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. apb =10 for n > N for some integer N dependent on a and b;

. there is an operator (derivation) D : V' — V such that [D, a(2)] = £a(2);

. there is a vector 1 € Vj such that 1(z) =1, D1 = 0;

.a(0)1 =g

. (2= O (a(2)b(¢) — b(¢)a(z)) = 0 for some integer N dependent on a and b.

Ut W=

[We may define vertex operators over other fields or over the integers with more
effort if we wish but the essential features are brought out in the complex case.]

The motivation for these axioms comes from string theory, where the vertex
operators describe the interactions of “strings” (which are to be interpreted as
models for elementary particles). Condition (5) states that a(z) and b({) commute
apart from a possible pole at z = (, i.e. they are local fields in the sense of quantum
field theory. A key result is that, in an appropriate sense,

(a(z = Ob)(C) = a(2)b(¢) = b({)a(z). (13)

More precisely

/OdC/Cdz (a(z = OB f :Adz/OdC a(z)b(()f—/.gdC/Odz b(C)a(Z)f.(14)

where f is a polynomial in z, {, z — { and their inverses, and the integral over z
is a circle about ¢ in the first integral, one about ¢ and the origin in the second
integral and a circle about the origin excluding the ¢ in the third integral. The
axioms originally proposed by Borcherds [2] were somewhat more complicated in
form and follow from those given here from the conditions generated by (14).

We can associate a vertex algebra to any even lattice A, the space V then
having the structure of the tensor product of the complex group ring C(A) with
the symmetric algebra of a sum €, An of copies An,n € Z, of A. In terms
of string theory, this is the Fock space describing the (chiral) states of a string
moving in a space-time compactified into a torus by imposing perodicity under
displacements by the lattice A.

The first triumph of vertex algebras was to provide a natural setting for the
Monster group, M. M acts on a graded infinite-dimensional space V¢, constructed
by Frenkel, Lepowsky and Meurman, where V8 = @n2_1V757 and the dimensions
of dim V% is the coefficent, c¢(n) of ¢ in the elliptic modular function,

o0
Jr) = T4 =Y c(n)g” = g~ ' +196884g + 21493760¢" + ..., g =e>.
n=-—1 (15)

A first thought might have been that the Monster group should be related to the
space V,,, the vertex algebra directly associated with the Leech lattice, but Vj,
has a grade 0 piece of dimension 24 and the lowest non-trivial representation of
the Monster is of dimension 196883. V! is related to Vi, but is a sort of twisted
version of it; in string theory terms it corresponds to the string moving on an
orbifold rather than a torus.

DOCUMENTA MATHEMATICA - EXTRA VOLUME ICM 1998 - I - 99-108



THE WORK OF RICHARD EWEN BORCHERDS 103

The Monster group is precisely the group of automorphisms of the vertex
algebra V4,

ga(z)g~' = (ga)(z), g€ M. (16)

This characterizes M in a way similar to the way that two other sporadic simple
finite groups, Conway’s group C'o; and the Mathieu group May, can be character-
ized as the automorphism groups of the Leech lattice (modulo —1) and the Golay
Code, respectively.

4 GENERALIZED KAC-MOODY ALGEBRAS

In their famous moonshine conjectures, Conway and Norton went, far beyond the
existence of the graded representation V! with dimension given by j. Their main
conjecture was that, for each element g € M, the Thompson series

Ty(q) = ), Trace(g|V;)q" (17)

n=-—1

is a Hauptmodul for some genus zero subgroup, G, of SLy(R), i.e., if
H ={7:Im(r) > 0} (18)

denotes the upper half complex plane, G is such that the closure of H/G is a
compact Riemann surface, H/G, of genus zero with a finite number of points
removed and T, (g) defines an isomorphism of H/G onto the Riemann sphere.

To attack the moonshine conjectures it is necessary to introduce some Lie
algebraic structure. For any vertex algebra, V, we can introduce [2, 4] a Lie
algebra of operators

Lia) = —— ?f o)z =a ny,  acVi. (19)

- 2mi

Closure [L(a), L(b)] = L(L(a)b) follows from (14), but this does not define a Lie
algebra structure directly on V because L(a)b is not itself antisymmetric in a and
b. However, DV is in the kernel of the map a — L(a) and L{a)b = —L(b)a in
V/DV, so it does define a Lie algebra £%(V) on this quotient [2], but this is not
the most interesting Lie algebra associated with V.

Vertex algebras of interest come with an additional structure, an action of the
Virasoro algebra, a central extension of the Lie algebra of polynomial vector fields
on the circle, spanned by L,,n € Z and 1,

(Lo, Ln] = (1 — 1) Ly + %m(mQ —Vm—n,  [Ln,d =0, (20

with L_; = D and Loa = ha for a € V},. For Vj, ¢ = dim A, and for V¥, ¢ = 24.
The Virasoro algebra plays a central role in string theory. The space of “physical
states” of the string is defined by the Virasoro conditions: let

P*(V)={a€V: Lya=ka;L,a=0,n>0}, (21)
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the space of physical states is P1(V). The space P1(V)/L_1P°(V) has a Lie
algebra structure defined on it (because L _;V N PY(V) c L_;P°(V)). This can
be reduced in size further using a contravariant form (which it possesses naturally
for lattice theories). The “no-ghost” theorem states that the space of physical
states P1(V) has lots of null states and is positive semi-definite for V, where A
is a Lorentzian lattice with dim A < 26. So we can quotient PY(V)/L_1P°(V)
further by its null space with the respect to the contravariant form to obtain a Lie
algebra £(V).

The results of factoring by the null space are most dramatic when ¢ = 26.
The vertex algebra Vi has a natural grading by the lattice L and the “no-
ghost” theorem states that the dimension of the subspace of L£(V) of non-
zero grade a is pea(l — a?) if A is a Lorentzian lattice of dimension 26 but
pr—1(1 — &?/2) — pr_1(a?/2) if dimA = k # 26, k > 2. Thus the algebra

w = L£(ViL,5 ,) saturates Frenkel’s bound, and Borcherds initially named it the
“Monster Lie algebra” because it appeared to be directly connected to the Mon-
ster; it is now known as the “Fake Monster Lie algebra.”

Borcherds [4] had the great insight not only to construct the Fake Monster Lie
algebra, but also to see how to generalize the definition of a Kac-Moody algebra
effectively in order to bring £, within the fold. What was required was to relax
the condition (1), requiring roots to have positive norm, and to allow them to be
either zero or negative norm. The condition (4) then needs modification to apply
only in the space-like case a; > 0 and the same applies to the condition (7) on
the generators. The only condition which needs to be added is that

lei,e;] = [fi, f;]=0  ifa;; =0. (22)

The closeness of these conditions to those for Kac-Moody algebras means
that most of the important structural results carry over; in particular there is a
generalization of the Weyl-Kac character formula for representations with highest
weight A,

XA = Z det{w)w (e”Ze,\(u)e”H‘)/e’) H (1 —e*)™, (23)

weW a>0

where the second sum in the numerator is over vectors g and e(p) = (=1)" if
i can be expressed as the sum of n pairwise orthogonal simple roots with non-
positive norm, all orthogonal to A, and 0 otherwise. Of course, putting A = 0 and
xx = 1 again gives a denominator formula.

The description of generalized Kac-Moody algebras in terms of generators
and relations enables the theory to be taken over rather simply from that of Kac-
Moody algebras but it is not so convenient as a method of recognising them in prac-
tice, e.g. from amongst the algebras L£(V') previously constructed by Borcherds.
But Borcherds [3] gave an alternative characterization of them as graded algebras
with an “almost postitive definite” contravariant bilinear form. More precisely,
he showed that a graded Lie algebra, £ = @, L», is a generalized Kac-Moody
algebra if the following conditions are satisfied:
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1. Ly is abelian and dim £,, is finite if n # 0;

2. L possesses an invariant bilinear form such that (L, L) = 0 if m # n;

3. L possesses an involution w which is —1 on £y and such that w(L,,) C L3

4. the contravariant bilinear form (L, M) = —(L,w(M)) is positive definite on
Ly, form #0;

5. Ly C[L, L]

This characterization shows that the Fake Monster Lie algebra, £, is a
generalised Kac-Moody algebra, and its root multiplicities are known to be given
by pos(1l — %oﬂ), but Borcherds’ theorem establishing the equivalence of his two
definitions does not give a constructive method of finding the simple roots. As
we remarked in the context of Kac-Moody algebras, if we knew both the root
multiplicities and the simple roots, the denominator formula

Z det(w)w (e” Zeu(a)e”> =e’ H (1 —ex)™ (24)

wew a>0

might provide an interesting identity. Borcherds solved [4] the problem of finding
the simple roots, or rather proving that the obvious ones were all that there were,
by inverting this argument. The positive norm simple roots can be identified with
the Leech lattice as for £o,. Writing Ilss 1 = Ar®II; 1, which follows by uniqueness
or the earlier comments, the ‘real’ or space-like simple roots are {(A, 1, A% — 1) :
A € Ap}. (Here we are using we are writing Iy 1 = {(m,n) : m,n € Z} with
(m, n) having norm —2mn.) Light-like simple roots are quite eagily seen to be np,
where n is a positive integer and p = (0,0,1). The denominator identity is then
used to prove that there are no other light-like and that there are no time-like
simple roots.

The denominator identity provides a remarkable relation between modular
functions (apparently already known to some of the experts in the subject) which
is the precursor of other even more remarkable identities. If we restrict attention
to vectors (0,0,7) € Ilys 1 ® C, with Im(e) > 0, Im(7) > 0, it reads

pt I a=pmgm)e ™ = Ae)A(r) (o) — §(7)) (25)
m>0,nEZ
where ¢/(0) = 24, ¢/(n) = ¢(n) if n £ 0, p = e2™7, ¢ = €27, and
A =g J[A -0 = 3 palma (26)
n>1 n>0

5 MOONSHINE, THE MONSTER LIE ALGEBRA AND AUTOMORPHIC FORMS

The presence of j(¢) in (25) suggests a relationship to the moonshine conjectures
and Borcherds used [5, 6] this as motivation to construct the “real” Monster Lie
Algebra, L£j3; as one with denominator identity obtained by multiplying each side
of (25) by A(e)A(7), to obtain the simpler formula

pt I @=pma) = (o) = i) (27)

m>0,ncz
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This looks like the denominator formula for a generalised Kac-Moody algebra
which is graded by II; ; and is such that the dimension of the subspace of grade
(m,n) # (0,0) is ¢(mn), the dimension of V3 . Tt is not difficult to see that
this can be constructed by using the vertex algebra which is the tensor product
V% ® Vi, and defining Ly to be the generalised Lie algebra, £(V* ® Vi, ,),
constructed from the physical states.

Borcherds used [5, 6] twisted forms of the denominator identity for Las to
prove the moonshine conjectures. The action of M on V¥ provides an action on
V = Vi ® Vi1, , induces an action on the physical state space P1(V) and on its
quotient, £ = L(V), by its null space. The “no-ghost” theorem implies that the
part of Lyr of grade (m,n), (Lar)(m,n), i8 isomorphic to VA as an M module.
Borcherds adapted the argument he used to establish the denominator identity to
prove the twisted relation

exp( ZN>0 Zm>0 neZ Te(g | n)P mNQ"N/N)
=3 ez TeglV)P™ = 3z Tr(glViE)g™. (28)

These relations on the Thompson series are sufficient to determine them from their
first few terms and to establish that they are modular functions of genus 0.

Returning to the Fake Monster Lie Algebra, the denominator formula given
n (25) was restricted to vectors of the form v = (0,0,7) but we consider it for
more general v € Il5 1 ® C, giving the denominator function

— Z det(w 27 i{w(p),v) H ( 27rm (w(p), v)) . (29)
weW n>0

This expression converges for Im(v) inside a certain cone (the positive light cone).
Using the explicit form for ®(v) when v = (0, o, 7), the known properties of j and
A and the fact that ®(v) manifestly satisfies the wave equation, Borcherds [6, 7, 9]
establishes that ®(v) satisfies the functional equation

®(2v/(v,v)) = —((v,v)/2)?®(v). (30)
It also has the properties that
B(v+A) = B(v) for A€ Iz, (31)
and
B(w(v)) = det(w)B(v) for w € Aut(Ilzs1)*, (32)

the group of automorphisms of the lattice Ily5 ; which preserve the time direction.
These transformations generate a discrete subgroup of the group of conformal
transformations on R?5! which is itself isomorphic to O 2(R); in fact the dis-
crete group is isomorphic to Aut(Ilss2)*. The denominator function for the Fake
Monster Lie algebra defines in this way an automorphic form of weight 12 for the
discrete subgroup Aut(Ilag2)t of Oz 2(R)". This result once obtained is seen not
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to depend essentially on the dimension 26 and Borcherds has developed this ap-
proach of obtaining representations of modular functions as infinite products from
denominator formulae for generalized Kac-Moody algebras to obtain a plethora of
beautiful formulae [7, 9, 11], e.g.

. _ 2 _ _ . e
](7_) =q 1 H(l _ qn)co(n ) — q 1(1 _ q) 744(1 _ q2)80256(1 _ q3) 12288744 ,
n>0 (33)

where fo(1) = 3, co(n)q™ is the unique modular form of weight 1 for the group
['o(4) which is such that fo(r) =3¢~ + O(q) at ¢ = 0 and co(n) =0if n =2 or
3 mod 4. He has also used these denominator functions to establish results about
the moduli spaces of Enriques surfaces and and families of K3 surfaces [8, 10].
Displaying penetrating insight, formidable technique and brilliant originality,
Richard Borcherds has used the beautiful properties of some exceptional structures
to motiviate new algebraic theories of great power with profound connections with
other areas of mathematics and physics. He has used them to establish outstanding
conjectures and to find new deep results in classical areas of mathematics. Thig is
surely just the beginning of what we have to learn from what he has created.
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THE WORK OF WILLIAM TIMOTHY GOWERS

BELa BOLLOBAS

It gives me great pleasure to report on the beautiful mathematics of William
Timothy Gowers that earned him a Fields Medal at ICM’98.

Gowers has made spectacular contributions to the theory of Banach spaces,
pure combinatorics, and combinatorial number theory. His hallmark is his excep-
tional ability to attack difficult and fundamental problems the right way: a way
that with hindsight is very natural but a priori is novel and extremely daring.

In functional analysis Gowers has solved many of the best-known and most
important problems, several of which originated with Banach in the early 1930s.
The shock-waves from these results will reverberate for many years to come, and
will dramatically change the theory of Banach spaces. The great success of Gowers
is due to his exceptional talent for combining techniques of analysis with involved
and ingenious combinatorial arguments.

In combinatorics, Gowers has made fundamental contributions to the study of
randomness: his tower type lower bound for Szemerédi’s lemma is a tour de force.
In combinatorial number theory, he has worked on the notoriously difficult problem
of finding arithmetic progressions in sparse sets of integers. The ultimate aim is to
prove Szemerédi’s theorem with the optimal bound on the density that suffices to
ensure long arithmetic progressions. Gowers proved a deep result for progressions
of length four, thereby hugely improving the previous bound. The difficult and
beautiful proof, which greatly extends Roth’s argument, and makes clever use of
Freiman’s theorem, amply demonstrates Gowers’ amazing mathematical power.

1 BANACH SPACES

A major aim of functional analysis is to understand the connection between the
geometry of a Banach space X and the algebra £(X) of bounded linear operators
from the space X into itself. In particular, what conditions imply that a space X
contains ‘nice’ subspaces, and that £(X) has a rich structure?

In order to start this global project, over the past sixty years numerous major
concrete questions had to be answered. As Hilbert said almost one hundred years
ago, “Wie iiberhaupt jedes menschliche Unternehmen Ziele verfolgt, so braucht
die mathematische Forschung Probleme. Durch die Losung von Problemen stahlt
sich die Kraft des Forschers; er findet neue Methoden und Ausblicke, er gewinnt
einen weiteren und freieren Horizont.”

In this spirit, the theory of Banach spaces has been driven by a handful of
fundamental problems, like the basis problem, the unconditional basic sequence
problem, Banach’s hyperplane problem, the invariant subspace problem, the dis-
tortion problem, and the Schréder-Bernstein problem. For over half a century,
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progress with these major problems had been very slow: it is due to Gowers more
than to anybody else that a few years ago the floodgates opened, and with the
golutions of many of these problems the subject now has a ‘spacious, free horizon’.

If a space (infinite-dimensional separable Banch space) X can be represented
as a sequence space then an operator T' € £({X) is simply given by an infinite
matrix, so it is desirable to find a basis of the space. A Schauder basis or simply
busis of a space X is a sequence (e,)22; C X such that every vector z € X has a
unigue representation as a norm-convergent Sum & = » | anén. In 1973, solving
a forty year old problem, Enflo [4] proved that not every separable Banach space
has a basis, so our operators cannot always be given in this simple way. On the
other hand, it is almost trivial that every Banach space contains a basic sequence:
a sequence (z,)>° | that is a basis of its closed linear span.

The relationship between an operator T' € £(X) and closed subspaces of X
can also be very involved. In the 1980s Enflo [5] and Read [22] solved in the nega-
tive the invariant subspace problem for Banach spaces, and a little later Read [23]
showed that this phenomenon can arise on a ‘nice’ space as well: he constructed
a bounded linear operator on £; that has only trivial invariant subspaces.

Although a basis (e,)52; of a space X leads to a representation of the oper-
ators on X as matrices, it does not guarantee that £(X) has a rich structure. For
example, it does not guarantee that £(X) contains many non-trivial projections.
Thus, if z = Zle ane, and ¢, = 0, 1, then Ele €nap ey Need not even converge.
Similarly, a permutation of a basis need not be a basis, and if -, ane, is con-
vergent and 7 : N = N is a permutation then Zzozl Gr(n)€x(n) Need not converge.
A basis is said to be unconditional if it does have these very pleasant properties;
equivalently, a basis (e,)>2, is unconditional if there is a constant C' > 0 such
that, if (a,)™; and (A,)7, are scalar sequences with |A,| <1 for all n, then

m m
I Z Ananen|| < C|| Z anenl|-
n=1 n=1

Also, a sequence (x,)%° , is an unconditional basic sequence if it is an unconditional
basis of its closed linear span. The standard bases of ¢y and ¢, 1 < p < o0, are
all unconditional (and symmetric).

An unconditional basis guarantees much more structure than a basis, so it is
not surprising that even classical spaces like C([0,1]) and L; fail to have uncon-
ditional bases. However, the fundamental question of whether every space has a
subspace with an unconditional basis (or, equivalently, whether every space con-
tains an unconditional basic sequence) was open for many years, even after Enflo’s
result.

The search for a subspace with an unconditional basis is closely related to the
search for other ‘nice’ subspaces. For example, it is trivial that not every space
contains a Hilbert space, but it is far from clear whether every space contains cg
or ¢, for some 1 < p < oo. Indeed, this question was answered only in 1974, when
Tsirelson [28] constructed a counterexample by a clever inductive procedure. This
development greatly enhanced the prominence of the unconditional basic sequence
problem.
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The breakthrough came in the summer of 1991, when Gowers and Maurey [17]
independently constructed spaces without unconditional basic sequences. As the
constructions and proofs were almost identical, they joined forces to simplify the
proofs and to exploit the consequences of the result. The Gowers-Maurey space
Xaur is based on a construction of Schlumprecht [25] that eventually enabled
Odell and Schlumprecht [21] to solve the famous distortion problem. Odell and
Schlumprecht constructed a space isomorphic to £» that contains no subspace al-
most isometric to £». The main difficulty Gowers and Maurey had to overcome in
order to make use of Schlumprecht’s space Xg was that Xg itself had an uncon-
ditional basis.

Johnson observed that the proofs could be modified to show that the Gowers-
Maurey space not only has no unconditional basic sequence, but it does not even
have a decomposable subspace either: no subspace of Xz can be written as a topo-
logical direct sum of two (infinite-dimensional) subspaces. Thus the space X¢gar is
not only the first example of a non-decomposable infinite-dimensional space, but
it is also hereditarily indecomposable. Equivalently, every closed subspace Y of
X is such that every projection in £(Y) is essentially trivial: either its rank or
its corank is finite. To appreciate how exotic a hereditarily indecomposable space
is, note that a space X is hereditarily indecomposable if and only if the distance
between the unit spheres of any two infinite-dimensional subspaces is 0: if Y and
Z are infinite-dimensional subspaces then

inf{lly —z||: ye¥, z€ Z, [lyl| = ||2]| = 1} = 0.

In fact, Gowers and Maurey [16] showed that if X is a complex hereditarily
indecomposable space then the algebra £(X) is rather small. An operator S €
L(X) is said to be strictly singular if there is no subspace Y C X such that the
restriction of S to Y is an isomorphism. Equivalently, S € £(X) is strictly singular
if for every (infinite-dimensional) subspace Y C X and every € > 0 there is a vector
y €Y with |[Syl[ < el|y]|.

THEOREM. Let X be a complex hereditarily indecomposable space. Then every
operator T € L{X) is a linear combination of the identity and a strictly singular
operator.

Gowers [9] was the first to solve Banach’s hyperplane problem when he constructed
a space with an unconditional basis that is not isomorphic to any of its hyperplanes
or even proper subspaces. The theorem above implies that every complex heredi-
tarily indecomposable space answers Banach’s hyperplane problem since it is not
isomorphic to any of its proper subspaces. In fact, Ferenczi [7] showed that a
complex Banach space X is hereditarily indecomposable if and only if for every
subspace Y C X, every bounded linear operator from Y into X is a linear com-
bination of the inclusion map and a strictly singular operator. Recently, Argyros
and Felouzis [1] showed that every Banach space contains either ¢; or a subspace
that is a quotient of a hereditarily indecomposable space.

It was not by chance that in order to construct a space without an uncondi-
tional basis, Gowers and Maurey constructed a hereditarily indecomposable space.
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As shown by the following stunning dichotomy theorem of Gowers [12], having an
unconditional basis or being hereditarily indecomposable are the only two ‘pure
states’ for a space.

THEOREM. FEwvery infinite-dimensional Banach space contains an infinite-dimen-
sional subspace that either has an unconditional busis or is hereditarily indecom-
posable.

Gowers based his proof of the dichotomy theorem on a combinatorial game played
on sequences and subspaces. In order to describe this game, we need some
definitions. Given a space X with a basis (e,)02;, the support of a vector
a =%, ane, € X is supp(a) = {n : a, # 0}. A vector a = >_,°, anen
precedes a vector b= 3" bpe, if n < m for all n € supp(a) and m € supp(b). A
block basis is a sequence x1 < o2 < ... of non-zero vectors, and a block subspace
is the closed linear span of a block basis. For a subspace Y C X, write > (V)
for the set of all sequences (z;)7 of non-zero vectors of norm at most 1 in ¥ with
21 < - < 2. Call aset 0 C Y (X) lorge if 0N (Y) # 0 for every (infinite-
dimensional) block subspace Y. For a set o C >_(X) and a sequence A = (§;)2,
of positive reals, the enlargement of o by A is

oa ={(x)] € Z(X) 2 ||ws =yl < i, 1 <4 <mn, for some (y;)] € o}.

And now for the two-player game (0,Y") defined by a set ¢ C > (X) and a
block subspace Y C X. The first player, Hider, chooses a block subspace Y; C Y}
the second player, Seeker, replies by picking a finitely supported vector y; € Y;.
Then Hider chooses a block subspace Y2 C Y, and Seeker picks a finitely supported
vector ya € Y. Proceeding in this way, Seeker wins the (o,Y)-game if, at any
stage, the sequence (y;)? is in o. Hider wins if he manages to make the game go
on for ever. Clearly, Seeker has a winning strategy for the (¢,Y) game if o is big
when measured by Y.

The combinatorial foundation of Gowers’ dichotomy theorem is then the fol-
lowing result [12].

THEOREM. Let X be a Banach space with a basis and let o C > (X) be large.
Then for every positive sequence A there is a block subspace Y C X such that
Seeker has a winning strategy for the (oa,Y)-game.

The beautiful proof of this result bears some resemblence to arguments of Galvin
and Prikry [8] and Ellentuck [3] concerning Ramsey-type results for sequences.

Gowers’ dichotomy theorem has been the starting point of much new research
on Banach spaces. For example, it can be used to tackle the still open problem
of classifying minimal Banach spaces. A Banach space is minimal if it embeds
into all of its infinite-dimensional subspaces. Casazza et al [2] used the dichotomy
theorem to show that every minimal Banach space embeds into a minimal Banach
space with an unconditional basis. Hence, a minimal space is either reflexive or
embeds into ¢g or £;.
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The Schréder-Bernstein problem asks whether two Banach spaces are neces-
sarily isomorphic if each is a complemented subspace of the other. In [13] Gowers
gaver the first counterexample, and later with Maurey [16] constucted the following
further examples with even stronger paradoxical properties.

THEOREM. For every n > 1 there is a Banach space X, such that two finite-
codimensional subspaces of X,, are isomorphic if and only if they have the same
codimension modulo n. Also, there is a Banach space Z, such that two product
spaces Z! and ZF are isomorphic if and only if r and s are equal modulo n.

For n > 2, the space Z,, can be used to solve the Schréder-Bernstein problem;
even more, with X = Zz and Y = Z3 @ Z3 we have Y @Y = Z3 = Z3 = X. Thus
not only are X and Y complemented subspaces of each other, but X 2 Y &Y and
Y = X @ X. However, X = Z3 and Y = Z2 are not isomorphic.

The last result we shall discuss here is Gowers’ solution of Banach’s homo-
geneous spaces problem. A space is homogeneous if it is isomorphic to all of its
subspaces. Banach asked whether there were any examples other than /. Gowers
proved the striking result that homogeneity, in fact, characterizes Hilbert space
[12].

THEOREM. The Hilbert space £5 is the only homogeneous space.

To prove this, Gowers could make use of results of Szankowski [25], and Ko-
morowski and Tomczak-Jaegermann [19] that imply that a homogeneous space
with an unconditional basis is isomorphic to £,. What happens if X is homoge-
neous but does not have an unconditional basis? By the dichotomy theorem, X has
a subspace Y that either has an unconditional basis or is hereditarily indecompos-
able. Since X 2Y and X does not have an unconditional basis, ¥ is hereditarily
indecomposable. But this is impossible, since a hereditarily indecomposable space
is not isomorphic to any of its proper subspaces, let alone all of them!

2 ARITHMETIC PROGRESSIONS

In 1936 Erdds and Turan [6] conjectured that, for every positive integer k and
d > 0, there is an integer N such that every subset of {1,..., N} of size at least
0N numbers contains an arithmetic progression of length k. In 1953 Roth [24] used
exponential sums to prove the conjecture in the special case k = 3: this was one of
the results Davenport highlighted in 1958 when Roth was awarded a Fields Medal.
In 1969 Szemerédi found an entirely combinatorial proof for the case k = 4, and
six years later he proved the full Erdés-Turdn conjecture. Szemerédi’s theorem
trivially implies van der Waerden’s theorem.

In 1977 Fiirstenberg [7] used techniques of ergodic theory to prove not only
the full theorem of Szemerédi, but also a number of substantial extensions of it.
This proof revolutionized ergodic theory.

In spite of these beautiful results, there is still much work to be done on the
Erd6s-Turdn problem. Write f(k,d) for the minimal value of N that will do in
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Szemerédi’s theorem. The proofs of Szemerédi and Fiirstenberg give extremely
weak bounds for f(k,d), even in the case k = 4. In order to improve these bounds,
and to make it possible to attack some considerable extensions of Szemerédi’s
theorem, it would be desirable to use exponential sums to prove the general case.

Recently, Gowers [15] set out to do exactly this. He introduced a new notion of
pseudorandomness, called quadratic uniformity and, using techniques of harmonic
analysis, showed that a quadratically uniform set contains about the expected
number of arithmetic progressions of length four. In order to find arithmetic
progressions in a set that is not quadratically uniform, Gowers avoided the use of
Szemerédi’s uniformity lemma or van der Waerden’s theorem, and instead made
use of Weyl’s inequality and, more importantly, Freiman’s theorem. This theorem
states that if for some finite set A C Z the sum A+ A= {a+b:a,b € A} is not
much larger than A then A is not far from a generalized arithmetic progression.
By ingenious and involved arguments Gowers proved the following result [14].

THEOREM. There is an absolute constant C such that

f(4,8) < expexpexp((1/6)“).

In other words, if A C {1,...,N} has size at least |A] = 6N > 0 and
N > expexpexp((1/8)Y), then A contains an arithmetic progression of length
4.

The bound in this theorem is imcomparably better than the previous best bounds.

The entirely new approach of Gowers raises the hope that one could prove
the full theorem of Szemerédi with good bounds on f(k,d). In fact, there is even
hope that Gowers’” method could lead to a proof of the Erdds conjecture that if
A C Nis such that 7,4 1/a = oo then A contains arbitrarily long arithmetic
progressions. The most famous special case of this conjecture is that the primes
contain arbitrarily long arithmetic progressions.

3 COMBINATORICS

The basis of Szemerédi’s original proof of his theorem on arithmetic progressions
was a deep lemma that has become an extremely important tool in the study of the
structure of graphs. This result, Szemerédi’s uniformity lemma, states that the
vertex set of every graph can be partitioned into boundedly many pieces Vi, ..., V;
such that ‘most’ pairs (V;, V;) are ‘uniform’. In order to state this lemma precisely,
recall that, for a graph G = (V, E), and sets U, W C V| the density d(U, W) is
the proportion of the elements (u,w) of U x W such that uw is an edge of G. For
€,0 > 0 a pair (U, W) is called (e, §)-uniform if for any U' C U and W' C W with
|U'| > 8|U| and |W'| > §|W|, the densities d(U',W’) and d(U, W) differ by at
most €/2.

Szemerédi’s uniformity lemma [27] claims that for all €,d,7 > 0 there is a
K = K(¢,4,n) such that the vertex set of any graph G can be partitioned into at
most K sets Uy, ..., Uy, of sizes differing by at most 1, such that at least (1 —n)k?
of the pairs (U;,U;) are (e, §)-uniform.
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Loosely speaking, a ‘Szemerédi partition’ V(G) = Ule U; is one such that
for most pairs (U;,U;) there are constants a; such that if U C U; and U} C Uj
are not too small then G contains about a;;|U;||U]| edges from U; to U;. In some
sense, Szemerédi’s uniformity lemma gives a classification of all graphs. The main
drawback of the lemma is that the bound K (¢, §,7) is extremely large: in the case
€ = d = 5, all we know about K(e,¢,¢€) is that it is at most a tower of 2s of
height proportional to e °. This is an enormous bound, and in many applications
a smaller bound, say of the type e would be significantly more useful. As the
lemma is rather easy to prove, it was not unreasonable to expect a bound like this.

It was a great surprise when Gowers [14] proved the deep result that K (e,d,7)
is of tower type in 1/§, even if € and 5 are kept large.

THEOREM. There are constants cg,o > 0 such that for 0 < & < §q there is a
graph G that does not have o (1/2,0,1/2)-uniform partition into K sets, where K
is a tower of 2s of height at most co6~1/16.

It is well known that even exponential lower bounds are hard to come by, let
alone tower type lower bounds, so this is a stunning result indeed! The proof,
which makes use of clever random choices to construct graphs whose small sets
of vertices do not behave like subsets of random graphs, goes some way towards
clarifying the nature of randomness. It also indicates that any proof of an upper
bound for K (e, §,n) must involve a long sequence of refinements of partitions, each
exponentially larger than the previous one.

This sketch has been all too brief, and a deeper study of Gowers’ work would
be needed to properly appreciate his clarity of thought and mastery of elaborate
structures. However, I hope that enough has been said to give some taste of
his remarkable mathematical achievements. In the theory of Banach spaces, not
only has he solved many of the main classical problems of the century, but he
has also opened up exciting new directions. In combinatorics, too, he has tackled
some of the most notorious questions, bringing about their solution with the same
exceptional blend of combinatorial power and technical skill. Hilbert would surely
agree that Gowers has given us wider and freer horizons.

REFERENCES

[1] S.A. Argyros and V. Felouzis, Interpolating H.I. Banach spaces, to appear

[2] P.G. Casazza, N.J. Kalton, D. Kutzerova and M. Mastylo, Complex interpo-
lation and complementably minimal spaces, in Ineraction between Functional

Analysis, Harmonic Analysis, and Probability, Lecture Notes in Pure and Ap-
plied Math., Dekker, N.Y., 1996, pp. 135-143.

[3] E. Ellentuck, A new proof that analytic sets are Ramsey, J. Symbolic Logic 39
(1974), 163-165.

[4] P. Enflo, A counterexample to the approximation property in Banach spaces,
Acta Math. 130 (1973), 309-317.

DOCUMENTA MATHEMATICA - EXTRA VOLUME ICM 1998 - [ - 109-118



116 BELA BOLLOBAS

[5] P. Enflo, On the invariant-subspace problem in Banach spaces, Acte Math. 158
(1987), 213-313.

[6] P. Erdds and P. Turdn, On some sequences of integers, .J. London Math. Soc.
11 (1936), 261-264.

[7] V. Ferenczi, Operators on subspaces of hereditarily indecomposable Banach
spaces, Bull. London Math. Soc. 29 (1997), 338-344.

[8] F. Galvin and K. Prikry, Borel sets and Ramsey’s theorem, J. Symbolic Logic
38 (1973), 193-198.

[9] W.T. Gowers, A solution to Banach’s hyperplane problem, Bull. London math.
Soc. 26 (1994), 523-530.

[10] W.T. Gowers, A Banach space not containing co, £1 or a reflexive subspace,
Trans. Amer. Math. Soc. 344 (1994), 407—420.

[11] W.T. Gowers, A hereditarily indecomposable space with an asymptotic un-
conditional basis, Oper. Theory: Adv. Appl. 77, (1995), 111-120.

[12] W.T. Gowers, A new dichotomy for Banach spaces, Geom. Funct. Anal. 6
(1996), 1083-1093.

[13] W.T. Gowers, A solution to the Schroeder-Bernstein problem for Banach
spaces, Bull. London Math. Soc. 28 (1996), 297-304.

[14] W.T. Gowers, Lower bounds of tower type for Szemerédi’s uniformity lemma,
Geom. Funct. Anal. 7 (1997), 322-337.

[15] W.T. Gowers, A new proof of Szemerédi’s theorem for arithmetic progressions
of length four, Geom. Funct. Anal. bf 8 (1998), 529-551.

[16] W.T. Gowers and B. Maurey, The unconditional basis sequence problem, J.
Amer. Math. Soc. 6 (1993), 851-874.

[17] W.T. Gowers and B. Maurey, Banach spaces with small spaces of operators,
Math. Ann. 307 (1997), 543-568.

[18] R.C. James, Bases and reflexivity of Banach spaces, Ann. of Math. (2) 52
(1950), 518-527.

[19] R. Komorowski and N. Tomczak-Jaegermann, Banach spaces without local
unconditional structure, Israel J. Math. 89 (1995), 205-226.

[20] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I: Sequence Spaces,
Springer-Verlag, Berlin and New York 1977.

[21] E. Odell and T. Schlumprecht, The distortion problem, Acta. Math. 173
(1994), 259-281.

[22] C.J. Read, A solution to the Invariant Subspace Problem, Bull. London Math.
Soc. 16 (1984), 337-401.

DOCUMENTA MATHEMATICA - EXTRA VOLUME ICM 1998 - [ - 109-118



THE WORK OF WILLIAM TIMOTHY GOWERS 117

[23] C.J. Read, A solution to the Invariant Subspace Problem on the space ¢,
Bull. London Math. Soc. 17 (1985), 305-317.

[24] K.F. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953) 245~
252.

[25] T. Schlumprecht, An arbitrarily distortable Banach space, Israel J. Math. 76
(1991), 81-95.

[26] E. Szemerédi, On sets of integers containing no %k elements in arithmetic
progression, Acta Arith. 27 (1975), 199-245.

[27] E. Szemerédi, Regular partitions of graphs, in “Proc. Colloque Inter. CNRS”
(J.C. Bermond, J.-C. Fournier, M. Las Vergnas, D. Sotteau, eds.), 1978,
pp-399-401.

[28] B.S. Tsirelson, Not every Banach space contains ¢, or ¢o, Functional Anal.
Appl. 8 (1974), 139-141.

Béla Bollobés

Trinity College
University of Cambridge
Cambridge CB2 1SB
England

and

Dept. of Math. Sciences
University of Memphis
Memphis TN 38152, USA

DOCUMENTA MATHEMATICA - EXTRA VOLUME ICM 1998 - [ - 109-118



118 BfLA BOLLOBAS
WIiILLIAM TiMOTHY GOWERS

Department of Pure Mathematics & Mathematical Statistics,
Cambridge University, Cambridge, England

Born: November 20, 1963, Marlborough, England
Nationality: British

Marital Status: married, three children

1982-1985 Undergraduate at Cambridge

1985-1986 Postgraduate at Cambridge

1986-1990 Ph.D. at Cambridge under B. Bollobas

1989-1993 Research Fellow at Trinity College, Cambridge
1991-1994 Lecturer in Mathematics at University College London
1994-1995 Reader in Mathematics at University College London
1995 Lecturer at D.P.M.M.S., University of Cambridge, and

Teaching Fellow at Trinity College

Fields of Interest: Analysis and Combinatorics

Béla Bollobds and William Timothy Gowers

DOCUMENTA MATHEMATICA - EXTRA VOLUME ICM 1998 - [ - 109-118



Doc. MATH. J. DMV 119

THE WORK OF MaxiM KONTSEVICH

CLIFFORD HENRY TAUBES

Maxim Kontsevich is known principally for his work on four major problems in
geometry. In each case, it is fair to say that Kontsevich’s work and his view of the
issues has been tremendously influential to subsequent developments. These four
problems are:

e Kontsevich presented a proof of a conjecture of Witten to the effect that a cer-
tain, natural formal power series whose coefficients are intersection numbers
of moduli spaces of complex curves satisfies the Korteweg-de Vries hierarchy
of ordinary, differential equations.

e Kontsevich gave a construction for the universal Vassiliev invariant for knots
in 3-space, and generalized this construction to give a definition of pertuba-
tive Chern-Simons invariants for three dimensional manifolds. In so doing,
he introduced the notion of Graph Cohomology which succinctly summarizes
the algebraic side of the invariants. His constructions also vastly simplified
the analytic aspects of the definitions.

e Kontsevich used the notion of stable maps of complex curves with marked
points to compute the number of rational, algebraic curves of a given degree
in various complex projective varieties. Moreover, Kontsevich’s techniques
here have greatly affected this branch of algebraic geometry. Kontsevich’s
formulation with Manin of the related Mirror Conjecture about Calabi-Yau
3-folds has also proved to be highly influential.

e Kontsevich proved that every Poisson structure can be formally quantized
by exhibiting an explicit formula for the quantization.

What follows is a brief introduction for the non-expert to these four areas of
Kontsevich’s work. Here, T focus almost solely on the contributions of Kontsevich
to the essential exclusion of many others; and I ask to be pardonned for my many
and glaring omissions.

1 INTERSECTION THEORY ON THE MODULI SPACE OF CURVES AND THE MA-
TRIX AIRY FUNCTION [1]

To start the story, fix integers ¢ > 0 and n > 0 which are constrained so
2g + n > 2. That is, the compact surface of genus g with n punctures has neg-
ative Euler characteristic. Introduce the moduli space M, of smooth, compact,
complex curves of genus g with n distinct marked points. This is to say that a
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point in M, , consists of an equivalence class of tuple consisting of a complex
structure § on a compact surface C' of genus g, together with an ordered set
A ={zy,...,2,} C C of n points. The equivalence is under the action of the
diffeomorphism group of the surface. This M, , has a natural compactification
(known as the Deligne-Mumford compactification) which will not be notationally
distinguished. Suffice it to say that the compactification has a natural fundamen-
tal class, as well as an n-tuple of distinguished, complex line bundles. Here, the
’th such line bundle, L;, at the point (j,A) € My 5, is the holomorphic cotangent
space at z; € A.

With the preceding understood, note that when {d,, ... ,d,} are non-negative
integers which sum to the dimension of M, ,, (which is 3¢ —3+n). Then, a number
is obtained by pairing the cohomology class

IT czo*

1<i<n

with the afore-mentioned fundamental class of M, ,,. (Think of representing these
Chern classes by closed 2-forms and then integrating the appropriate wedge prod-
uct over the smooth part of My ,.) Using Poincaré duality, such numbers can be
viewed as intersection numbers of varieties on M, , and hence the use of this term
in the title of Kontsevich’s article.

As g,n and the integers {di, ... ,d,} vary, one obtains in this way a slew of
intersection numbers from the set of spaces {M, »}. In this regard, it proved con-
venient to keep track of all these numbers with a generating functional. The latter

is a formal power series in indeterminants g, ¢1, ... which is written schematically
as
ko Kk ty
F(t07t17"'):Z<TOOT11”'>HkZ.!7 (1)
(k) i>0 ¢

where, (k) signifies the multi-index (%, k1, . . . ) consisting of non-negative integers
where only finitely many are non-zero. Here, the expression (r07Ft ...} is the
number which is obtained as follows: Let

n=k +k+..., and g=3(2(ki+2k+3ks+...) —n)+1.

If g is not a positive integer, set (Té“o 7'1’“1 -+-y = 0. If g is a positive integer, construct
on M, the product of ¢;(L;) for 1 < j < ky times the product of ¢;(L;)? for
k1+1<j <k + ko times ... etc.; and thus construct a form whose dimension is
39 — 3+ n, which is that of M, ,. Finally, pair this class on the fundamental class
of M, 5, to obtain (rforf1-..).

By comparing formal properties of two hypothetical quantum field theories,
E. Witten was led to conjecture that the formal series U = §%F/8t2 obeys the

classical KdV equation,

otn Oty 12 983
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(As U is a formal power series, this last formula can be viewed as a conjectural
set, of relations among the intersection numbers which appear in the definition of
Fin (1).)

Kontsevich gave the proof that U obeys this KdV equation. His proof of
Equation (2) is remarkable if nothing else then for the fact that he gives what is
essentially an explicit calculation of the intersection numbers {(r7o7f* ...}, To
this end, Kontsevich first introduces a model for M, , based on what he calls
ribbon graphs with metrics. (A ribbon graph is obtained from a 3-valent graph by
more or less thickening the edges to bands. They are related to Riemann surfaces
through the classical theory of quadratic differentials.) With an explicit, almost
combinatorial model for M, ,, in hand, Kontsevich proceeds to identify the classes
c1(L;) directly in terms of his model. Moreover, this identification is sufficiently
direct to allow for the explicit computation of the integrals for {(rforF1 ...}, It
should be stressed here that this last step involves some extremely high powered
combinatorics. Indeed, many of the steps in this proof exhibit Kontsevich’s unique
talent for combinatorical calculations. In any event, once the coefficients of U are
obtained, the proof ends with an identification of the expression for U with a
novel expansion for certain functions which arises in the KdV story. (These are
the matrix Airy functions referred to at the very start of this section.)

2 FEYNMAN DIAGRAMS AND LOW DIMENSIONAL TOPOLOGY [2]

From formal quantum field theory arguments, E. Witten suggested that there
should exist a family of knot invariants and three manifolds invariants which can
be computed via multiple integrals over configuration spaces. Kontsevich gave an
essentially complete mathematical definition of these invariants, and his ideas have
profoundly affected subsequent developments.

In order to explain, it proves useful to first digress to introduce some basic
terminology. First of all, the three dimensional manifolds here will be all taken
to be smooth, compact and oriented, or else Euclidean space. A knot in a three
manifold is a connected, 1-dimensional submanifold, which is to say, the embedded
image of the circle. A link is a finite, disjoint collection of knots. A knot or link
invariant is an assignment of some algebraic data to each knot or link (for example,
a real number), where the assignments to a pair of knots (or links) agree when one
member of the pair is the image of the other under a diffeomorphism of the ambient
manifold. (One might also restrict to diffeomorphisms which can be connected by
a path of diffeomorphisms to the identity map.)

A simple example is provided by the Gauss linking number an invariant of
links with two components which can be computed as follows: Label the compo-
nents as K1 and K. A point in K; together with one in K» provides the directed
vector from the former to the latter, and thus a point in the 2-sphere. Since both
K3 and K, are copies of the circle, this construction provides a map from the
2-torus (the product of two circles) to the 2-sphere. The Gauss linking number is
the degree of this map. (The invariance of the degree under homotopies implies
that this number is an invariant of the link.) Alternately, one can introduce the
standard, oriented volume form w on the 2-sphere, and then the Gauss linking
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number is the integral over the K7 x K5 of the pull-back of the form w.

Witten conjectured the existence of a vast number of knot, link and 3-manifold
invariants of a form which generalizes this last formula for the Gauss linking num-
ber. Independently of Kontsevich, significant work towards constructing these in-
variants for knots and links had been carried out by Bar-Natan, Birman, Garoufa-
lidis, Lin, and Guadagnini-Martinelli-Mintchev. Meanwhile, Axelrod and Singer
had developed a formulation of the three-manifold invariants.

In any event, what follows is a three step sketch of Kontsevich’s formulation
for an invariant of a three-manifold A with vanishing first Betti number.

Step 1. The invariants in question will land in a certain graded, abelian group
which is constructed from graphs. Kontsevich calls these groups “graph cohomol-
ogy groups.” To describe the groups, introduce the set Gy of pairs consisting of a
compact graph I' with only three-valent vertices and a certain kind of orientation
o for I'. To be precise, o is an orientation for

(P ®moT.

edges(T')

Note that isomorphisms between such graphs pull back the given o. Thus, one can
think of (G as a set of isomorphism classes. Next, think of the elements of Gy as
defining a basis for a vector space over Z where consistency forces the identification
of (T', —o) with —(T', 0).

One can make a similar definition for graphs where all vertices are three valent
save for one four valent vertex. The resulting Z-module is called G. In fact, for
each n > 0 there is a Z-module G, which is constructed from graphs with all
vertices being at least 3-valent, and with the sum over the vertices of (valence —3)
equal to n.

With the set {G,}n>0 more or less understood, remark that there are nat-
ural homomorphisms 8: G, — G411 which obey 82 = 0. Indeed, 8 is defined
schematically as follows:

o, 0) = Z (T'/e, induced orientation {rom o) .
ecedges(T)

Here, I'/e is the graph which is obtained from I" by contracting e to a point. The
induced orientation is quite natural and left to the reader to work out. In any
event, with O in hand, the modules {G,} define a differential complex, whose
cohomology groups are

GCy = kernel(9d: Gy = Gy1)/ Image(0: Go1 — G.). (3)

This is ‘graph cohomology’. For the purpose of defining 3-manifold invariants,
only GCj is required.
Step 2: Fix a point p € M and introduce in M x M the subvariety

Y=(pxM)U(MxpUA,

where A denotes the diagonal. A simple Meyer-Vietoris argument finds closed
2-forms on M x M — ¥ which integrate to 1 on any linking 2-sphere of any of
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the three components of ¥. Moreover, there is such a form w with wAw =0
near X. In fact, near X, this w can be specified almost canonically with the choice
of a framing for the tangent bundle of M. (The tangent bundle of an oriented
3-manifold can always be framed. Furthermore, Atiyah essentially determined a
canounical frame for TM.) Away from ¥, the precise details of w are immaterial.
In any event, fix « using the canonical framing for T M.

With w chosen, consider a pair (T',0) from Gy. Associate to each vertex of
I' a copy of M, and to each oriented edge e of T', the copy of M x M where the
first factor of M is labeled by the staring vertex of e, and the second factor by the
ending vertex. Associate to this copy of M x M the form w, and in this way, the
edge e labels a (singular) 2-form w, on Xyertices(ry M -

Step 3 At least away from all versions of the subvariety ¥, the
forms {we}ecedges(ry can be wedged together to give a top dimensional form

eCedges(T") We, O X yevertices(I) M - It is a non-trivial task to prove that this form
is integrable. In any event, the assignment of this integral to the pair (T, 0) gives
a Z-linear map from Gg to R The latter map does not define an invariant of
M from the pair (I',0) as there are choices involved in the definition of w, and
these choices effect the value of the integral. However, Kontsevich found a Stokes
theorem argument which shows that this map from Gy to R descends to the kernel
of @ as an invariant of M. That is, these graph-parameterized integrals define a
3-manifold invariant with values in the dual space (GCp)*. (A recent paper by
Bott and Cattaneo has an exceptionally elegant discussion of these points.)

Kontsevich’s construction of 3-manifold invariants completely separates the
analytic issues from the algebraic ones. Indeed, the module GCy encapsulates all
of the algebra; while the analysis, as it were, is confined to issues which surround
the integrals over products of M. In particular, much is known about GCjy; for
example, it is known to be highly non-trivial.

Kontsevich has a similar story for knots which involves integrals over con-
figuration spaces that consist of points on the knot and points in the ambient
space. Here, there is a somewhat more complicated analog of graph cohomology.
In the case of knots in 3-sphere, Kontsevich’s construction is now known to give
all Vassiliev invariant of knots.

In closing this section, it should be said that Kontsevich has a deep un-
derstanding of these and related graph cohomology in terms of certain infinite
dimensional algebras [3].

3 ENUMERATION OF RATIONAL CURVES VIA TORUS ACTIONS [4]

The general problem here is as follows: Suppose X is a compact, complex algebraic
variety in some complex projective space. Fix a 2-dimensional homology class
on X and ‘count’ the number of holomorphic maps from the projective line P!
into X which represent the given homology class. To make this a well posed
problem, maps should be identified when they have the same image in X. The
use of quotes around the word count signifies that further restrictions are typically
necessary in order to make the problem well posed. For example, a common
additional restriction fixes some finite number of points in X and requires the
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maps in question to hit the given points.

These algebro-geometric enumeration problems were considered very difficult.
Indeed, for the case where X = P2, the answer was well understood prior to
Kontsevich’s work only for the lowest multiples of the generator of Hy(P?;Z).
Kontsevich synthesized an approach to this counting problem which has been
quickly adopted by algebraic geometers as the method of choice. Of particular
interest are the counts made by Kontsevich for the simplest case of X = P? and
for the case where X is the zero locus in P* of a homogeneous, degree 5 polynomial.
(The latter has trivial canonical class which is the characterization of a Calabi-Yau
manifold.)

There are two parts to Kontsevich’s approach to the counting problem. The
first is fairly general and is roughly as follows: Let V be a compact, algebraic vari-
ety and let § denote a 2-dimensional homology class on V. Kontsevich introduces
a certain space M of triples (C,z, f) where C is a connected, compact, reduced
complex curve, while z = (x1,... ,2) is a k-tuple of pairwise distinct points on
C and f: €' = V is a holomorphic map which sends the fundamental class of C
to 8. Moreover, the associated automorphism group of f is suitably constrained.
(Here, k could be zero.) This space M is designed so that its compactification is a
reasonable, complex algebraic space with a well defined fundamental class. (This
compactification covers, in a sense, the oft used Deligne-Mumford compactification
of the space of complex curves with marked points.) The utilization of this space
M with its compactification is one key to Kontsevich’s approach. In particular,
suppose X C V is an algebraic subvariety. Under certain circumstances, the prob-
lem of counting holomorphic maps from C' into X can be computed by translating
the latter problem into that of evaluating the pairing of M’s fundamental class
with certain products of Chern classes on M. The point here is that the condition
that a map f: ¢ — V lie in X can be reinterpreted as the condition that the
corresponding points in M lie in the zero locus of a certain section of a certain
bundle over M.

With these last points understood, Part 2 of Kontsevich’s approach exploits
the observation that V = IP" has a non-trivial torus action. Such an action in-
duces one on M and its compactification. Then, in the manner of Ellingsrud and
Stromme, Kontsevich uses one of Bott’s fixed point formulas to obtain a formula
for the appropriate Chern numbers in various interesting examples.

4 DEFORMATION QUANTIZATION OF POISSON MANIFOLDS

This last subject comes from very recent work of Kontsevich, so the discussion here
will necessarily be brief. A ‘Poisson structure’ on a manifold X can be thought of
as a bilinear map

Bi: C*(X) @ C¥(X) - C™(X)

which gives a Lie algebra structure to C*(X). In particular, By sends a pair
(f,9) to (o, df Adg) where a is a non-degenerate section of A2T X which satisfies a
certain quadratic differential constraint. The problem of quantizing such a Poisson
structure can be phrased as follows: Let h be a formal parameter (think Planck’s
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constant). Find a set of bi-differential operators Bs, Bs, ... so that

f*g=fg+h-Bi(f,9)+h - Ba(f9)+...

defines an associative product taking pairs of functions on X and returning a
formal power series with C'®(X) valued coefficients. (A bi-differential operator
acts as a differential operator on each entry separately.) Kontsevich solves this
problem by providing a formula for {Bs, Bs, ...} in terms of B;. The solution has
the following remarkable form

fxg= > h" > wrBra(f.9),

0<n<oo reGin]
where

e (I[n] is a certain set of (n{n + 1))™ labeled graphs with n + 2 vertices and n
edges.

e Br , is a bi-differential operator whose coefficients are constructed from mul-
tiple order derivatives of the given « by a rules which come from the graph
I.

¢ wr is a number which is obtained from I' by integrating a certain I'-dependent
differential form over the configuration space of n distinct points in the upper
half plane.

The details can be found in [5].
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THE WoRrK OF Curtis T. MCMULLEN

STEVE SMALE

Curtis T. McMullen has been awarded the Fields Medal for his work in dynamics
as well as for his contributions to the theory of computation, complex variables,
geometry of three manifolds, and other areas of mathematics. I limit myself here
to a brief discussion of some of his results.

The search for understanding of solutions of a polynomial equation has had a
central and glorious place in the history of mathematics. Already the ancient Greek
mathematicians had approximated the square root of two, i.e., the solution of
z? = 2 by what is now called Newton’s Method. Providing a solution for equations
such as 22 + 1 = 0 led to the introduction of complex numbers in mathematics.
Group theory was introduced to understand which polynomial equations could be
solved in terms of radicals. Earlier there had been such formulas for degrees 2
(the quadratic formula taught in high school), 3 and 4. For degrees greater than
4 there are no such formulae.

Instead of formulae, algorithms have been developed which produce (perhaps
by complex routines) a sequence of better and better approximations to a solution
of a general polynomial equation. In the most satisfactory case, iteration of a
single map, Newton’s Method, converges to a zero for almost all quadratic poly-
nomials and initial points; it is a “generally convergent algorithm.” But for degree
3 polynomials it converges too infrequently.

Thus I was led to raise the question as to whether there existed for each degree
such a generally convergent algorithm which succeeds for all polynomial equations
of that degree.

McMullen answers this question in his thesis, under Dennis Sullivan, where
he shows that no such algorithm exists for polynomials of degree greater than 3,
and for polynomials of degree 3 he produces a new algorithm which does converge
to a solution for almost all polynomials and initial points.

Thus McMullen “finished the job” since this work answers, in degree 3, “yes,”
and degree greater than three, “no;” it is complete. This indicates his depth of
understanding of the situation and is characteristic of his later work.

For the proof of his result McMullen establishes a rigidity theorem for full
families of rational maps of C into C with no attracting cycles other than fixed
points. Members of such families are conjugate by a linear fractional (Moebius)
transformation. The attracting cycles condition is implied by the general conver-
gence.

One obtains radicals by Newton’s method applied to the polynomial

f(.’L')Z.’IJd—a,
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starting from any initial point. In this way solution by radicals can be seen as a
special case of solution by generally convergent algorithms. This fact led Doyle and
McMullen to extend Galois Theory for finding zeros of polynomials. This exten-
sion uses McMullen’s thesis together with the composition of generally convergent
algorithms (a “tower”) and the introduction of finite Moebius groups.

They showed that the zeros of a polynomial could be found by a tower if and
only if its Galois group is nearly solvable, extending the notion of solvable with
the inclusion of the Moebius group Ay (the alternating group). As a consequence,
for polynomials of degree bigger than 5 no tower will succeed.

For degree 5, Doyle and McMullen construct an algorithm following some
ideas dating to Felix Klein’s famous lectures on the quintic and the icosahedron,
and using the classical theory of invariant polynomials. Thus the power of the
tower of generally convergent algorithms is found. Quite beautiful!

T. Y. Li and Jim Yorke introduced the word “chaos” into dynamics in con-
nection with the map of population biology,

L,:[0,1] = [0,1], L,(z)=rz(l-2x).

Bob May had been intrigued by this map because there was an infinite sequence
of period doubling parameters r; converging to s = 3.57....

Soon thereafter, Mitch Feigenbaum’s work (with similar results due to Coullet-
Tresser) demonstrating the universality properties of this map, helped establish the
acceptance by physicists of the new discipline of dynamical systems. The sequence
(ri — ri—1)/(rix1 — r;) has a limit, a number which is independent of the period
doubling map! Key to Feigenbaum’s work was the concept of renormalization and
the convergence of the renormalizations of an iterate of the Feigenbaum map L,
to a fixed point F' of the renormalization operator.

Let us see what renormalization means for the second iterate I? of L = L,
for some 2 < r < 4. So L([0,1]) C [0,1] as above, and L has a second fixed point
q = (r — 1)/r. Define p by the conditions 0 < p < ¢ and L(p) = g. Thus L? acts
on [p,q] (with a sign reversal) something like L on [0,1]. Tf Z?([p,q]) C [p,q| the
conditions for renormalization are present. Let A be the map Az = (z—q)/(p—19q),
sending [p, q] onto [0,1]. The renormalized L? is given by RL(z) = AL*A~ (),
where R is the renormalization operator acting on L.

For certain r one may be able to repeat this process. If one can do it indef-
initely then L is called infinitely renormalizable. This is a very special situation
but occurs for the Feigenbaum map L, above.

Lanford found computer assisted proofs of the conjectures of Feigenbaum and
subsequently Sullivan put them into a broader, detailed, conceptual framework,
finding important relations between 1-dimensional dynamics and parts of classical
function theory as Kleinian groups.

Yet the proof of fast (exponential) convergence of the renormalizations, a
basic ingredient in this program, was missing until McMullen’s beautiful work
was published in the second of his two Annals of Math Studies in 1996. The
fast convergence was necessary to yield the crucial rigidity of the theory (“Cl*e
conjugacy”).
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With the notation as above, McMullen’s result for the Feigenbaum map may
be expressed by the estimate:

‘RkLs(w) — F(m)‘ <cft, p<l.

Complex one dimensional dynamics is the study of the iterates of a polynomial
map P : C — C. This has become the most advanced and the most technical part
of dynamics. Yet one simple problem may be singled out as giving some focus to
this subject.

Among polynomial maps of a given degree d, are the hyperbolic ones dense?
A polynomial is called hyberbolic (sometimes axiom A), if the orbits of its critical
points tend under time to an attracting cycle (“including infinity”).

I naively gave this as a thesis problem in the 1960’s. Today it is still unsolved
even for d = 2, but there are a number of partial results.

Quadratic dynamics may be studied for polynomials in the normalized form

P.(2)=2*+¢

with parameter ¢ € C. The unique critical point is zero and if it tends to oo under
iteration, the dynamics is well understood in terms of symbolic dynamics. The
Mandelbrot set M is defined as the set of ¢ € C for which this is not the case.
This often pictured set can be thought of as a “tree with fruit,” the fruit being
the components of its interior. McMullen proves in the first of his Annals of Math
Studies:

If ¢ is in o component of the interior of the Mandelbrot set which meets the
real axis, then P, is hyperbolic.

As McMullen writes, “if one runs the real axis through M, then all the fruit
which is skewered is good.”

Earlier Yoccoz had done an important special case, and I am ignoring here
much other earlier fundamental work in complex (and real) dynamics such as
Fatou, Julia, Douady and Hubbard. I am also ignoring the later work of Lyubich
and Graczyk-Swiatek.

Again the ideas of renormalization play a big role in the proof but now in the
context of complex maps.

To describe more precisely these ideas, the idea of a quadratic-like map is
useful. A quadratic polynomial map C — C is a proper map of degree 2. A
holomorphic proper map f : U — V of degree 2, with the closure of U a compact
subset of V', and having a critical point ¢ in U, is called quadratic-like. Here U,V
are supposed simply connected open sets of the complex numbers. For example,
an iterate of a quadratic polynomial restricted to an appropriate neighborhood of
its critical point is often quadratic like. If moreover, the critical point of f doesn’t
escape (all the iterates of ¢ are well defined), then according to Douady-Hubbard,
this map is topologically conjugate to a quadratic map of the form P.(z) = 2% +c¢,
for some ¢ in the Mandelbrot set M.

The map P.(z) = 2% + ¢ with ¢ € M is said to be renormalizable if P7 is
quadratic-like, the critical point 0 € U and 0 doesn’t escape. P, is called infinitely
renormalizable if there are infinitely many values of such n. For the problem of
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density of hyperbolic polynomials in degree two, the case of finitely renormalizable
points had been dealt with earlier by Yoccoz. McMullen’s work is on the problem
of infinitely renormalizable points in M. It contains an intricate analysis of the
dynamics of these maps.

Moreover in these two books McMullen establishes new results in complex
function theory and the geometry of 3-manifolds.

Another important result of McMullen is his proof of Kra’s “Theta conjec-
ture.” Let X be a compact Riemann surface with a finite number of points re-
moved and its associated Riemannian curvature constant at —1, in other words
a hyperbolic surface. Its universal covering, A — X, has as its group of cover-
ing transformation, G, the fundamental group of X. Let Q(A) be the space of
holomorphic quadratic differentials ¢ with finite norm given by ||¢|| = [ |¢| and
similarly define Q(X). To ¢ € Q(A) one may associate @¢ € Q(X) by the formula
O¢ = > g*¢d, the sum being over the elements g of G. This is well defined since
the sum is G-invariant. The sum is the Poincaré series.

It is easily shown that the norm of this operator © is less than or equal to
one. Kra’s conjecture and McMullen’s theorem asserts that in fact ||@]| is strictly
less than one. But McMullen proves much more. For a general class of coverings
Y — X of Riemann surfaces he characterizes those for which his conclusion is true
(in terms of “amenable” covers).

Armed with this work on Kra’s conjecture, he is able to make a substantial
contribution to Thurston’s program of introducing hyperbolic structures for a large
class of 3-manifolds.

I have given a brief glimpse of what Curt McMullen has accomplished, but
would like to emphasize that his work has encompassed a large realm of the kind
of mathematics that lies at the cross-section of many paths of our rich culture.
McMullen is not a dynamicist, not an analyst nor a geometer. He is a mathemati-
cian.
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THE WORK OF PETER W. SHOR
RoNALD GRAHAM

Much of the work of Peter Shor has a strong geometrical flavor, typically coupled
with deep ideas from probability, complexity theory or combinatorics, and always
woven together with brilliance and insight of the first magnitude. Due to the space
limitations of this note, T will restrict myself to brief descriptions of just four of
his remarkable achievements, (unfortunately) omitting discussions of his seminal
work [8] on randomized incremental algorithms (of fundamental importance in
computational geometry) and his provocative results in computational biology on
self-assembling virus shells.

1 TWO-DIMENSIONAL DISCREPANCY, MINIMAX GRID MATCHINGS AND ONLINE
BIN PACKING

The minimax grid matching problem is a fundamental combinatorial problem aris-
ing the the average case analysis of algorithms. To state it, we consider a square S
of area N in the plane, and a regularly spaced v/ N x v/N array G (=grid) of points
in S. Let P be a set of N points selected independently and uniformly in S. By a
perfect matching of P to G we mean a 1 -1 map A: P — (. For each selection P,
define L(P) = miny maxpcp d(p, A(p)), where A ranges over all perfect matchings
of P to G, and d denotes Euclidean distance.

THEOREM [Shor [24], Leighton/Shor [21]]
With very high probability,

E(L(P)) = ©((logN)*/*)

The proof is very intricate and ingenious, and contains a wealth in new ideas which
have spawned a variety of extensions and generalizations, notably in the work of
M. Talagrand [30] on majorizing measures and discrepancy.

A classical paradigm in the analysis of algorithms is the so-called bin packing
problem [10], in which a list W = (wq,ws,... ,w,) of “weights” is given, and
we are to required to pack all the w; into “bins” with the constraint that no bin
can contain a weight total of more than 1. Since it is NP-hard to determine the
minimum number of bins which W requires for a successful packing
( or even to decide if this minimum number is 2!), extensive efforts have been made
for finding good approximation algorithms for producing near-optimal packings.

In the Best Fit algorithm, after the first ¢ weights are packed, the next weight
wiy1 is placed into the bin in which it fits best, i.e., so that the unused space
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in that bin is less than it would be in any other bin. (This is actually an online
algorithm). In his thesis [23] , Shor proved the very surprising (and deep) result
that when the w; are chosen uniformly at random from [0, 1], then with very high
probability, the amount of wasted space has size ©(n'/?(logn)3/) .

An “up-right” region R = R(f) of the square S is defined as the region in S
lying above some continuous monotonically non-increasing function f (e.g., S is
itself up-right). If P is a set of N points chosen uniformly and independently at
random in S, we can define the discrepancy A(R) = || RNP | — area(R) | . An old
problem in mathematical statistics (from the 1950’s; see [5]) was the estimation of
supp A(R) over all up-right regions of S. This was finally answered by Leighton
and Shor in [24, 21], and it is now known that

sup A(R) = O(N'2(log N)*/1)).

The preceding results give just a hint of the numerous applications these
fertile techniques have found to such diverse areas as pseudo-random number gen-
eration, dynamic storage allocation, wafer-scale integration and two-dimensional
bin packing (see [9, 20, 17]).

2 DAVENPORT-SCHINZEL SEQUENCES

A Davenport-Schinzel sequence DS(n, s) is a sequence U = (u1,ug, ..., Um) coOm-
posed of n distinct symbols such that u; # wu;y1 for all 4, and such that U con-
tains no alternating subsequence of length s + 2, i.e., there do not exist indices
i1 <id2 < ...<igyzsuchthat u; =wusyy =uj, = ...=aF#b=uy =u;, =....
We define

As(n) = max{m : (u1,... ,Um) is a DS(n, s) — sequence}.

Davenport-Schinzel sequences have turned out to be of central importance in com-
putational and combinatorial geometry, and have found many applications in such
areas as motion planning, visibility, Voronoi diagrams and shortest path algo-
rithms. It is known that DS(n, s)-sequences provide a combinatorial character-
ization of the lower envelope of n continuous univariate functions, each pair of
which intersect in at most s points. Hence, As{n) is just the maximum number of
connected components of the graphs of such functions, and accurate estimates of
As(n) can often be translated into sharp bounds for algorithms which depend on
function minimization. It is trivial to show that A (n) = n and Aa(n) = 2n — 1.
The first surprise came when it was shown [15] that As(n) = ©(na(n)) where
a(n) is defined to be the functional inverse of the Ackermann function A(%), i.e.,
a(n) ;= min{t : A(t) > n}. Note that a(n) is an extremely slowly growing function
of n since A is defined as follows:

A(t)=2t, t>1, and Ap(t) = A1 (At —1)), k>2,t>2.

Thus, A2(t) = 2¢, A3(t) is an exponential tower of n 2’s, and so on. Then A(t)
is defined to be A;(t). The best bounds for A;(n), s > 3 in [15] were rather

DOCUMENTA MATHEMATICA - EXTRA VOLUME ICM 1998 - [ - 133—-140



THE WORK OF PETER W. SHOR 135

weak. This was remedied in [1] where Shor and his coauthors managed to show by
extremely delicate and clever techniques that Ag(n) = ©(n2%™). Thus, DS(n, 4)-
sequences can be much longer than DS(n, 3)-sequences (but are still only slightly
non-linear). TIn addition, they also obtained almost tight bounds on all other
As(n),s > 4.

3 TiLing R* WITH CUBES

In 1907, Minkowski made the conjecture (in connection with his work on extremal
lattices) that in any lattice tiling of R” with unit n-cubes, there must be two cubes
having a complete facet ( = (n — 1)-face) in common. This was generalized by
O. Keller [18] in 1930 to the conjecture that any tiling of R” by unit n-cubes
must have this property. This was confirmed by Perron [22] in 1940 for n < 6,
and shortly thereafter, Hajés [14] proved Minkowski’s original conjecture for all
n. However, in spite of repeated efforts, no further progress was made in proving
Keller’s conjecture for the next 50 years. Then in 1992, Shor struck. He showed
(with his colleague J. Lagarias) that in fact Keller’s conjecture is false for all
dimensions n > 10. They managed to do this with an very ingenious argument
showing that certain special graphs suggested by Corradi and Szabé [11] of size 4™,
must always have cliques of size 2" (contrary to the prevailing opinions then), from
which it followed that Keller’s conjecture must fail for R” . The reader is referred
to [19] for the details of this combinatorial gem, and to [29] for a fascinating history
of this problem. I might point out that this is another example of an old conjecture
in geometry being shattered by a subtle combinatorial construction, an earlier one
being the recent disproof of the Borsuk conjecture by Kahn and Kalai [16]. It is
still not known what the truth for Keller’s conjecture is when n = 7,8, or 9.

4 QUANTUM COMPUTATION

It has been generally believed that a digital computer (or more abstractly, a Turing
machine) can simulate any physically realizable computational device. This, in
fact is the thrust of the celebrated Church - Turing thesis. Moreover, it was also
assumed that this could always be done in an eflicient way, i.e., involving at most
a polynomial expansion in the time required. However, it was first pointed out by
Feynman [13] that certain quantum mechanical systems seemed to be extremely
difficult (in fact, impossible) to simulate efficiently on a standard (von Neumann)
computer. This led him to suggest that it might be possible to take advantage of
the quantum mechanical behavior of nature itself in designing a computer which
overcame these difficulties. In fact, in doing so, such a “quantum” computer might
be able to solve some of the classical difficult problems much more efficiently as
well. These ideas were pursued by Benioff [4], Deutsch [12], Bennett [2] and
others, and slowly, a model of quantum computation began to evolve. However,
the first bombshell in this embryonic field occurred when Peter Shor [25, 26] in
1994 announced the first significant algorithm for such a hypothetical quantum
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computer, namely a method for factoring an arbitrary composite integer NV in
c(log N)?loglog N logloglog N

steps. This should be contrasted with the best current algorithm on (classical)
digital computers whose best running time estimates grow like

exp(cN/3 (log N)?/3).

Of course, no one has yet ruled out the possibility that a polynomial-time factoring
algorithm exists for classical computers (cf. the infamous P vs. NP problem), but
it is felt by most knowledgeable people that this is extremely unlikely. In the
same paper, Shor also gives a polynomial-time algorithm for a quantum computer
for computing discrete logarithms, another (apparently) intractable problem for
classical computers.

There is not space here to describe these algorithms in any detail, but a few
remarks may be in order. In a classical computer, information is represented by
binary symbols 0 and 1 (bits). An n-bit memory can exist in any of 2% logical
states. Such computers also manipulate this binary data using functions like the
Boolean AND and NOT. By contrast, a quantum bit or “qubit” is typically a
microscopic system such as an electron (with its spin) or a polarized photon. The
Boolean states 0 and 1 are represented by (reliably) distinguishable states of the
qubit, e.g., |0) > spin { and |1) + spin —1. However, according to the laws of
quantum mechanics, the qubit can also exist in a continuum of intermediate states,
or “superpositions”, «|0) + 3|1) where a and § are complex numbers satisfying
|laf? +18* = 1.

More generally, a string of n qubits can exist in any state of the form

11...1

¢=00...0

where the ¢, are complex numbers such that 3 _ [1,|* = 1. In other words, a quan-
tum state of n qubits is represented by a unit vector in a 2"-dimensional complex
Hilbert space, defined as the tensor product of the n copies of the 2-dimensional
Hilbert space representing the state of a single qubit. It is the exponentially large
dimensionality of this space which distinguishes quantum computers from classical
computers. Whereas the state of a classical system can be completely described by
separately specifying the state of each part, the overwhelming majority of states
in a quantum computer are “entangled,” i.e., not representable as a direct product
of the states of its individual qubits. As stated in [3], “the ability to preserve and
manipulate entangled states is the distinguishing feature of quantum computers,
responsible both for their power and for the difficulty in building them.”

The crux of Shor’s factoring algorithm (after reducing the problem of factoring
N to that of determining for a random X coprime to IV, the order of X (modulo N),
is a brilliant application of the discrete Fourier transform in such a way as to have
all the incorrect candidate orders (quantum mechanically) cancel out, leaving only
(multiples) of the correct order of X appearing (with high probability) when the
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output is finally measured. T heartily recommend that the reader consult the paper
of Shor in this Volume, or [26, 31] for more details.

Of course, complicated quantum systems are delicate creatures and any sub-
stantial interaction with the external environment can cause rapid “decoherence,”
which then can result in the system collapsing to some classical state, thereby
prematurely terminating the ongoing computation. This was the basis for the
strong initial skepticism that any serious quantum computer could actually ever
be built. However, Shor’s subsequent contributions changed this situation substan-
tially. His paper [27] in 1995 announced the discovery of quantum error-correcting
codes, cutting through some widely held misconceptions about quantum informa-
tion, and showing that suitable measurements of a quantum system can acquire
sufficient information for detecting and correcting errors without disturbing any of
the encoded information. These ideas were further developed in [6, 7] to produce
a new theory of quantum error-correcting codes for protection against multiple
errors, using clever ideas from orthogonal geometry and properties of the recently
discovered ordinary (as opposed to quantum) codes over GF(4).

Finally, any quantum computer which is actually built will be composed of
components which are not completely reliable. Thus, it will be essential to create
algorithms which are “fault-tolerant” on such computers. In yet another path-
breaking paper [28], Shor in 1996 showed how this indeed could be done.

Not only does Peter Shor’s work on quantum computation during the past
four years represent scientific achievements of the first rank, but in my mind it
holds out the first real promise that non-trivial quantum computers may actually
exist in our lifetimes.
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LocAL INDEX THEORY AND HIGHER ANALYTIC TORSION

JEAN-MICHEL BismuT!

ABSTRACT. In this paper, we report on the construction of secondary
invariants in connection with the Atiyah-Singer index theorem for fami-
lies, and the theorem of Riemann-Roch-Grothendieck. The local families
index theorem plays an important role in the construction.

In complex geometry, the corresponding objects are the analytic torsion
forms and the analytic torsion currents. These objects exhibit natu-
ral functorial properties with respect to composition of maps. Gillet
and Soulé have used these objects to prove a Riemann-Roch theorem in
Arakelov geometry.

Also we state a Riemann-Roch theorem for flat vector bundles, and report
on the construction of corresponding higher analytic torsion forms.

1991 Mathematics Subject Classification: 32L10,57R20,58G10
Keywords and Phrases: Sheaves and cohomology of sections of holomor-
phic vector bundles. Characteristic classes and numbers. Index theory
and related fixed point theory.

purpose of this paper is to report on the construction of certain secondary

invariants which appear in connection with the families index theorem of Atiyah-
Singer [4] and the Riemann-Roch-Grothendieck theorem [7]. These invariants are

refin

ements of the 7 invariant of Atiyah-Patodi-Singer [2], and of the Ray-Singer

analytic torsion for de Rham and Dolbeault complexes [50], [51], which are spectral
invariants of the considered manifolds.

Progress in this area was made possible by the development of several related

tools:

The discovery by Quillen [48] of superconnections.

A better understanding of local index theory (Getzler [31]) and the proof of
a local families index theorem by the author [9], and of related results by
Berline-Vergne [6], Berline-Getzler-Vergne [5].

Progress on the theory of determinant bundles, by Quillen [49], Freed and
the author [16], and Gillet, Soulé and the author [17].

The development of adiabatic limit techniques to study the behaviour of
certain spectral invariants (like the n-invariants of Atiyah-Patodi-Singer [2])
under degenerations, by Cheeger and the author [15], Mazzeo-Melrose [44],
and Dai [29].

ISupported by the Institut Universitaire de France (I.U.F.) and by
C.N.R.S., URA 1169.
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Algebraic geometry gave an essential impetus to the above developments. Ex-
tending earlier work by Arakelov and Faltings, Gillet and Soulé [33],[34] developed
an algebraic formalism which could use as an input results coming from analysis,
and invented the adequate Riemann-Roch-Grothendieck theorem.

Our starting point is the local families index theorem [9], [5]. Let 7 : X — S
be a fibration with compact even dimensional oriented Riemannian spin fibre Z.
Let E be a complex vector bundle on X . Let (DZ).cs be the associated family
of Dirac operators [3] acting along the fibres Z. Let Ind(D%) € K(S) be the
corresponding index bundle. In [4], Atiyah and Singer proved the index theorem
for families,

(0.1) ch(Ind(D%)) = . [E(TZ)ch(E) inH(S,Q).

In [9], starting from natural geometric data, connections were introduced
on the vector bundles appearing in (0.1), so that by Chern-Weil theory, we can
represent the cohomology classes in (0.1) by differential forms. Using a special case
of a Quillen superconnection [48], the Levi-Civita superconnection [9], a “natural”
family of closed differential forms azcg, on S was produced, which interpolates
between the differential forms representing the right-hand side of (0.1) (for ¢t — 0)
and the left-hand side of (0.1) (for ¢ — o0, by [6], [5]). Moreover, following
earlier work by Quillen [49], Freed and the author [16] proved a curvature theorem
for smooth determinant bundles associated to a family of Dirac operators. Also
extending earlier work in [16], [27], Cheeger and the author [15] constructed an
odd form on S, 77, which transgresses equation (0.1) at the level of differential
forms. These forms 7] were used to evaluate the “adiabatic” limit of n-invariants
[16], [27], [15].

Let f : X — S be a proper holomorphic map of complex quasiprojective
manifolds, and let E be a holomorphic vector bundle on X. By Riemann-Roch-
Grothendieck [7],

(0.2) Td(TS)ch(f.E) = f.[Td(TX)ch(E)]in H(S, Q).

Assume that 7 : X — S is a holomorphic fibration with compact fibre Z. Let
E be a holomorphic vector bundle on X. Let (Q(Z, E‘Z),EZ) be the family of
relative Dolbeault complexes along the fibres Z. Let wX be a closed (1,1)-form on
X restricting to a Kéhler metric g7# along the fibres Z, and let g be a Hermitian
metric on E. Recall that a holomorphic Hermitian vector bundle is naturally
equipped with a unitary connection, which can be used to calculate Chern-Weil
forms. Assume that Rm, FE is locally free. Let ¢*™=F be the L, metric on Rm.F
one obtains via Hodge theory. In work by Gillet, Soulé and the author [17], and
by Koéhler and the author [20], a sum of real (p,p) forms on S was constructed,
the analytic torsion forms T'(w*, %), such that the following refinement of (0.2)
holds,
o,
2
The forms T'(w™, g¥) also refine the forms 7j of [15]. The component of degree 0 of
T (wX, gP) is the fibrewise holomorphic Ray-Singer torsion [51] of the considered

(0.3) (wX, ¢F) = ch(Rn, E, g""™F) — 1, [Td(TZ, g7 %)ch(E, gE)] .
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Dolbeault complex, a spectral invariant of the Hodge Laplacians along the fibres. It
was used by Quillen [49] to construct a metric on (det(Rw.E))~!, whose properties
were studied by Quillen [49], and by Gillet, Soulé and the author [17].

At the same time, Gillet and Soulé were pursuing their effort to construct
an intersection theory on arithmetic varieties, in order to formulate a Riemann-
Roch-Grothendieck in Arakelov geometry. In [33], [34], they constructed refined
Chow groups CH , and Hermitian K-theory groups K. They used the analytic
torsion forms T'(w™, g¥) to define a direct image in K. From a computation with
Zagier [35] of the analytic torsion of PN equipped with the Fubini-Study metric,
they conjectured a Riemann-Roch-Grothendieck theorem in Arakelov geometry,
where the additive genus associated to an exotic power series R(x) appears as a

correction to the Todd genus Td.

In [11], a secondary characteristic class for short exact sequences of holomor-
phic vector bundles was constructed, which was evaluated in terms of the R class.

In [10], [18], the analogue of the above construction for submersions was car-
ried out for immersions. Namely, let ¢ : ¥ — X be an embedding of complex
manifolds, let F' be a holomorphic vector bundle on Y, and let (E,v) be a reso-
lution of i, F by a complex of holomorphic vector bundles on X. Under natural
compatibility assumptions on Hermitian metrics g%, g, gV¥/x, analytic torsion
currents T'(E, g¥) were constructed on X, such that
(0.4) %T(E, g%) = Td™ (Ny,x, g""/*)ch(F, g¥)dy — ch(E, g*).

Again, (0.4) refines (0.2) at the level of currents. The functoriality of these con-
structions was established in work by Gillet, Soulé and the author [19].

In [21], using [11], Lebeau and the author calculated the behaviour of Quillen
metrics under resolutions. Then Gillet and Soulé [36] gave a proof of their
Riemann-Roch formula for the first Chern class. In [30], Faltings provided an
alternative strategy to a proof of the Riemann-Roch theorem of Gillet-Soulé, by
using deformation to the normal cone. In [13], the author extended his previous
result with Lebeau [21]. Namely, in the case of the composition of an embedding
and a submersion, a natural combination of analytic torsion forms is expressed in
terms of analytic torsion currents. When combined with the arguments of Gillet
and Soulé [36], this leads to a proof of the Riemann-Roch-Grothendieck theorem
of Gillet and Soulé in the general case. A remaining mystery of the theory was the
fact that the genus R seemed to appear twice in the theory: through the explicit
spectral computations in [35] of the analytic torsion of P, and also in the eval-
uation of certain characteristic classes in [11]. The mystery was solved by Bost
[24] and Roessler [53]. They show in particular that the evaluation in [35] of the
analytic torsion of P,, can be obtained as a consequence of [11],[21].

In [22], Lott and the author extended the formalism of higher analytic torsion
to de Rham theory. Assume that 7 : X — S is a fibration of real manifolds
with compact fibre Z. Let F' be a complex flat vector bundle on X. Then Rw,F
is a flat vector bundle on S. The differential characters of Cheeger-Simons [28]
produce Chern classes of flat vector bundles on a manifold M, with values in
H°d4(M,C/Z). In [22], a Riemann-Roch-Grothendieck formula was established
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for the real part of these classes, and corresponding real higher analytic torsion
forms were introduced, whose part of degree 0 is just the Ray-Singer torsion of
[50]. From these torsion forms, one can produce certain even cohomology classes
on S. In degree 0, the Ray-Singer conjecture, proved by Cheeger [26] and Miiller
[45], shows that, for unitarily flat vector bundles, the Ray-Singer torsion coincides
with the Reidemeister torsion [52]. In positive degree, the evaluation of the higher
analytic torsion forms of [22] is still mysterious, although some evidence suggests
they might possibly be related to constructions by Igusa and Klein [39] using Borel
regulators.

This paper is organized as follows. In Section 1, we state the local families
index theorem. In Section 2, we introduce the higher analytic torsion forms.
In Section 3, we describe the analytic torsion currents. In Section 4, we give a
compatibility result between analytic torsion forms and analytic torsion currents,
and we state the Riemann-Roch theorem of Gillet-Soulé. Finally, in Section 5, we
state a Riemann-Roch theorem for flat vector bundles.

For a more detailed survey on the analytic aspects of this paper, we refer the
reader to [14].

1. THE LOCAL FAMILIES INDEX THEOREM

1.1. THE LOCAL INDEX THEOREM. Let Z be a compact even dimensional oriented
spin manifold. Let g7# be a Riemannian metric on T'Z. Let S7% = ST @ ST be
the Za-graded hermitian vector bundle of (T'Z, g7?) spinors. Let VTZ be the Levi-
Civita connection on (TZ, g7%?). Let vS™ = vST7 @ v be the corresponding
unitary connection on S7% = STZ¢ STZ Let (E, g%, V) be a complex Hermitian
vector bundle on Z, equipped with a unitary connection V.

Let ¢(T'Z) be the bundle of Clifford algebras of (T'Z, g7#). Then ST4 @ E is
a Clifford module for the Clifford algebra ¢(T'Z). If X € TZ, let ¢(X) denote the
action of X € ¢(TZ) on ST4 @ E. Put

(1.1) H=C>*2,S""®E), H. =C>(Z,51? @ E).

Let e1,- -+ , e, be an orthonormal basis of T'Z.
Let DZ be the Dirac operator acting on H,
n

(1.2) D? =3 c(e;)VE TE,

e;
1

Let DZ be the restriction of DZ to Hy, so that

z | 0o D%
The elliptic operator DZ is Fredholm. Its index Ind(D%) € Z is given by
(1.4) Ind(D?) = dim(ker D7) — dim(ker DZ).
Let A be the multiplicative genus associated to the power series
~ x/2
1. Alx) = ————.
(1.5) (z) sinh(x/2)
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The Atiyah-Singer index theorem [3] asserts that

(1.6) Ind(D%) = /ZA(TZ)ch(E).

If F=F, @ F_ is a Za-graded vector space, let 7 = £1 on Fy define the
grading. If A € End(F), let Trs[A] be the supertrace of A, i.e. Trs[A] = Tr[TA].
Now we state the McKean-Singer formula [42].

ProrosiTiON 1.1. For any t > 0,
(1.7) Ind(D%) = Tryfexp(—tD??)].

Let P;(x,y) be the smooth kernel of exp(—tD#?) with respect to the volume
element dy, so that (1.7) can be written as

(1.8) Ind(D?) = /ZTrS[Pt(:c, z)|dz.

In Patodi [46], Gilkey [32], Atiyah-Bott-Patodi [1], it was proved that, as con-
jectured in [42], “fantastic cancellations” occur in the asymptotic expansion of
Trs[P;(z, )] , so that as t — 0,

(1.9) Tr[Pi(z, )] = {A(TZ,VT7)ch(E, VF)}max,

Another proof of (1.9) by Getzler [31] has considerably improved our geometric
understanding of the above cancellations. Equation (1.9) is known as a local index
theorem. From (1.8), (1.9), one recovers the index formula (1.6).

1.2. QUILLEN’S SUPERCONNECTIONS. Here we follow Quillen [48]. Let £ = EL @
E_ be a Za-graded vector bundle on a manifold S.

DEFINITION 1.2. A superconnection is an odd first order differential operator A
acting on C(S, A(T*S)®E) such that if w € C=(S,A(T*S)),s € C=(S, E),

(1.10) Aws) = dws + (—1)48*wAs.

By definition, the curvature of A is A2 € C*°(S, (A(T*S)REnd(E))*v*"). Let
0w e AT*S) — pw = (2im)~8«/2y € A(T*S).

DEFINITION 1.3. Let ch(E, A) be the even form on S,
(1.11) ch(E, A) = ¢Trglexp(—A?)].

THEOREM 1.4. The even form ch(E,A) is closed, and its cohomology class
[ch(E, A)] is given by

(1.12) [ch(E, A)] = ch(E,) — ch(E_).

Remark 1.5. Observe the striking algebraic similarity of the right-hand sides of
(1.7) and (1.11) with the density exp(—z?) of the gaussian distribution on R.
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1.3. LOCAL FAMILIES INDEX THEOREM AND ADIABATIC LIMITS. Let 7 : X — S
be a submersion of smooth manifolds with even dimensional compact fibre Z. We
assume that 77 is oriented and spin. Let ¢7% be a Riemannian metric on T'Z.
Let (E,g¥,VF) be a Hermitian vector bundle on X with unitary connection. Let
(DZ)s¢s be the family of Dirac operators acting fibrewise along the fibres Z on
H, = H s ® H_,. Then to the family of Fredholm operators (Dis)ses, there is
an associated virtual vector bundle Ind(DZ) € K(S). The families index theorem

of Atiyah-Singer [4] asserts in particular that
(1.13) ch(Ind(D?)) = 7. [A(T Z)ch(E)] in H***(S, Q).

Assume temporarily that X and S are even dimensional oriented compact
spin manifolds. Let g7, g7 be Riemannian metrics on TX,TS. For ¢ > 0, put

1
(1.14) gt =g"* + —argTs,
3

Letting € tend to 0 is often described as taking an adiabatic limit. Let DX be the
Dirac operator associated to (g%, V¥).

Let VIX and V7% be the Levi-Civita connections on (TX,gl*) and
(TS,g™%). Let THX be the orthogonal bundle to TZ in TX with respect to
g™ . IfU € TS, let UY € THX be the lift of U in THX. Let P74 be the
projection TX =THX @ TZ — TZ. Let VTZ be the connection on (T'Z, g7%),

(1.15) viZ = pTayTX
which does not depend on € > 0. A trivial calculation shows that as ¢ — 0,
(1.16) A(TX,NTX) = o [A(TS, VT A(TZ,VT7).
Let Pf(x,y) be the smooth kernel of exp(—tDZX?). Then by (1.9),
(1.17) Trg[Pf (z,2)] — {A(TX,VIX)ch(E, V)",
We change our notation slightly, and temporarily assume that gZ* is given
by 97X = 74" @ ¢TZ. I U,V € TS, put
(1.18) T(U,V)=-PH2[UuH v
If U € TS, let divz(UH) be the divergence of U with respect to the vertical vol-

ume form dvyz. Let (e1,...,e,) and (fi,..., fm) be orthogonal bases of (T'Z, g7%)
and (TS, g"%). If STX is the vector bundle of (T'X, g7X) spinors,

(1.19) STX — p*85T9R 872,

Put

(120) DH _ ;C(fa)(v}r;STS®STZ®E + %leZ(ff))
Then by [15],

(1.21) D¥< = /eD" + D7 - %C(fa)c(fB)C(T(faafB))'
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Put
(1.22) H=C>(Z,(S"7 @ E)|z).

Then H = H, @& H_ is an infinite dimensional Za-graded vector bundle on S, and
C(M,7*58T5 @ E) = C=(S, STSQH).

DEFINITION 1.6. Let V¥ be the connection on H, such if U € T'S,s € C>(S, H),
TZ 1 .
(1.23) Vgs:VEH ®E8+§d1VZ(UH)S
Then DY is the Dirac operator action on C'*(S,STS®H) associated to
g™S, V). Following [9], we formally replace ¢(f,) by f® A . in (1.21).
g y Yy

DEFINITION 1.7. For ¢t > 0, put
1
(1.24) A, =VH 4 ViD7 - S—ﬁfafﬁc(T(fa, f8))-

Then A; is a superconnection on H, the Levi-Civita superconnection associ-
ated to (THX,gT%,VE).
For t > 0, let oy be the even form on S

(1.25) o = @Trglexp(—A2)].
Now we state the local families index theorem [9], [6], [5].

THEOREM 1.8. The form «y is real, even and closed. Moreover

(1.26) [a4] = ch(IndD?) € H**(B, Q).
Ast — 0,
(1.27) oy = T [A(TZ,V"?)ch(E,VF)] 4+ O(t).

Ifker D C H is a vector bundle, and vker D s the orthogonal projection of VH
on ker D%, as t — 400,

1
Vi

Remark 1.9. Equations (1.26) and (1.27) were proved by the author in [9], and
equation (1.28) by Berline-Vergne [6], Berline-Getzler-Vergne [5]. Equation (1.27)
is known as the local families index theorem. It extends the local index formula
given in (1.9).

(1.28) oy = ch(ker DZ, VkerDZ) +O(

2. COMPLEX GEOMETRY AND HIGHER ANALYTIC TORSION FORMS

2.1. THE ANALYTIC TORSION FORMS OF A HOLOMORPHIC COMPLEX. Here we
follow [17]. Let S be a complex manifold, and let

(2.1) (E,0):0 = Ep > Ep1... > Eg— 0

be a holomorphic complex of vector bundles on S. Put

(2.2) E, = @ E;, E_ = @ E;.

7 even iodd
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Then E = E, ® E_ is Za-graded. Let g¥ = d.", g¥" be a Hermitian metric on
E =@, Ei. Let VE = @", V¥ be the corresponding holomorphic Hermitian
connection. Let v* be the adjoint of v. Set

(2.3) V =v+o".

For t > 0, set

(2.4) c, = v 4+ Vi, ¢ =V + Vivr,
C, = C/+Cj.

Let N be the number operator of E, which acts on Ej by multiplication by k.

PROPOSITION 2.1. The following identities hold

2 2
(2.5) " — 0,07 =0,
act” /
Ot :2%5[01;/’]\7]’ 866; :72%5[027]\]]'

DEFINITION 2.2. Let P® be the set of smooth real forms on S, which are sums
of forms of type (p,p). Let P9 be the set of o € P% which can be written as
a = 0B + 07, with 8 and 7 smooth.

DEFINITION 2.3. For t > 0, put
(2.6) oy = goTrS[exp(—Cf)], vt = pTrg[N exp(—Cf)].

The following result is obtained in [17] as an easy consequence of Proposition
2.1.

PROPOSITION 2.4. The forms oy and v; lie in PS. Also
Oy 00
ot 2mt’
Assume now that H(F,v) is of locally constant dimension. Then H(E,v)

is a holomorphic Z-graded vector bundle. By finite dimensional Hodge theory,
H(E,v) ~ker V inherits a Hermitian metric g//(#:*), Set

2.7)

m

(2.8) ch'(E,g”) = (~1)'ich(E,g").
1=0

By [6], [5], as t — 400,

(2.9) a; = ch(H(E,v), g"(E)) 4 O(

v = ch'(H(E,v), g?Ev)) + O(

),
).

S S

DEFINITION 2.5. For s € C,0 < Re(s) < 1/2, set
I

ts_ (’Yt - FYOO)dta
I'(s) /0

T(5,9") = - R(E,g")0).

As the notation suggests, by (2.9), R(E,g%)(s) extends to a holomorphic
function of s near s = 0, so that T'(E, g¥) is well defined.

(2.10) R(E,9)")(s) =
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PROPOSITION 2.6. The form T(E, g¥) lies in P5°, and
00

2.11
( ) 2m

T(E.g") = ch(H(E,v),g" ")) — ch(E, g").
2.2. BOoTT-CHERN CLASSES. Let F be a holomorphic vector bundle on a complex
manifold S. Let g¥, ¢’ £ be two Hermitian metrics on E. Then by Bott and Chern
[25], and by [17], there is a uniquely defined class ch(E, g%, ¢'") € PS /P50 such
that

o If g% = g%, ch(E, g7, ¢'") = 0.

e The class ch(E, ¥, ¢'") is functorial.

e The following equation holds

90 ~ E IE 1E E

(2.12) 2iC (E,g%,g"")=ch(E,g"") — ch(E, g”).
The above classes are called Bott-Chern classes. The same construction applies to
classes like Td(E, gZ,¢'"). The class of forms T(E, g¥) € PS/PS0 constructed
in Definition 2.5 is also a Bott-Chern class.

2.3. THE HIGHER ANALYTIC TORSION FORMS ASSOCIATED TO A HOLOMORPHIC
SUBMERSION. Following work by Gillet, Soulé and the author [17], we will extend
the arguments of Section 2.1 to an infinite dimensional situation.

Let 7 : X — S be a holomorphic submersion with compact fibre Z. Let F
be a holomorphic vector bundle on X, and let Rw.E be the direct image of E.
In the sequel TX, TZ =TX/S ... denote the corresponding holomorphic tangent
bundles. Let w® be a real closed (1,1) form on X which restricts to a fibrewise
Kihler form on TZ = TX/S, so that if JT™Z is the complex structure of Tr Z,
w(J™®Z ) is a Hermitian product g7% on TZ . Let g¥ be a Hermitian metric
on E. Let TH X be the orthogonal bundle to TZ in TX with respect to wX. Let
(2, E| Z),EZ) be the family of relative Dolbeault complexes along the fibres Z.
Then Q(Z, Ez) can be equipped with the Lo metric

dvz
2.13 <s8'>= | <58 >pqe0a (2m)dimz
( ) S, S /Z 5,8 ZANT*OVZ)QE (27T)d1mZ

Let 5Z* be the adjoint of 52. Put

7497

(2.14) D% =19
DEFINITION 2.7. Let V(% F12) be the connection on Q(Z, E,z), such that if U €
TrS, if s is a smooth section of A(T*®NZ) ® E,

(Z,B,7) A(T*(U’I)Z)®ES

Q
(2.15) s o

s=V

Let T be the tensor defined in (1.18) associated to (¢74,TH#X). Then T is
of type (1,1). Let N be the number operator of Q(Z, E|z). Let w™¥ be the
restriction of w¥ to TE X. Then wX# is a smooth section of m* AV (TES).
Finally recall that A(T*(®1)S) ® E is a Clifford module for the Clifford algebra of
(TrZ, gTRZ).
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DEFINITION 2.8. For ¢t > 0, put

" 7z s (T
2.16 B, = Vto +vV¥&Ez)" o 7
( ) t 2@
B — V" s vaes D)
2,/2t)
X,H
B, = Bt—i—Bt,Nt:N—i—iwt .

Then one can show that, in (2.16), the superconnection B; is a form of the
Levi-Civita superconnection A/, considered in (1.24). Also, by [17], an obvious
analogue of Proposition 2.1 holds, with C}', C} replaced by B}, B;, and N replaced
by Nt-

DEFINITION 2.9. For t > 0, set
(2.17) a; = @Trglexp(—B2)], v = ¢Trg[N; exp(—B?)].

THEOREM 2.10. For t > 0, the form a; and ~; lie in P°, the form oy is closed
and

(2.18) [ar] = ch(Rm E)in H*"(S, Q),
dar _ 00
ot 2rt’
Furthermore, as t — 0, there are forms C_,,Co € P° such that
(2.19) a0 = mTA(TZ,g77)eh(E, ")) + O),
C_
Y = Tl + Co+ O(t).

Observe that the first equation in (2.19) is a consequence of the local families
index theorem of [9] stated in (1.27)

Assume that Rm.FE is locally free. Then the holomorphic vector bundle
Rm.E ~ ker DZ inherits a metric g™ ¥. By [5], as t — +o0,

1

(2.20) ar = ch(Rm.E,g""F) +O( ).

1
= ch'(Rm.E, "™ ") + O(—).
Ve (Rm.E. g ) (\/Z)
DEFINITION 2.11. For s € C,0 < Re(s) < 1/2, put
1 [t

2.21 R(wX, ¢F :f—/ 57 (e — oo )dt
( ) (w g )(S> F(S) 0 ('Yt Y ) )

0
—R(w™,¢")(0).
9 R(¥,6")(0)

In fact, by equations (2.19), (2.20), R(w™, g”)(s) extends to a holomorphic
function of s near s = 0, so that T'(wX, g¥) is well-defined. The forms T'(w™, g¥)
are called higher analytic torsion forms. The following result was established in
work by Gillet-Soulé and the author [17], and Kéhler and the author [20].

T(w™,g") =
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THEOREM 2.12. The form T(w™, g¥) lies in P°. Moreover
00
(2.22) 2fT(wX, g"%) = ch(Rr.E, g™ ") — n, [TA(TZ, " #)ch(E, g*))].
1T

Remark 2.13. Clearly (2.22) refines (0.2) at the level of differential forms. Kohler
and the author [20] showed that T'(w™,g®) € P9/PS? depends on w¥,g¥
via Bott-Chern classes. This result was proved before in degree 0 in [17]. A
consequence of [20] is that T'(w™,g¥) € P%/P%% depends on w¥X only via
gT%. Let PkerD” he the orthogonal projection of Q(Z, Ejz) on ker DZ. Set
pker D7, L _ | pkerD? pop g € C,Re(s) >> 0, put

(2.23) 0(s) = —Trg[N(D??2)s Pker D7)
Then
a0
(224) T(w™, ") = 5-(0).
Also eXP(—%%(O)) is called the Ray-Singer analytic torsion [51] of the complex

Q(Z,E|z). The Ray-Singer torsion is an alternate product of generalized determi-
nants of Laplacians.

By [17], the odd form 7j = =(0 — 8)T(w™,g") coincides with the form
constructed by Cheeger and the author in [15].

2.4. QUILLEN METRICS. Assume temporarily that S is a point. Put
(2.25) A= (det H(Z,E 7))~ ".

Then A is a complex line, the inverse of the determinant of the cohomology of
E. Let | | be the metric on A induced by the fibrewise Ly metric on g/(%Fi2),
which we obtain by identifying H(Z, E|z) to the corresponding harmonic forms.

DEFINITION 2.14. The Quillen metric | ||x on A is defined by

100

(2.26) I lIx=1"Ixexp(=55-(0).

In the general case where S is not a point, we still assume the existence of a
form wX taken as in Section 2.3. Let g7Z be an arbitrary fibrewise Kihler metric
on TZ. Let g¥ be a Hermitian metric on E. We no longer assume R7.E to be
locally free. Put

(2.27) ME) = (det Rm,.E) ™.

Then by Knudsen-Mumford [40], A(E) is a holomorphic line bundle on S, and for
any s € S, there is a canonical isomorphism.

(2.28) ME)s ~ (det(H (Zs, Ez,))) "

By Definition 2.14, the fibres A(E)s are equipped with the Quillen metric
Il lIa(e),- The following result was established by Quillen [49] in the case where
the fibres Z are a fixed Riemann surface, and by Gillet, Soulé and the author

[17], following earlier work by Freed and the author [16] on smooth determinant
bundles.
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THEOREM 2.15. The Quillen metric is smooth on A\(E). Moreover
(2.29) a(AE), || lIx) = ~m[Td(TZ,g77)ch(E, g7

Remark 2.16. Theorem 2.15 is a consequence of (2.22), and also of anomaly formu-
las [17], describing the variation of Quillen metrics when g%, g¥ themselves vary.
These anomaly formulas extend the Polyakov anomaly formulas for generalized
determinants on Riemann surfaces [47].

2.5. FUNCTORIALITY OF THE ANALYTIC TORSION FORMS WITH RESPECT TO
COMPOSITION OF SUBMERSIONS. Let

(2.30) 7——=TW

l/ l YV/S
TZ/Y TwW/v
Vv

Y —— T/;S

be a diagram of submersions my, g, my/s, Tw/v, with compact fibres Z,Y, X.
Let w",w"Y be closed (1,1) forms on W,V as in Section 2.3 . Let (FE,g”) be
a holomorphic Hermitian vector bundle on W, such that Rmw/s.E, Rrw v E,
Ry s Ry, o« E are locally free. Let Ty v (W', %), Twys(w", g%), Ty sw",
gt w/v+E) be the analytic torsion forms which are associated to the maps in the
above diagram. Then in work by Berthomieu and the author [8] and by Ma [41], us-
ing the adiabatic limit techniques of Cheeger and the author [15], Mazzeo-Melrose
[44] and Dai [29], these forms were shown to be naturally compatible, i.e. they
verify a relation which refines the functoriality of Riemann-Roch with respect to
the composition of submersions. Namely, let Td(TZ,TY, g7%,¢™Y) € PV /PW:0
be the Bott-Chern class such that

(2.31)

O TATZ,TY,g",g"™) = TAT2,"%) ~ 7y, [TATY, g™)] TATX, o).
(s

Under suitable assumptions, Ma [41] has constructed a Bott-Chern class a €
P3 /P59 such that

(2.32) 20 o = ch(Rmy 5. Rty v o B, gRmv/s=Rrw v E)

2im
_Ch(RTrW/S*Ea gRﬂ-W/S*E)a
for which the following result holds.
THEOREM 2.17. The following identity holds

Tws(WW, 9%) =Ty s(w", g"B™v/veE) 4y o, [TA(TY, g7 T v (W™, g7)]
(2.33) o — Ty . [TA(TZ, TY, g7, ™Y )ch(E, g7)] in PS /PSL.

Remark 2.18. The case where S is a point was considered in [8].
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3. THE ANALYTIC TORSION CURRENTS ASSOCIATED TO AN EMBEDDING

3.1. CONSTRUCTION OF THE ANALYTIC TORSION CURRENTS. Let i : Y — X be
an embedding of complex manifolds. Let Ny, x be the normal bundle to ¥ in X.
Let F be a holomorphic vector bundle on Y. Let

(3.1) (E,0):0 = Ep 5 Ep1... > Ey—0

be a holomorphic complex of vector bundles on X, which, together with a holomor-
phic restriction map: 7 : Egy — F, provides a resolution of the sheaf i.Oy (F).
In particular (E,v) is acyclic on X \ Y. By [10], H(E,v)y is a holomorphic vector
bundle on Y. Move precisely, if U € T Xy, let dyv be the derivative of v in
any holomorphic trivialization of (E,v) near Y. Then by dyv only depends on
the image 2 € Ny,x of U, and (0.v)? = 0. Let 7 : Ny,x — Y be the canonical
projection. Then there is a canonical isomorphism

(3.2) (T H((E,v)y),0:v) 2~ (1" (A(Ny,x) @ F),vV—1i.).

Let g% = @QOgEi,gNY/X,gF be Hermitian metrics on £ = &;2gE;, Ny, x, F' . As
in (2.3), put V = v +v*. Then H(E,v)y ~ kerV)y C E}y. Let g"(Ev) be the
corresponding metric on H(E,v).

We will say that g verifies assumption (A) with respect to g™v/x, g" if (3.2)
is an isometry. By [10], given ¢™v/x ¢¥"  there exists g% = @7 ,¢"" such that
assumption (A) is verified. From now on, we assume that (A) holds. For ¢ > 0,
we define ay,y; € PX as in (2.6). Let dy be the current of integration on Y. The
following result was proved in [10], using formulas of Mathai and Quillen [43].

THEOREM 3.1. Ast — +o0,

1

(3.3) oy =Td Y (Ny,x, g™V/*)ch(F, g")éy + O(%),

where O(\/Ag) is taken in the suitable Sobolev space.

Remark 3.2. Using (1.12), we find that (3.3) refines the theorem of Riemann-Roch-
Grothendieck [7] stated in (0.2) at the level of currents.

By (3.3), one can construct a current T'(E, g¥) on X as in (2.10). Let P;X be
the set of real currents which are sum of currents of type (p,p), whose front set
is included in Ny /X.R" We define P)),( ¥ as in Definition 2.2. The following result
was proved in [18].

THEOREM 3.3. The current T(E, g¥) lies in P{X. Moreover

00
(3.4) 5 T(E, g") = Td™ (Ny,x,g""/*)ch(F, g")dy — ch(E, g").

i
Remark 3.4. Harvey and Lawson [38] have also constructed currents related to
smooth versions of Riemann-Roch-Grothendieck for embeddings.
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3.2. FUNCTORIALITY OF THE ANALYTIC TORSION CURRENTS WITH RESPECT TO
THE COMPOSITION OF EMBEDDINGS. Let ¢/.Y’ — X, F’ (E’,v’) be another set of
data similar to the above data. Assume that Y and Y intersect transversally. Put
V" =Y NY' Then (EQE’,v®1 + 1&v') is a resolution of (Fjy»®@Fy,).

Let (g%, g"Nv/x,gf") and (gEl,gNY//X,gF/) be metrics verifying (A). Recall

~ ’ N N/ ~ ’

that Ny ,x = Ny, x|y»®Ny,xy». Then (g¥@g” ag|y§////x @g|y)////xa (99 @gy))
also verify (A). Let Pf/{uy,,PfL’gﬂ be the obvious analogues of Pj¥ ,Pé(  when
replacing Y by Y UY’. The following result was proved by Gillet, Soulé and the
author in [19].

THEOREM 3.5. The following identity holds

(3.5) T(ERE', g"®F"y = T(E, g®)ch(E', g%') +
Td™" (Ny,x, g™/ )ch(F, ¢")T(E', g% )y
in P?UY/ /P})/(!JO)// .

Remark 3.6. In [19], Theorem 3.5 is used to evaluate the currents T(E, g¥) in
terms of the arithmetic characteristic classes of Gillet and Soulé [33], [34].

4. ANALYTIC TORSION FORMS AND ANALYTIC TORSION CURRENTS

4.1. COMPOSITION OF AN EMBEDDING AND A SUBMERSION. Let:: W — V be an
embedding of complex manifolds, and let S be a complex manifold. Let 7y, Ty/g
be holomorphic submersions of W,V onto S, with compact fibres X,Y, so that
Tyst = mwys. Then we have the diagram

(4.1) Y —=W

1N

X—V Ky S

Let F be a holomorphic vector bundle on W. Let (F,v) be a complex of holo-
morphic vector bundles on V' as in (3.1), which together with a restriction map
r : Eov — F, provides a resolution of i,F. In the sequel we assume that
Ry s, F is locally free. Let Rmy,s.E be the direct image of E. Tautologically,
Rmy s+ B ~ Rmy s F. Let w¥,w" be (1,1) closed forms on V, W which restrict
to Kahler forms on the fibres X,Y. Note that Ny, ~ Ny,x. Let gVv/x gt
be Hermitian metrics on Ny, x, F'. Let gF = @Z’;OgEi be a Hermitian metric on
E = @™ ,E;, which verifies (A) with respect to g™/x, gF".

4.2. FUNCTORIALITY OF THE ANALYTIC TORSION OBJECTS WITH RESPECT TO

—+oo

THE COMPOSITION OF AN EMBEDDING AND A SUBMERSION. Let ((s) = Z — be

n=1
the Riemann zeta function. Now we introduce the power series R of Gillet-Soulé
[35].
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DEFINITION 4.1. Let R be the formal power series

C(=n) =1 2
(4.2) R(z) = 2 + - | {(—n)—.
; ¢(=n) ; J nl
n odd
We identify R(x) with the corresponding additive genus. The power series
R was obtained by Gillet-Soulé and Zagier by an explicit computation of the
analytic torsion of P,, as a correction to the Todd genus Td of Gillet-Soulé’s
theory, which would fit into a conjectural form of Riemann-Roch-Grothendieck in
Arakelov geometry.
Let Td(TX|y,gTY,g|7;,X,gNY/X) € P /PW0 be the Bott-Chern class such
that

(43) 26_.6T/Ta(TX|YagTYa TX‘YagNY/X) = Td(TX|YagTX‘Y)
17T

—Td(TY, 9" )Td(Ny,x,g"7/¥).

Let T(wY,g”) € P% be the analytic torsion forms associated to the family of

double complexes (X, E|x), (3X +v)). Observe that Rmy/s.E ~ Rmy s F is
now equipped with twoLo metrics g®7v/s+F and gf"w/s-F' The following result
was proved by Lebeau and the author [21] in the case where S is a point, and
extended by the author in [13] to the general case.

THEOREM 4.2. The following identity holds

(4.4) ch(Rmyy . F, gBmwrs« B gRrv/so By (W gF) 4 T (WY, gF)

TA(TX w97 g ¥V gNY/X)
Td(Ny/XygNY/X)

—7vsx [TATX)R(TX)ch(E)] + my /s [Td(TY )R(TY )ch(F)] = 0in P/ PS90.

7y 5« [TA(TX, gT*)T(E, g%)] + T+ ch(F, g™

Remark 4.3. The main result of [21] is formulated as a formula of comparison of
Quillen metrics on the determinant lines A(F) ~ A(F). An important idea in
[21],[13] is to replace v by Tw, with T" > 0, and to study the behaviour of the
corresponding analytic torsion forms as T" — 4oc0. Then one has to describe the
behaviour of the associated harmonic forms, and also the full spectrum of the
corresponding Laplacians In [21], [13], the appearance of the additive genus R
is related to the evaluation in [11] of a characteristic class, the higher analytic
torsion forms associated to a short exact sequence of holomorphic vector bundles.
The evaluation of this class involves computations on a harmonic oscillator. The
coincidence of this class of forms with the genus evaluated by Gillet and Soulé [35]
remained unexplained until Bost [24] and Roessler [53] showed that the evaluation
of the analytic torsion of P,, given in [35] can be obtained as a consequence of [21].
Of course, Theorems 2.17, 3.5 and 4.2 are compatible. In [12], the main result of
[21] was interpreted as an excess intersection formula for Bott-Chern currents in
infinite dimensions.
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4.3. THE RIEMANN-ROCH THEOREM OF GILLET AND SOULE. Let X be an arith-
metic variety, i.e. a regular flat scheme over Spec(Z). In [33], [34], Gillet-
Soulé constructed an arithmetic Chow group CH (X). By definition, CH (X) =
Z(X)/R(X), where Z(X) is the group of arithmetic cycles (Z, gz) , with Z an
algebraic cycle, and gz is a Green current on X¢, i.e. it is a sum of real currents
of type (p,p), smooth on Xc\Zc, such that %
on X, and E(X ) is an equivalence relation which refines linear equivalence.

Let (E,g”) be an arithmetic vector bundle on X. Namely E is an algebraic
vector bundle on X, ¢¥ is a Hermitian metric on Xc. Then Gillet and Soulé con-

structed arithmetic characteristic classes of (E, g¥) with values in CH (X)q- More

gz + 0z = wyz is a smooth form

precisely they constructed a Grothendieck group K o(X) with contains equivalence
classes of vector bundles (E,g¥), and also classes of forms of the type PX /PX:0,
and a Chern character map ch : Ko(X) — C/'I?(X)Q.

Let now 7 : X — S be a projective flat morphism of arithmetic varieties.
Suppose that 7 : Xq — Yq is smooth. Let wX be a smooth real (1,1) form on
Xq as in Section 2.3. Let (E, g¥) € Ko(X) be such that Rim, E =0 for i > 0. In
35], Gillet and Soulé defined m(E, gZ) € Ko(S) by the formula

(45) m(E, ¢%) = (Rm. B, "% F) — T(w¥, g).
This definition is then extended to arbitrary (E, g¥)) € Ko(X). Put
(4.6) TdN(TX/S, g7/ = Td(TX/S, g7¥/5)(1 — R(TX/S)).

The following result was conjectured by Gillet and Soulé in [35] and proved in [36],
[37], using Theorem 4.2.

THEOREM 4.4. The following identity holds
(4.7) ch(m(E, g%)) = m.[Td(TX/S,g™/5)ch(E, g")] in CH(S)q.

Remark 4.5. Assume that S = Spec(Z). Then (4.7) is an equality in R. Tt ex-
presses the Arakelov degree of det(Rm.E) in terms of arithmetic characteristic
classes.

In [30], Faltings has indicated an alternative strategy to the proof of the Gillet-
Soulé theorem, based on the technique of deformation to the normal cone. Then
one has to study the behaviour of the analytic torsion forms, as smooth fibres are
deformed to the union of two smooth fibres intersecting transversally.

5. HIGHER ANALYTIC TORSION AND FLAT VECTOR BUNDLES

Let X be a smooth manifold, and let F be a complex flat vector bundle
on X. Then by [28], the bundle F' has Chern classes c¢(F) € H°¥(X,C/Z).
For Re(c)(F) € H(X,R), there is a corresponding Chern-Weil theory. In fact
let V¥ be the flat connection on F. Let g be a Hermitian metric on F. Put
0 = (¢")"'V¥gF. Then for k odd, Re(cx)(F,g") = (2im)~kF=D/227FTr[9*] is a
closed form which represents Re(cy)(F) € H*(X,R).

Let w : X — S be a submersion of smooth manifolds, with compact fibre Z.
Then Rr.F is a Z-graded flat vector bundle on S. Let ¢(TZ) € H(X, Q) be the
Euler class of T'Z.
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Now we state a result by Lott and the author [22], which was proved using
flat superconnections.

THEOREM 5.1. For any k € N, k odd,
(5.1) Re(cg) (R F) = me[e(TZ)Re(ck ) (F)].

Given a metric g¥ and a Euclidean connection V7%, let g™ be the Lo
Hermitian metric on R, F' which is obtained via fibrewise Hodge theory. In [22],
higher analytic torsion forms T'(g¥", VT#) are constructed such that

(5.2) dT(gF’ VTZ) =T, [e(TZ, VTZ)Re(C_)(F, gF)] _ Re(c_)(RmF, ngF).

In degree 0, T'(g¥", V%) is the Ray-Singer analytic torsion of [50]. The Ray-
Singer conjecture, proved by Cheeger [26] and Miiller [45] says that for unitarily
flat vector bundles, the Ray-Singer analytic torsion coincides with a geometrically
defined invariant of the manifold, the Reidemeister torsion [52]. In higher degree,
the interpretation of T'(g¥", V%) is still mysterious. There is a possible link with
work by Igusa and Klein [39] on Borel regulators. For related results in an algebraic
context, we refer to Bloch and Esnault [23].
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SOME ANALOGIES BETWEEN NUMBER THEORY
AND DYNAMICAL SYSTEMS

ON FOLIATED SPACES

CHRISTOPHER DENINGER!

ABSTRACT. In this article we describe what a cohomology theory related
to zeta and L-functions for algebraic schemes over the integers should look
like. We then point out some striking analogies with the leafwise reduced
cohomology of certain foliated dynamical systems.
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1 INTRODUCTION

For the arithmetic study of varieties over finite fields powerful cohomological meth-
ods are available which in particular shed much light on the nature of the corre-
sponding zeta functions. These investigations culminated in Deligne’s proof of
an analogue of the Riemann conjecture for such zeta functions. This had been
the hardest part of the Weil conjectures. For algebraic schemes over Spec Z and
in particular for the Riemann zeta function no cohomology theory has yet been
developed that could serve similar purposes. For a long time it had even been a
mystery how such a theory could look like even formally. In this article following
[D1-D4] we first describe the shape that a cohomological formalism for algebraic
schemes over the integers should take. We then discuss how it would relate to
the many conjectures on arithmetic zeta- and L-functions and indicate a couple
of consequences of the formalism that can be proved using standard methods.
As it turns out there is a large class of dynamical systems on foliated manifolds
whose reduced leafwise cohomology has many of the expected structural proper-
ties of the desired cohomology for algebraic schemes. Comparing the arithmetic
and dynamical pictures leads to some insight into the basic geometric structures

ISupported by TMR. “Arithmetic Algebraic Geometry”
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that dynamical systems relevant for L-functions of varieties over number fields
should have. There is also a very interesting recent approach by Connes [C] to
the Riemann conjecture for Hecke L-series which bears some formal similarities
to the preceding considerations. It seems to be closer in spirit to the theory of
automorphic L-functions though.

I would like to thank the Newton Institute in Cambridge for its hospitality
during the preparation of part of this article.

2 GEOMETRIC ZETA- AND L-FUNCTIONS

Consider the Riemann zeta function

o) =TJa-»"

p

Zn‘s for Res > 1.
n=1

It has a holomorphic continuation to C\ {1} with a simple pole at s = 1. To its
finite Euler factors

G(s)=1-p)7"
we add an Fuler factor corresponding to the archimedian place p = co of Q
Cool(s) =272 775/21(5/2)

and introduce the completed zeta function

((8) = C(s)Coo(s) -

It is holomorphic in C \ {0,1} with simple poles at s = 0,1 and satisfies the
functional equation:

((1—s)=C(s).

Its zeroes are the so called non-trivial zeroes of {(s), i.e. those in the critical strip
0 < Res < 1. The famous Riemann conjecture asserts that they all lie on the line
Res=1/2.
Apart from its zeroes, the special values of ((s), i.e. the numbers {(n) for integers
n > 2, have received a great deal of attention. Recently, as a special case of the
Bloch—Kato conjectures, it has been possible to express them entirely in terms
of cohomological invariants of Q; c.f. [BK], [HW]. Together with the theory of
(-functions of curves over finite fields this suggests that the Riemann zeta function
should be cohomological in nature. The rest of this article will be devoted to a
thorough discussion of this hypothesis in a broader context.

A natural generalization of the Riemann zeta function to the context of arith-
metic geometry is the Hasse—Weil zeta function (x(s) of an algebraic scheme X /Z

Cr(s)= J] A= N@) ™)', Res >dim&

z€|X|
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where |X| is the set of closed points of X and N(z) is the number of elements in
the residue field of z. For X = Spec Z we recover ((s), and for X = Spec 0, where
o is the ring of integers in a number field k, the Dedekind zeta function of k. It
is expected that (x(s) has a meromorphic continuation to C and, if X is regular,
that

Cx(s) = Cx(s)Cx. (3)

has a simple functional equation with respect to the substitution of s by dim X' —s.
Here Cx__(s) is a certain product of I'-factors depending on the Hodge structure on
the cohomology of X,, = X ® R. This is known if X’ is equicharacteristic, i.e. an
[Fp-scheme for some p, by using the Lefschetz trace formula and Poincaré duality
for l-adic cohomology.

The present strategy for approaching (x (s) was first systematically formulated by
Langlands. He conjectured that every Hasse—Weil zeta function is up to finitely
many Euler factors the product of automorphic L-functions. One could then apply
the theory of these L-functions which is quite well developed in important cases
although by no means in general. For X with generic fibre related to Shimura
varieties this Langlands program has been achieved in very interesting examples.
Another spectacular instance was Wiles’ proof with Taylor of modularity for most
elliptic curves over Q.

The strategy outlined in section 3 of the present article is completely different and
much closer to the cohomological methods in characteristic p.

By the work of Deligne [De], it is known that for proper regular X /I, the zeroes
(resp. poles) of fx(s) = (x(s) have real parts equal to v/2 for odd (resp. even)
integers 0 < v < 2dim X, and one may expect the same for the completed Hasse
Weil zeta function Cx(s) of an arbitrary proper and regular scheme X /Z.

As for the orders of vanishing at the integers, a conjecture of Soulé [So] asserts
that for X'/Z regular, quasiprojective connected and of dimension d, we have the
formula

2n

orde—g-nCx(s) =Y _(=1)"" dim Gr 2 (Kap—i(X) ® Q) . (1)
=0

Here the associated graded spaces are taken with respect to the ~-filtration on
algebraic K-theory. Unfortunately it is not even known, except in special cases,
whether the dimensions on the right hand side are finite.

For a (mixed) motive M over Q — intuitively a “piece” in the total cohomology
of a variety X, such as HY(X) — analogy with the function field case leads to the
following definition of the L-function:

L(M,s) = [[ Lp(M,s) where L,(M,s)= detg, (1 —p~*Fr}| M;”)~" .
p

Here M; is the [-adic realization of M for any [ # p and Fr), I, are the inverse of
a Frobenius automorphism in Gal(Q/Q) and an inertia group at p, respectively.
For example, the l-adic realization of M = H"(X) is the w-th I-adic cohomology
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of X ® Q. Rationality and independence of [ of the characteristic polynomial of
Fr; are expected for all p, known in many cases and assumed in the following.

If X is proper and flat over SpecZ with smooth generic fibre X = & ® Q,
then up to finitely many Euler factors we have:

2dim X

)= [ ptH"(x0),5) )"
w=0

Adding a suitable product of I'-factors Lo (M, s) defined in [Se] and [F-PR] III
which depends only on the real Hodge realization Mp over R we obtain the com-
pleted L-function of the motive

L(M,s)=L(M,s)Lo(M,s) .

In terms of the filtration ¥ on Mp introduced in [D3] § 6, we have
Loo(M,s) = H Coo(s —m)dn

where d,, = dim Gr},Mp.
Define iS(M ,$) by omitting the Euler factors corresponding to a finite set of
places S.
For later purposes we recall the following definition due to Scholl. A motive over
Q is called integral at p if the weight filtration on the [-adic realization for [ # p
splits as a module under the inertia group at p. For a finite set .S of prime numbers
let My, be the category of motives over Q which are integral at all p ¢ S.

The following conjectures are a great challenge to arithmetic geometry. Ex-
cept for the fourth they have been confirmed in many cases after first identifying
the L-function of a motive with a product of automorphic L-functions.

CONJECTURES 2.1 Let M be a (mixed) motive over Q.

1. L(M,s) and hence L(M, s) have a meromorphic continuation to C and there is
a functional equation

i/(M, s) = E(M,s)i}(M*, 1-—y9)
where £(M, s) = ae® for some real a, b.

2. i(AMa S) :il(Ma S)£02(Ma S>71 R
where Lq(M, s) is entire of genus one and Lo2(M, s) is a polynomial in s whose
zeroes are integers.

3. (Artin) If M is simple and not a Tate motive Q(n), the L-function L(M, s) has
no poles.

4. (Riemann) If M is pure of weight w, e.g. M = H"(X) for a smooth proper
variety X/Q, then the zeroes of L(M, s) lie on the line Res = “L.

5. (Deligne, Beilinson, Scholl) For M in Mz
ord,—oL(M, s) = dim Ext}, (Q(0), M*(1)) — dim Hom x4, (Q(0), M*(1)) .
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3 THE CONJECTURAL COHOMOLOGICAL FORMALISM

In this section we interpret many of the conjectures about zeta- and L-functions
in terms of an as yet speculative infinite dimensional cohomology theory. We
also describe a number of consequences of this very rigid formalism that can be
proved directly. Among these there is a formula which expresses the Riemann
(-function as a zeta-regularized product. After giving the definition of regularized
determinants in a simple algebraic setting we first discuss the formalism in the case
of the Riemann zeta function and then generalize to Hasse-Weil zeta functions and
motivic L-series.

Given a C-vector space H with an endomorphism © such that H is the count-
able sum of finite dimensional ©-invariant subspaces H,, the spectrum sp () is
defined as the union of the spectra of © on H,, the eigenvalues being counted with
their algebraic multiplicities. The (zeta-)regularized determinant deto,(© | H) of
O is defined to be zero if 0 € sp (©), and by the formula

detoo (O | H) := ]:[ a = exp(—(5(0)) (2)
a€sp (O)
if 0 ¢ sp (©). Here
Co(z) = Z a”?, where —7w<arga<m,
0#a€sp (O©)

is the spectral zeta function of ©. For (2) to make sense we require that (g be
convergent in some right half plane, with meromorphic continuation to Re z > —¢,
for some € > 0, holomorphic at z = 0. For an endomorphism Gg on a real vector
space Hy, such that © = ©g®id on H = Hy ® C satisfies the above requirements,
we set

detoo((% | Ho) = detoo(@ | H) .

On a finite dimensional vector space H we obtain the ordinary determinant of ©.
As an example of a regularized determinant, consider an endomorphism © whose
spectrum consists of the number 1,2,3,... with multiplicities one. Then

detoo (O | H) = H v =121 since ¢'(0)=—logv2r.
v=1

The regularized determinant plays a role for example in Arakelov theory and in
string theory. In our context it allows us to write the different Euler factors of
zeta- and L-functions in a uniform way as we will first explain for the Riemann
zeta function.

Let R, for p # oo be the R-vector space of real valued finite Fourier series on
R/(logp)Z and set

Roo = Rlexp(—2y)] forp=o0.
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168 DENINGER

These spaces carry a natural R-action ot via (ot f)(y) = f(y+t) with infinitesimal
generator © = d/dy. The eigenvalues of © on C, = R, ® C are just the poles of

Cp(s).
1 -1
PROPOSITION 3.1 We have (p(s) = detos (55(s — ©) |Rp) for p < oo.

This is easily proved by applying a classical formula of Lerch for the derivative
of the Hurwitz zeta function at zero [D3] 2.7.
In a sense SpecZ = SpecZ U oo is analogous to a projective curve over a finite
field. The Grothendieck Lefschetz trace formula in characteristic p together with
the proposition, suggest that a formula of the following type might hold:

(-1t

Hdet (L (s —©)| H(“SpecZ”,R)) (3)

27

Here H'(“SpecZ”,R) would be some real cohomology vector space equipped with
a canonical endomorphism © associated to some space “SpecZ” corresponding to
SpecZ. As recalled earlier f (s) has poles only at s = 0,1 and these are of first
order. Moreover the zeroes of ((s) are just the non-trivial zeroes of ¢(s). If we
assume that the eigenvalues of © on H*(“SpecZ”,R) are distinct for i = 0,1,2 it
follows therefore that

e H°(“SpecZ”,R) = R with trivial action of ©, i.e. © = 0,

e H'(“SpecZ”,R) is infinite dimensional, the spectrum of © consisting of the
non-trivial zeroes p of ((s) with their multiplicities,

e H?(“SpecZ’,R) = R but with © = id
e For i > 2 the cohomologies H'(“SpecZ”,R) should vanish.
Formula (3) implies that

f(s):%( H%sf

p

This formula turned out to be true [D2], [SchS]. Earlier a related formula had
been observed in [K].

If H is some space with an endomorphism © let us write H(a) for H equipped
with the twisted endomorphism O () = © — aid. With this notation we expect
a canonical “trace”-isomorphism:

tr: H*(“SpecZ”,R) —» R(—1) .
In our setting the cup product pairing
U HI(“SpecZ’, R) x H(“SpecZ, R) —> H*(“SpecZ’, R) = R(~1)
induces a pairing for every « in C:

U: Hi(ch777C)@~a X H27Z—(“Speﬁn7c)@~lfa N HQ(“W”,C)@NJ ~C.
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Here © ~ « denotes the subspace of
H'(“SpecZ”,C) = H (“SpecZ”,R) ® C

of elements annihilated by some power of © —a. We expect Poincaré duality in the
sense that these pairings should be non-degenerate for all a. This is compatible
with the functional equation of {(s). For the precise relation see [D3] 7.19.

In the next section we will have more to say on the type of cohomology theory that
might be expected for H*(“Spec Z”, R). But first let us note a nice consequence our
approach would have. Consider the linear flow A\' = expt© on H'(“SpecZ”,R).
It is natural to expect that it is the flow induced on cohomology by a flow ¢* on
the underlying space “SpecZ”, i.e. A = (¢')*. This implies that A\! would respect
cup product and that © would behave as a derivation. Now assume that as in the
case of compact Riemann surfaces there is a Hodge *-operator:

x: H'(“SpecZ”,R) — H'(“SpecZ”,R) ,
such that
(f, fYy =te(fU(xf) for f, f in H'(“SpecZ”,R) ,

is positive definite, i.e. a scalar product on H'(“SpecZ”,R). It is natural to
assume that (¢')* and hence © commutes with * on H!(“SpecZ”,R). From the
equality:

f[iUfa=0(fiUfe) =0fiU fa+ f1UOfs

for f1, fo in H*(“SpecZ”,R) we would thus obtain the formula

(f1, f2) = (O f1, f2) + (f1,0 [2) ,

and hence that © = % + A where A is a skew-symmetric endomorphism of
H'(“SpecZ”,R). Hence the Riemann conjecture would follow.
The formula © = % + A is also in accordance with numerical investigations on
the fluctuations of the spacings between consecutive non-trivial zeroes of ((s). It
was found that their statistics resembles that of the fluctuations in the spacings
of consecutive eigenvalues of random real skew symmetric matrices, as opposed
to the different statistics for random real symmetric matrices; see [Sa] for a full
account of this story. In fact the comparison was made between hermitian and
symmetric matrices, but as pointed out to me by M. Kontsevich, the statistics in
the hermitian and real skew symmetric cases agree.
The completion of H!(“SpecZ”,R) with respect to (,), together with the un-
bounded operator © would be the space that Hilbert was looking for, and that
Berry [B] suggested to realize in a quantum physical setting.

The following considerations are necessary for comparison with the dynamical
picture.
Formula (3) is closely related to a reformulation of the explicit formulas in analytic
number theory using the conjectural cohomology theory above, see [I] Kap. 3 and
[JL] for the precise relationship. Set Rt = (0, c0).
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PROPOSITION 3.2 For a test function p € D(RT) = C°(R™) define an entire
function ®(s) by the formula

D(s) = /}ch(t)etS dt .

Then we have the “explicit formula”:

00~ 3 ¥+ 800 = Dlosn ot + [ 2z
P k=1 0

{(p)=0

We wish to interpret this well known formula along the lines of [P] §3. For this
we require the following elementary notion of a distributional trace. Consider a
real or complex vector space H with a linear R-action

NiRx H—H, Ath) =),

which decomposes into a countable direct sum of finite dimensional invariant sub-
spaces H,,. Let Tr(\| Hy)ais be the distribution on R associated to the function
t— Tr(A\! |g,), and set

TI‘(>\ | H)dis = Z TI'(A | Hn)dis (4)

if the sum converges in the space of distributions D’(R*). By assumption A can
be written as A = expt© with an endomorphism © of H, and we have

Tr(A| H)ais = »_ (e'*) inD'(RT)
a€sp (O)

if the series converges. Here (f) € D'(R™) denotes the distribution associated to
a locally integrable function f on R*. Thus

(Tr(A | H)ais, 0) = Y / el dt= > B()
a€sp (O) a€sp (0)

for any test function ¢ in the Schwartz space D(R™). Conjecturally (3.2) can thus
be reformulated as the following identity of distributions

> (=)' Tr(¢" | H(“SpecZ”, R))ais = Y 10gp > Skogp + (1 — €)1 . (5)
[ P k=1
Using the Poisson summation formula one sees that
Tr(o | Rp)ais = 1ogpz Oklogp for finite p .
k=1

A direct calculation shows that
Tr(o | Roo)ais = (1 —e™2H)71) .
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Hence (5) can be rewritten as a sheaf theoretic Lefschetz trace formula

> (1) Te(¢" | H'(“SpecZ”, R))ais = Y Tr(¢* [ Ry)ais - (6)

A p<oo

For more on this see [D5], [DSch].

We now turn to Hasse-Weil zeta functions of algebraic schemes X/Z. A
similar argument as for the Riemann zeta function suggests that

2d 1 _ (=1)%+!
(o) = [[ et (s - O) (27 R) ) 7
1=0

where H!(“X”,R) is some real cohomology with compact supports associated to
a dynamical system “X” attached to X and d = dim X. Here © should be the
infinitesimal generator of the induced flow on cohomology. In particular we would
have

ords—q Cx(s) = i(q)”l dim H!(“x”,C)®~ .
i=0
For a regular connected & the Poincaré duality pairing
U: HI(“X",R) x H*¥7{(“X7" | R) — H2(“XA”,R) — R(—d) (8)
should identify
Hi(“X”,C)9~*  with the dual of H>7/(“x”,C)9~""
In particular we would get:
2d
orde—g—n Cx(s) = D (1) dim H (“X”,C(n))®™"
i=0
where C(«) is the sheaf C on “X” with action of the flow twisted by e~**. Thus
H{(“X”,C(n))®~° = H(“x”,C)9™~" .
For a regular X we expect formal analogues of Tate’s conjecture
Hiy(X,C(n)) = Gr'Kay—i(X) ® C = H'(“X”,C(n))°™, (9)
and in particular that
Hi(“x”,C(n))°~" =0 fori>2n.

Note that the latter assertion says that the weights of © on H!(“X”,C), i.e. twice
the real parts of its eigenvalues, should be > ¢. This would imply Soulé’s conjecture
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(2.1).
Again the explicit formulas could be expressed in terms of cohomology in the form

YU | HIX R))ais = ) log N(2) Y Oriog N - (10)
k=1

i ze|X|
In support of these ideas we have the following result.

THEOREM 3.3 On the category of algebraic Fp,-schemes X there is a cohomology
theory in C-vector spaces with a linear flow such that (7) holds. For a regular
connected X of dimension d it satisfies Poincaré duality (8). Moreover (9) reduces
to the Tate conjecture for l-adic cohomology.

See [D3] §4, [D4] §2 for more precise statements and the simple construc-
tion based on [-adic cohomology. This approach cannot be generalized to non-
equicharacteristic X' /Z.

If there were a dynamical cohomology theory H'(“X”,R) attached to some
Arakelov compactification X of X’ such that

R 2d 1 o (—1)it
o) = [[ oot (o @) mCTR)

then as above Poincaré duality for H'(“X”,R) would be in accordance with the
expected functional equation for (x(s). A Hodge *-operator

% Hi(“?”,'R) N H2d7i(“y”,7€)
defining a scalar product via (f, f') = tr(f U (xf’)) and for which
P ox = (e x 0ot | ie. Oox=xo(d—i+0),

holds, would imply that © —i/2 is skew symmetric, hence the Riemann hypotheses
for é;((s). The last equation means that the flow changes the metric defining the
x-operator by the conformal factor e’.

As we mentioned above the zeta function (x(s) is up to finitely many Euler
factors the alternating product of the L-functions of the motives H*(X). In [D1]
we constructed cohomology R-vector spaces H with a linear flow on the category
of varieties over R or C such that

2dim Xoo

(-1
G = [T detm (06 O) L))
=0

Cup product and functoriality turn the spaces H. (X ) into modules under
H? (Xy) = H2.(SpecR) = R of rank equal to dim H*(Xx, Q). Philosophically
the scheme X should have bad semistable “reduction” at infinity. In accordance
with this idea Consani [Cons| has refined the theory H to a cohomology theory
with a linear flow and a monodromy operator N which contains H{  as the kernel
of N.
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We now turn our attention to motivic L-series. The first task is to express the
local Euler factors L,(M,s) in terms of regularized determinants on some spaces
functorially attached to M.

THEOREM 3.4 For every p < oo, there is a left exact additive functor Fp from
motives over Q to the category of C-vector spaces with a linear flow such that

Lp(M, s) = deto (%(s - 0) |]-"p(M)) o

The functor F, commutes with Tate twists, and there are natural flow equivariant
maps

Fp(M) @ Fp(M") — Fp(M @ M") (11)

turning Fp(M) into an Fp(Q(0)) = Cp-module of rank equal to dim MZI” for finite
p and equal to tkM for p = co. On the category of motives integral at p the functor
Fp is exact. On motives with good reduction at p the map (11) is an isomorphism
and F, commutes with duals. For p = oo it has a real structure F and there is
a natural perfect pairing:

T (M)®=0 x Exty g, (R(0), Mp(1)) — R,

where M Hy is the category of real mixed Hodge structures over R. For varieties

X/R we have
Hi(X) = Fo(H" (X)) .

The proofs — which are quite formal — can be found in [D3]. The functor F is
constructed from Mp by a construction & la Fontaine using a simple Barsotti-Tate
ring. For finite p, the construction applies an elementary case of the Riemann—

Hilbert correspondence to MlI” ®q, C with the Frobenius action. It can also be
viewed as an association of Fontaine’s type.
By the theorem

L(M,s) = ]_;Ldetoo (%(s@) |]-'p(M)) - :

and this suggests that
. 2 1 . o (71)i+1
L(M,s) = H)detoo <%(s —©)| H*(“SpecZ”, ]-'(M))) (12)

for some sheaf with action of the flow F(M) on “SpecZ” whose stalks “at the
points p” should be isomorphic to F,(M). It should be thought of as an analogue
of the sheaf F(M) = j.M for a Q-sheaf M on the generic point 7 of a curve YV’
over a finite field, where j : n — Y is the inclusion.

Formula (12) would represent L(M, s) as a quotient of entire functions — at least
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if the regularized determinants are of the Cartier—Voros type [CV].

This together with Poincaré duality for the sheaf cohomologies
Hi(“SpecZ”, F(M)) would explain the first part of conjecture 2.1 c.f. [D3]
7.19.

The assertion about iog(M ,8) in the second part of 2.1 means that
H°(“SpecZ”,F(M)) and H?(“SpecZ”,F(M)) should be finite dimensional
with © having only integer eigenvalues.

The Riemann conjecture would follow from purity: For a pure motive M of weight
w the eigenvalues of © on H'(“SpecZ”, F(M)) should have real part “F%. As
before there is a Hodge *-argument for this c.f. [D3] 7.11.

For L(M, s) we expect the formula

2 (=1)%H!
1 .
L(M,s) =[] deta (%(s —©)| H!(“SpecZ”, ]-'(M))) (13)
=0

and by Poincaré duality

(-1t

L(M,s) = ][] deto <%(s +0) |Hi(“SpecZ”,}“(M*(1)))> . (19)
1=0

See [D3] (7.19.1). This implies that

2
ords—oL(M,s) = z:(—l)iJrl dim H*(“SpecZ”, F(M*(1)))®~° .
i=0

On the category Mz all functors F, are exact by the theorem. Hence F should
be exact and therefore induce maps for all N in My
(15)

»(C(0), F(N))*™" = H'(“SpecZ, F(N))*™° .

F : Extiv, (Q(0), N) ® C — Extlg,

If these are isomorphisms (2.1) part 5. follows. Note that because SpecZ is
an affine curve it is reasonable to expect H'(“SpecZ”, F(N)) to vanish for i > 2.
Similarly (15) with Z replaced by Zg ought to be an isomorphism. The eigenvalues
of © on

H°(“SpecZ”, F(N)) = H°(“SpecZ”, F(N)) (c.f. [D4] §4)
being integers, we have

H°(“Spec Z”, F(N)) = €D Hom(Q(0), N(n)) ® C
nez

by (15) applied to all twists N(n). Together with (14) we would get the Artin
conjecture (2.1) part 3. Further conjectures on L-functions and extensions of
motives by Deligne, Scholl and Selberg are related to the cohomological formalism
in [D4] §§4, 9.
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Let us now turn to certain consequences of the formalism that have been
proved. As for the Riemann zeta function we must have

2

600,5) = L0 [] g6 -1 =] 50— 0) (16)
™ P
where p runs over the zeroes of i/(M ,8) and 7 over its finitely many poles. This
follows from the theory of [JL] or [I] assuming standard conjectures on the analytic
behaviour of L-series. For example for L(E, s), where F is a modular elliptic curve,
formula (16) is a theorem.

As explained above there should be a trace isomorphism

tr: H*(“SpecZ”,R(1)) = H*(“SpecZ”’, R(1))°7° 5 R .

Comparing this with (15) we are led to search for a category of (mixed) motives
Mz over SpecZ equipped with a non-trivial map

Ext}, (Q(0),Q(1)) — R.

Integrality at a finite prime p can be expressed in terms of the functor F, c.f.
[DN] appendix. For Fo, this condition means that the real Hodge structure Mp
be split. Taking this as our definition of integrality at p = co we define Mz to be
the subcategory of motives in Mg which are integral at all primes p < co. Under
the natural injection [Sch] 2.7

Q" < Ext,, (Q(0),Q(1)), (17)

the motive corresponding to « is integral at p < oo iff |a|, = 1. In [DN]
it was shown that if (17) is an isomorphism rationally then Exti,(7((@(0),(@(1))
is non-zero. If M5 is replaced by the category (1-motives/SpecZ) @ Q then
Ext?(Q(0),Q(1)) is non-zero unconditionally, [J] Cor. 5.5. Furthermore it was
shown that the motivic height pairing of [Sch] could be interpreted as a Yoneda
pairing followed by the degree map

Ext}i(Q(0), M) x Extj,_(Q(0), M*(1)) — Ext?},_(Q(0),Q(1)) — R.

This is in accordance with the idea that under a suitable extension of the isomor-
phism (15) to SpecZ, (c.f. [D4] (2.4)), the motivic height pairing will correspond
to Poincaré duality

tr

H'(SpecZ?, F(M)) x H'(SpecZ, F(M*(1))) — H*(“SpeeZ",C) £ C

restricted to the © ~ 0 parts.

Apart from local L-factors there are also local e-factors attached to motives.
In [D6] the functors F, and a notion of regularized super-dimension were used
among other things to give a comparatively uniform description of these factors
at all places.
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A motive M of weight w with coefficients in a number field T is called or-
thogonal if there is a symmetric morphism M ® M — T(—w) which induces an
isomorphism M* 2 M (w). For example the Artin motive attached to a represen-
tation p : Gal(Q/Q) — GL n(T) is orthogonal if and only if p is orthogonal. Our
formalism implies that for orthogonal M the cup product induces a symplectic
form on H'(“SpecZ”, F(M))®~*2" which must therefore be of even dimension.
Hence the order of vanishing of L(M,s) at the central point “ must be even
and the sign in the functional equation therefore be +1 c.f. [D4] §6. For Artin
motives this is a theorem of Frohlich and Queyrut which was extended to more
general motives by T. Saito in [S] using crystalline methods.

We close this section with some remarks on trace formulas. If the L-functions
of motives satisfy the expected analytic properties, one can easily extend the ex-
plicit formulas of analytic number theory for the Lg-function to this context, see
for example [DSch] or [JL]. In terms of our conjectural cohomology theory these
can be reformulated — as for the Riemann zeta function — as the following equalities
of distributions on R¥:

S T(-1)'Te(p" | Hi(“SpecZ \ 87, F(M)))ais = »_logp Y Tr(Fry | M;")5 108
: pZs k:lT( Groat (18)
rie T
ra(s) (L)

and

Y (U [ Hi(“SpecZ\ 87, F(M))ais = Tr(7 | Fpais

i p<o0,pgS

Here “SpecZ \ S” is the dynamical system corresponding to SpecZ \ S and we
have written +®* for the induced flow on cohomology with sheaf coefficients in
accordance with notations in the next section. Moreover e*! is the map €™ on
Gr},Mp and «(S) is zero or one according to whether S contains p = oo or not.

In the next section we consider trace formulas for dynamical systems on foli-
ated spaces which bear striking formal similarities with (5) and its generalization
(18).

4 DYNAMICAL SYSTEMS ON FOLIATED SPACES

We begin by recalling a formula due to Guillemin and Sternberg [GS] VI §2.
Consider a smooth compact manifold X with a flow ¢, i.e. a smooth action

p: X xR— X, o¢x)=0o(x,t).

The compact orbits are assumed to be non-degenerate in the following sense. If
x is a fixed point of the flow, i.e. ¢'(x) = z for all ¢, then the tangent map
T,¢t : T, X — T, X should not have 1 as an eigenvalue for any ¢t > 0. The vector
field Y, generated by the flow is ¢-invariant in the sense that T,¢" (Ve 2) = Yy 4t(a)
for all points « in X. Thus for any point = on a periodic orbit « of length I(7)
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and any positive integer k the endomorphism 7,¢* (") of T, X has Yy » as an
eigenvector of eigenvalue 1. Non-degeneracy of v means that the eigenvalue 1 does
not occur on T, X /T2 where TO =R - Yy ,.

Let E be a smooth vector bundle on X with an action opposite to ¢, i.e. a family
of maps

Yt " E — FE
satisfying an obvious cocycle condition. Note that for any z € v we get maps

PE OV By gy = Bo — B

and that the traces Tr(z/; ‘o | E;) are independent of the choice of x on ~. For a
fixed point z the traces Tr(¢. | E,) are defined for all .
Consider the endomorphisms

YL T(X, ¢ E) 5 (X, E)

P T(X,E) —
of the Fréchet space I'(X, F). In order to define a distributional trace
Tr(y” |T(X,E)) in D'(RY),

Guillemin and Sternberg proceed as follows. Consider the restriction ¢ : X xR™ —
X, the diagonal map A : X x RT — X x X x RT A(x,t) = (z,z,t) and the
projections p: X x RT — X, 7: X x Rt — RT. View ¢ as a map ¢ : ¢*E — p*E
and let Ky~ be the Schwartz kernel of the composite map:

0 T(X,E) 25 T(X x R, 6°E) -5 T(X x RT,p*E) .

Thus Ky« is a generalized density on X x X xR™. The non-degeneracy assumptions
above are equivalent to the image of A and the graph of ¢ intersecting transversally.
Thus by the theory of the wave front set one can pull back Ky« via A and define

Tr(¢* |D(X, E)) = m.A*Ky-  inD'(RT) .

Intuitively,

Tr(v* | D(X, E)) = /XKw*(x,x,t) dz

as a distribution in ¢.
With this definition of a trace the following result becomes almost a tautology:

PROPOSITION 4.1 (GUILLEMIN, STERNBERG) Under the assumptions above, the
following formula holds in D' (R™):

Te(y¥ | E,)
(" ID(X, B)) Zl Z [ det(1 - mqﬁkl(v) T, X/T0)|5’“<7

Te(yt | E,)
+Z<|det - T,6! | I,X) |>
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Here v runs over the periodic orbits and in the first sum x denotes any point on
~. In the second sum x runs over the stationary points of the flow.

In order to get a formula that is closer in appearance to (5) and (18) we now
apply a basic idea which Guillemin [G] and independently Patterson [P] used in the
context of Selberg and Ruelle zeta functions. It involves the theory of foliations
for which we refer e.g. to [Go]. Assume that X carries a smooth foliation of
codimension one such that ¢’ maps leaves to leaves. By a theorem of Frobenius
this is equivalent to specifying an integrable codimension one subbundle Ty C T'X
with T'¢!(Ty) = Tp for all ¢, the bundle of tangents to the leaves. Let U C X be
the open ¢'-invariant subset of points x where the flow line through z intersects
the leaf through x transversally, i.e. where

Tow ©TY =T X .

We assume that U contains all periodic orbits.
If z is a fixed point of ¢ there exists some real constant &, such that T,¢’ acts on
the one dimensional space T, X /Ty, by multiplication with e®=t. We set

e, (k) = sgn det(1 — T,¢" ) | Ty,) and e, = sgn det(1 — Tpo! | T, X)

the latter being independent of ¢ > 0. From the proposition applied to AT ® F
we get the following formula in D'(R™):

S (=1)'Tr(@* | T(X, ATy ® E)) (19)

e Tr(yL | B,
= L) L e | by + e <%> |

Here an action o' : ¢"Ty — T is given by vi = (Tud')* & gy, — To,-
Together with the action on E we get an action opposite to ¢ on every AT ® E.
In order to proceed we next assume that E carries a flat connection along the
leaves

50 E—Te®E

where £ and T are the sheaves of smooth sections of F and Ty. It gives rise to a
fine resolution

EX T 0E X A2TF 08 — ...
of the sheaf
F=Ker(dp:&E—Ty®E)

of smooth sections of £ which are constant along the leaves of the foliation. For
the trivial bundle F = X x R with its canonical Typ-connection we obtain the sheaf

DOCUMENTA MATHEMATICA + EXTRA VOLUME ICM 1998 - I - 163186



SOME ANALOGIES 179

R of smooth real valued functions on X which are constant along the leaves.
Note that F carries a canonical action

(@) F — F
opposite to ¢! which is used to define a map on cohomology by composition:

pt s H(X,F) ST (X (09 F) S HXF)

Then the canonical isomorphism:
HY(X,F)=H(T(X,A*Ty ®&),5))

becomes equivariant under the induced action of the flow and one might hope to
replace the alternating sum in (19) by an alternating sum over traces on cohomol-
ogy.

On the other hand the differential dp will not have closed image in general, so
that the cohomology spaces will not even be Hausdorff [H] 2.1. Let H (X, F) be
the maximal Hausdorff quotient of H*(X, F), the reduced leafwise cohomology. It
seems reasonable to expect a dynamical trace formula of the form

D (1) TR | H (X, F) (20)
> Tr(yt | E,
;l kz B)Tr(W5' ) | Ex)dpcy) + Zsz <71(1fmelnmt )> .

Note that for the trivial bundle £ = X x R we would get

S (—1) T | H (X, R)) Zz va Jori() + Y ea{(l—e™h) 7).

%

For the geodesic flow on the sphere bundle of cocompact quotients of rank one
symmetric spaces and the stable foliation, analogous formulas are consistent with
the Selberg trace formula, as has been shown by Guillemin [G], Patterson [P] and
later workers, e.g. Juhl, Schubert, Bunke, Olbrich and Deitmar. Strictly speaking
in these investigations Fl(X , F) is replaced by a sum of representations suggested
by this cohomology.

If X is the suspension of a diffeomorphism on a compact manifold M, the leafwise
cohomologies turn out to be Hausdorff and hence Fréchet spaces, and (20) holds
with the straightforward definition of a distributional trace given in (4). This
consequence of the ordinary Lefschetz trace formula seems to be well known. A
proof is written up in [D7] §3.

Apart from these cases which do not involve stationary points the formula (20) does
not seem to be established. One of the main problems is of course the definition of

a good trace on the cohomology spaces Fl(X , J) these being infinite dimensional
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in general [AH]. Even if all of the H (X, F) are finite dimensional, (20) does not
seem to be known. However it appears that at least for Riemannian foliations
something can be done using the recent Hodge theorem of Alvarez-Gomez and
Kordyukov for leafwise cohomology. In this case there is also a Hodge *-operator
on cohomology which is induced by the metrics on the leaves.

Let U be the dynamical system obtained by removing all the leaves containing
stationary points. Then a trace formula of the form

S DT HAUF) = 3 10) S en (W) T (M) | By )
vy k=1

%

is expected. For ' = U x R in particular we should have

Z( Tr(y” |H (U,R)) Zl 257 )0ki(r) - (22)

i

It seems to be quite a challenge to establish such dynamical trace formulas in

any generality and also for more general foliations. This would also be a major

contribution to the theory of periodic solutions of ordinary differential equations.
Given a closed orbit v and a point « on y consider the isomorphism

F=(v,2) : RAMZ = v, T— ¢'(x) .
The functor
F = Fy=TR/l(7)Z,7 ' F)

from R-modules to C*°(R/l(v)Z)-modules is exact [D7] 3.22. We view F5 as the
stalk of F in the “geometric point” x of 7y. The Poisson summation formula implies
that

Tr(v* | Fy)ais = 1(7) > Tr(Wh' ) | By )dpgs) -
k=1

For a stationary point = a suitable interpretation of the trace on F, gives:

t
Te(Y" | Fo)ais = <M

— > c.f. [D8].

Thus the right hand side of the trace formulas can be rewritten in more sheaf
theoretical terms as the sum of distributional traces of the flow on the stalks of F
in the compact orbits of the flow. Incidentially, note that our former ring R, is
just the dense subalgebra of finite Fourier series in C*°(R/(log p)Z).

Formula (21) resp. (22) resembles the cohomological version of the explicit
formulas for the Riemann zeta function (5) resp. for the Hasse Weil zeta func-
tion (10). However, as we will see, the setting of this section and in particular
the assumption that we are dealing with compact manifolds is too restrictive for
the goal of realizing (5) and (10) as special cases of (21) and (22). Nonetheless
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we are led to expect the following structures on the searched for dynamical sys-
tems (“SpecZ”,¢!) and (“X”,¢') corresponding to SpecZ resp. the algebraic
scheme X /Z. The space “SpecZ”, whatever its nature, infinite dimensional, a
Grothendieck topology, ..., should have some compactness property. The closed
orbits 7 should correspond to the prime numbers such that I(y) = logp if v = p.
More generally on “X” they should correspond to the closed points of X with
I(y) = logN(z) if v = 2. On “SpecZ” there should be a stationary point x.
corresponding to the infinite prime p = co. All these compact orbits must appear
with positive sign in the dynamical trace formulas. Of course there could also
be more periodic orbits and stationary points if their contributions in the trace
formula vanish because of opposite signs.

There are to be one-codimensional foliations on “SpecZ” and “X” such that the
open subset of points where the leaf is transversal to the flow contains all periodic
orbits. Moreover k,_ = —2, i.e. T, _¢* operates on T,__ /To,.. by multiplication
with e=2,

The cohomologies conjectured in section two should be the dense spaces of smooth
vectors in the corresponding reduced leafwise cohomologies. Here a vector is
smooth if it is contained in the sum of generalized eigenspaces of the induced
flow on cohomology.

The leaves on “SpecZ” (resp. “X”) should be two (resp. 2dim &’) dimensional in
a suitable sense since for foliated manifolds H*(X,R) = 0 for i > d where d is the

dimension of the leaves, and Fd(X ,R) # 0 if there exists a non trivial holonomy
invariant current on X. Thus “SpecZ” (resp. “X”) should have dimension three
(resp. 2dim X + 1) in that sense. These dimensions agree with the étale cohomo-
logical dimensions of SpecZ (resp. X).

As for the structure of “X” \ “X” possibly the set of stationary points of the flow
on “X” is Xso(C)/(Fs), where F., is complex conjugation. This would generalize
what we expect for X = SpecZ and more generally for X = Specoi. Note also

that the set of closed points of X" over p can be identified with the set X),(F,)/(Fr,)
of Frobenius orbits on X, (F,), where X, = X @ F,,.

We now discuss the basic theory of flows with an integrable invariant comple-
ment. This is relevant for us since they appear as subsystems in the above. Let us
define an F-flow ¢' to consist of a (Banach-)manifold U with a flow generated by
a smooth vector field which exists for all positive but possibly not for all negative
times. By definition an F-system is an F-flow with a one-codimensional foliation
Ty which is everywhere transversal to the flow. In particular there are no fixed
points. These systems form a category in an obvious way. Their theory is essen-
tially well known and recalled for example in [D7] §3. The foliation corresponds
uniquely to a closed flow-invariant one form wg with (we, Yy) = 1, via kerwy = Tp.
The period group A C R is defined as the image of the length homomorphism

P (U) — R l(c):/w¢.

If there is a morphism U — U’ of F-systems then Ay C Ay.. Periodic orbits v
give well defined elements [y] of 3P (U) and one has I([y]) = I(7), the length of ~.
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For a variety V/F, there is an analogous map
l: 7%P(V) — #1(SpecF,) = Z

induced by the projection V' — SpeclF,. Closed points = of V give Frobenius
conjugacy classes and hence well defined elements [F,] of #%P(V). They satisfy
the equation I([F;]) = degx = log, N ().

On an F-system the following three categories are equivalent:

e vector bundles F with a flat Ty-connection §y and a compatible action 1
which is opposite to ¢;

e locally free R-modules F with an action ¢ opposite to ¢;
e local systems F' of R-vector spaces.

Here EF=Ker(dp:E—=TyRE) <> F=Ker (O : F > F),

where © x : F — F is the derivative of ¢ at t = 0. Let a be a real number. To the
twist F(«), defined as F with action wtf(a) = e~ '™yl there corresponds a local
system F(«). For F = R it is denoted R(«). Its monodromy representation is
exp(al). Hence A C log Q% if and only if there is a local system Q(1) of Q-vector
spaces such that R(1) = Q(1) ® R.

If we complexify we get analogous equivalences of categories.
There is an exact sequence

0 — HYU,F)/ImO® — HY(U,F) — H'(U,F)°=" — 0
where © = (©x).. This is analogous to the exact sequence
0— HY(V,F)p, — H'(V,F) — H'(V,F)" —0

for a Q-sheaf F' on V where V =V ®F,. In the language of arithmetic geometry,
H*(U, F) is the arithmetic cohomology and H*(U, F) with its action of the flow
the geometric cohomology. As usual the latter commutes with twists but not the
former.

There is a classification theorem: Every F-system is canonically contained as
an open subsystem in a complete such system, i.e. one where the flow exists for all
times in R; c.f. [D8]. All complete connected F-systems are obtained as follows:
Let M be any leaf of U. Then M is connected and A = {t € R|¢!(M) = M}
so that A operates on M. The system U is then isomorphic to the suspension
M x R where A acts on R by translation and the foliation is by the images of
M x {t} for ¢t in R.

5 FURTHER COMPARISON
For “SpecZ” the period group A must contain the numbers logp as they should

be lengths of closed orbits. Hence A D log Q% . On the other hand R(1) will have a
rational structure (see below) and hence A C logQ*, so that A = logQ? . Writing
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the flow multiplicatively we therefore expect “SpecZ”, if its flow is complete, to
have the form M xqg+ R for some “space” with Q7 -action M reminiscent of the
idelic picture. A similar argument for varieties V/F, with a rational point suggests
that “V” = N x 2 R%.

As mentioned above, the leafwise cohomology of “V” should be isomorphic to a
theory constructed from the Q;-cohomology of V after the choice of an embedding
Q; c C. Comparing the kernels of ©, it follows on combining [D3] (2.4) and §4
with [D7] (3.19) that the singular cohomology of N with C-coefficients, endowed
with the automorphism ¢*, must be isomorphic to H*(V,Q;) ® C with Fr}-action.
It follows that HY(N,Z), where d = dim N, must be a Z[g~']-module, since Fry
acts by multiplication with ¢ on H*(V, Q).

The natural way to obtain such N is to take a compact manifold N with a finite
map ¢ : N — N of degree ¢ and set N = lgn( —- N 3% N — ...). Note the

continuity theorems for cohomology in this regard, c.f. [Br] I1.14. The most naive
way to obtain (N, q) would be by lifting (V,Fr,) to C. For cellular varieties and
ordinary abelian varieties over [, this is possible but of course not in general.

It seems possible that in the above isomorphism “Spec Z” = M Xqr R?* the leaf M

is obtained from a “space” M with commuting operators for every prime number
p, by an analogous projective limit. This puts M Xqr R even closer to the idelic
view point.

Allowing such more general spaces removes a difference between dynamical
trace formulas and explicit formulas in cohomological form: Both can be extended
to test functions on R*, but whereas for compact manifolds the former become
symmetric under ¢ <+ —t, the latter exhibit a twisted symmetry. A closely related
point is this: For a finite dimensional F-system the flow acts with weight zero
on the top leafwise reduced cohomology with compact supports. This follows by
looking at the invariant currents and noting that automorphisms act by £1 on
top compactly supported cohomology with Z-coefficients. Since we want weights
different from zero, e.g. equal to one for Spec Z, we are forced to allow more general
spaces than finite dimensional manifolds as leaves. For ordinary abelian varieties
over IF), the theory of the zeta function can in fact be established dynamically using
pro-manifolds but in general — at least in characteristic p — even pro-manifolds as
leaves are not the right kind of space.

If the association from schemes to foliated dynamical systems is functorial
one has a natural construction of sheaves F(M) for any motive M. For a variety
m:Xg—SpecQlet m = “n" : X = “Xy” — “SpecQ” be the associated morphism
of foliated dynamical systems. The functors

Xo— R'n.(Rx) and X+ R'm.(Ry)

define cohomology theories which by universality factor over the category of
motives. They are denoted M — G(M) and M +— G(M). The morphism
jo : Spec@Q — SpecZ will induce a morphism j = “jy” of dynamical systems
and we get functors F = j, oG and F = j, oG. The two constructions are related
by F' = Ker (0 : F — F). Moreover F' has a natural Q-structure F obtained by
starting with rational coefficients. In fact over “SpecZs”, where S is a finite or
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cofinite set of prime numbers, we should get a Z[I~! |l ¢ S]-structure on F' by tak-
ing Zy-coefficients? above. For n € Z, we get F(Q(n)) = R(n), F(Q(n)) = R(n)
and Fp(Q(1)) provides the rational structure on R(1) alluded to above.
Comparing formulas (18) and (20) over “SpecZg”, we see that the semisim-
plifications of (MZI",Frp) and (E,,¥°8P) for x € v = p ¢ S should be isomorphic.

Since F is a vector bundle the dimensions of MlIP must be constant, i.e. M must
have good reduction at the finite primes p ¢ S. Note that via the equivalence of
categories above, (FE,,!°8P) is isomorphic to F, with its monodromy representa-
tion along v. The rational structure Fg , on I}, thus implies that the characteristic
polynomial of the monodromy representation has rational coefficients. The same
must therefore hold for the Frobenius action on M; if our picture is correct. This
is well known for many motives by the work of Deligne and conjectured in general.

We now reinterpret part of (2.1) 5. as a fully faithfulness assertion. For finite S
consider a motive M over Q with good reduction outside of S. Using the expected
isomorphism (15) over Spec Zg we get a commutative diagram

f
Hom(Q(0), M) ® R = H°(“Spec Zg”, F(M))®~0

F
H(“SpecZs”, F(M)) — H°(“SpecZs”, F(M))®=°,

noting that H is Hausdorff. Hence all arrows must be isomorphisms. Replacing
M by M{ ® M, it follows that the exact tensor functor Fp from motives with
good reduction on Spec Zg to Q-local systems on “Spec Zg”, must be fully faithful.
The map induced by Tannakian duality fits very nicely into a diagram comparing
topological fundamental groups and Galois groups of number fields, see [D7] (42).

The constructions in the real manifold setting of section three, even if we allow
infinite-dimensional or pro-manifolds, always lead to sheaves of real vector spaces
F. On the other hand the spaces F,(M) are by construction ([D3] §3) complex
vector spaces with no evident real structure. For motives over QQ this is not a
contradiction, but the analogue for motives over finite fields is impossible. This is
so because the functors F, would give exact faithful tensor functors into R-vector
spaces which are known not to exist. On the other hand on the subcategory of
ordinary motives over finite fields the predictions of the dynamical formalism work
out correctly by a result of Deligne, see [D7] 4.7.

CONCLUSION

Apart from stating his famous conjectures on zeta functions, A. Weil also explained
how they could be attacked given a cohomology theory for varieties in characteristic
p with properties similar to those of singular cohomology. For varieties over number
fields the analogues of the Weil conjectures and further conjectures have by now
been checked in numerous cases except for the Riemann conjecture 2.1 part 4
of course. In this article we have outlined a strategy to approach them. This
program requires a cohomology theory for algebraic schemes over the integers

2This is not a misprint.
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with properties similar to those of the reduced leafwise cohomology of a class of
dynamical systems with one-codimensional foliations by pro-manifolds.
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FroM SHUFFLING CARDS
TO WALKING AROUND THE BUILDING:

AN INTRODUCTION TO MODERN MARKOV CHAIN THEORY

PERSI D1ACONIS

ABSTRACT. This paper surveys recent progress in the classical subject of
Markov chains. Sharp rates of convergence are available for many chains.
Examples include shuffling cards, a variety of simulation procedures used
in physics and statistical work, and random walk on the chambers of a
building. The techniques used are a combination of tools from geometry,
PDE, group theory and probability.

0 INTRODUCTION

The classical subject of Markov chains has seen spectacular progress in the past
ten years. Progress is seen through theoretical advances and practical applications.
These may be roughly depicted as the interactions between:

STATISTICAL

/ MECHANICS \

STATISTICAL
COMPUTING SCIENCE

N e

Briefly, Markov chain Monte Carlo is a mainstay of the computational side of
statistical mechanics. There, one wants to draw samples from probability mea-
sures on high dimensional state spaces (e.g., the Ising model). One practical way
to proceed is to run a fancy kind of random walk (the Metropolis algorithm or
Glauber dynamics) [50] which reaches equilibrium at the desired measure. Similar
procedures have created a revolution in the computational side of statistics (the
Gibbs sampler)[22], [40]. In theoretical computer science, a slew of intractable
problems (#-p—complete) problems like computing the permanent of a matrix or

COMPUTER

MATHEMATICS
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the volume of a convex polyhedron) have provably accurate approximations in
polynomial time because simple Markov chains can be constructed and proved to
converge rapidly [58]. All of this rests on new mathematical developments.

The new mathematics uses ideas from diverse areas.

GROUP PROBABILITY
THEORY
PDE GEOMETRY

Probabilistically, new ideas like coupling [48] and stopping time techniques [3],
[19] give ‘pure thought’ solutions to previously intractable problems. Techniques
from PDE and spectral geometry allow bounds on the eigenvalues of the basic
operators in terms of the geometry of the underlying chain (bottleneck measures,
discrete curvatures, and volume growth). Comparison techniques allow study of a
chain of interst by comparison with a neat chain which can be analyzed through
group representations. The various areas interact so there are probabilistic proofs
of results in classical geometry and group theory and vice versa.

The present paper offers a thread through this maze by following the devel-
opment of a single example: mixing n cards by repeatedly removing the top card
and inserting it at random.

The example is studied in Section 1 which introduces basic notation, shows
what a theorem in the subject looks like, and proves that nlogn shuffles suffice to
mix up n cards. Thus, when n = 52, about 200 shuffles are necessary and suffice.
The argument introduces coupling arguments and shows that the underlying non
self adjoint operators are explicitly diagonalizable. Section 2 offers a variety of
extensions where a similar analysis obtains. These include the usual method of
shuffling cards. Section 3 extends things to random walk on the chambers of a
hyperplane arrangement and then to walks on the chambers of a building. These
examples show an intimate connection between probability, algebra, and geometry.

Section 4 gives pointers to many topics not covered, a brief example of the
geometric theory of Markov chains (again applied to shuffling cards), some open
problems, and a beginner’s guide to the literature.

1 SOME MARKOV CHAINS ON PERMUTATIONS.

1.1 THE TSETLIN LIBRARY.

Picture a pile of file-folders which are used from time to time. The i*" folder
is used with weight w; with w; > 0, w1 4+ --- + w, = 1. It is natural to want
frequently used folders near the top. A scheme which achieves this, even if the
w; are unknown, is simply to replace the most recently used folder on top. To
put this into a mathematical framework, label the folders 1,2,---,n and let an
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arrangement of these labels be denoted by a permutation o say with o (i) the label
at position i. Moving folder 7 to the top changes o by a cycle (1, 2. J’l(i)). The
chance of moving from ¢ to { in one step is

w; if¢=(1,2---071(i)) o
0 otherwise.

K(o,¢) = { (1.1)

It helps some of us to think of K(o,() as the (o,¢) entry of an n! by n! matrix.
Then, making repeated moves is represented by matrix multiplication. Thus, the
chance of going from ¢ to ¢ in two steps is

KQ(U’ g) = ZK(Ua 77) K(%Q

After all, to get from o to (, one must go to some possible n and then from 7 to
¢. Similarly, K'(o, () is defined.
A matrix of form (1.1) with K (o, () > 0, Z K(o,() = 11is called a stochastic

¢
matrix and the process of successive arrangements is called a Markov chain. The

Peron-Frobenious theorem implies that under mild regularity conditions (connect-

edness and aperiodicity, satisfied in all examples here), such a Markov chain has a

unique stationary distribution 7 (o) > 0, Z m(0) = 1. This is characterized as
oeSn

the unique left eigenvector of K with eigenvalue 1 (so Z m(0)K (0,¢) = 7(Q)).

ogeSny
It is also characterized by the limiting result as [ tends to infinity

lim K'(0,¢) = 7(¢) for all o (1.2)

Algebraically, this says that if the matrix K is raised to a high power, all the rows
are approximately equal to w. Probabilistically, this says that for any starting
state o, after many steps, the chance that the chain is in state { is approximately
equal to 7(¢), no matter what the starting state is.

For the Tsetlin Library (1.1), the stationary distribution 7 is easy to describe.
One description is “sample from the weights {w;} without replacement.” That is,
form a random permutation o by choosing o(1) = j with probability w;. This first
choice being made, delete weight we (1), renormalize the remaining weights to sum
to one, and sample from these to determine ¢(2). Continuing in this way gives o.
Formally:

wUl w02 wdn—l

(1.3)

7T(O'):1 : g _
- Woy — Woy — Woy —Woy =~ Wopy_,

This natural probability measure arises in dozens of applied contexts from psycho-
physical experiments (as the Luce model) to oil and gas exploration [17].
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The standard way of quantifying the rate of convergence of K! to 7 is to use
the total variation distance; let K (A) = Z KY0,0),
CeA

1
15 — =l = max Ko (A) —m(A)] = 5423 [K!(0,.¢) = 7(¢)]

These equalities are easily proved.
As an example of the kind of theorem that emerges, we show

THEOREM 1.1. For the Tsetlin library chain (1.1)

15 — ] SZ(l—wi)l (1.4)

Remark 1. Consider the simple case where all w; = % This gives a simple shuffling
scheme: Cards are repeatedly removed at random and placed on top. This is the
inverse of top to random described before (the rates are the same). The bound
on the right side of (1.4) becomes n(1 — 1)!. Using 1 — 2 < e™%, we see that
when | = n(logn + ¢) with ¢ > 0, ||K! — 7|| < e¢. It is not hard to see this is
sharp: If I = n(logn — ¢) with ¢ > 0 the distance to stationarity is essentially at
its maximum value of 1. A graph of the distance to stationarity versus [ appears
in Figure 1. The limiting shape of this graph is derived in [19]. This shows an
example of the cutoff phenomenon [17]. While the distance ||K! — || is monotone
decreasing in [, the transition from one to zero happens in a short interval centered
at nlogn. In [17] similar cutoffs are proved for many other choices of weights, e.g.,

_ 09-
& _
|
E_a 0.7 -
05 ~ |

nlobn
k

Figure 1: Distance to stationarity for top to random shuffle

Proof of Theorem 1.1 The proof uses a coupling argument. Picture two decks
of cards. The first starts in order 1,2,---,n. The second starts in random order
drawn from the stationary distribution (1.2). At each time ¢ =1,2,3--- choose a
label ¢ with probability w; and move card ¢ to the top of both decks. Note that
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this forces the two decks to be in the same order in the top positions. Once cards
labeled 4 are in the same position in the two decks, they stay that way under
further moves. It follows that the first time 7T that all indices have been chosen
at least once, the two decks are in the same order. The second deck began in
stationarity, and repeated moves preserve stationarity. Thus at time T the first
deck is distributed in the stationary distribution.

The time T is called a coupling time [48]. It is easy to prove the formal bound

KL — 7|l < P{T > 1}.

A further simple argument shows P{T >} < > (1 —w;)’.
o

Remark 2. There is a large literature on the move to front scheme as a method of
dynamic storage allocation. See [36].

Remark 3. The Markov chain (1.1) is not self-adjoint. Nonetheless, Phaterfod
[52] shows that the matrix K has real eigenvalues 5, = Zwi with multiplicity

i€S
the number of permutations with fixed-point set S. Here S runs over subsets
of [n] = {1,2,---,n}. It is curious that we have no analytic tools to use these
eigenvalues for deriving bounds such as (1.3).

2 MORE VIGOROUS SHUFFLES.

The Tsetlin library scheme can be varied by choosing a subset S C [N] with weight
ws and moving the folders with labels in S to the top, keeping them in the same
relative order.

THEOREM 2.1. Suppose the weights ws separate in the sense that for every i and
j, ws > 0 for some s withi € S,j ¢ S ori & S,j € S. Then the subset to top
chain has a unique stationary distribution ™ and

1Ky =< > (1—w)
1€8,j¢s
JEs,i¢s
Proof. Theorem 2.1 is proved by the following coupling: Let 7" be the first time
every pair of labels, i, j have been separated at least once. This is a coupling time
and theorem 1.2 follows. O

Remark 4. Again, all the eigenvalues are real, known, and useless [9].

There is a special case of Theorem (2.1) that is of general interest. Suppose
that all the weights {w,} are equal to 5. The shuffling scheme amounts to choos-
ing a random subset and moving these labels to the top. The inverse process is
the Gilbert-Shannon-Reeds (G-S-R) distribution for riffle shuffling ordinary play-
ing cards. Here, one cuts off the top j cards with probability (’;) /2™. The top and
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l | 1 2 3 4 5 6 7 8 9 10
|[K'— ][ | 1.000 1.000 1.000 1.000 .924 .614 .334 .167 .085 .043

Table 1: Total variation distance after riffling 52 cards [ times

bottom halves are riffled together according to the following scheme: At a given
time, if one half has A cards, the second half has B cards, drop the next card
from the first half with probability Af:;B. It is not hard to see these are inverse
descriptions. The G-S-R distribution is quite a realistic description of the way
real people shuffle real cards. Of course, in this case (o) = 1/n! is the uniform
distribution.

The chance of separating ¢ and j in one shuffle is evidently 1/2. Thus the
bound of theorem (1.2) is

It - all < (5) )

The right side of this bound is small when [ is larger than 2log, n.

In joint work with David Bayer [8], more accurate estimates of the distance
are derived. We prove the sharp result that %1og2 n shuffles are necessary and
suffice:

THEOREM 2.2. For the G-S-R model of riffle shuffles, let | = glogg n+c. Then

IIK, — || =1—2d <43/§C) +0 (%) :

with ®(r) = ﬁ . e=*/2 gt

When n = 52 we derive the following exact result shown in Table 1 above.
Theory shows that the total variation distance continues to decrease by a power
of 2 for larger I. Evidently, there is a sharp threshold centered at about seven
shuffles. Theorem 2.2 says that for large n, a graph of total variation versus [
looks like Figure 1 with a cutoff at 3/21log, n.

Table 1 is derived from a simple closed form expression: The chance that the

2! —d
deck is in position o after [ shuffles equals < o ) / 2" with d the number
n

of descents in o~!. This close connection between descents and shuffling lends

to new formulae in combinatorics—enumeration of permutations by descents and
cycle structure [40], [23]. It is also closely connected to Hodge type decompositions
for Hochschild homology [42]. This rich circle of interconnections feeds back into
probability: While it takes %1og2 n shuffles to make all aspects of a permutation
match the uniform distribution, features depending on long cycles are essentially
random after one shuffle.

As a final generalization, consider shuffling driven by a block ordered partition
[B1, B, -, Bg]. To shuffle, remove cards with labels in B;, and place them on
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top, keeping them in their same relative order. These are followed by cards with
labels in By, and so on. Choosing weights for each block ordered partition leads
to a shuffling scheme that includes the Tsetlin library (weight w; on [i, [n]\d])
and the G-S-R model (weight 1/2™ on [s, [n]\s]). These general shuffling schemes
were suggested by Bidigare, Hanlon and Rockmore [9]. They permit an essentially
complete analysis [12], [13]. As will be seen next, these shuffles too are a very
special case of random walk on a hyperplane arrangement.

3 RANDOM WALKS ON THE CHAMBERS OF A HYPERPLANE ARRANGEMENT.

We work in R?. Let A = {Hy,---, Hy} be a finite collection of affine hyperplanes.
These divide space into chambers C' and faces F'. For example, Fig. 2 shows three
hyperplanes in R2.

FC C

Figure 2: 3 lines in the plane

There are seven chambers, nine half-line faces (one labeled F), and three point
faces. There is a natural action of faces on chambers denoted F' *x C: This is the
unique chamber adjacent to F' and closest to C (in the sense of crossing the fewest
number of hyperplanes). For example, in Figure 2 the product of the chamber C|
with the face F' is the chamber F % C'. This has distance two from C, while the
other chamber adjacent to F' is at distance three.

Bidigare, Hanlon, and Rockmore (B-H-R) [9] suggested choosing weights
{wr} and defining a random walk defined on C by repeatedly multiplying by
faces drawn from these weights. They found the eigenvalues of these chains were
positive sums of the weights. Brown and Diaconis [13] showed the chains are di-
agonalizable, determined the stationary distribution, and gave reasonably sharp
coupling bounds for convergence to stationarity.

The B-H-R results extend the shuffling results of Section 2 above: In R”, the
braid arrangement has hyperplanes {H;;}ic; with Hyj = {(z1---2n) @ 2 = x5}
The chambers of the braid arrangement are naturally labeled by the n! permuta-
tions (the relative order of the coordinates inside the chamber). The faces of the
braid arrangements are determined by various equalities among coordinates. They
are easily seen to be labeled by block ordered partitions discussed in Section 2.
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Moreover, the action of faces on chambers is just the shuffling scheme described
in Section 2.

There are many hyperplane arrangements where the chambers can be labeled
with natural combinatorial objects such as trees or tilings of various regions [13]
[59]. The face walks give natural Markov chains on these spaces which permit a
complete analysis. There is a useful description of the stationary distribution, the
operators are diagonalizable with positive eigenvalues which are partial sums of the
weights. Finally, there are good rates of convergence using a coupling argument.

For this expository account, I content myself with a single geometric example
drawn from joint work with Louis Billera and Ken Brown [11]. Consider n planes
(through zero) in R3. These are most easily pictured by their intersection with
the unit sphere. For example, Figure 2 shows the northern hemisphere cut into
chambers or regions by 4 planes—one being the plane of the picture.

The projection of C' on v.
Figure 3: 4 planes in R3.

The chambers are the open regions shown together with a matching set “under”
the sphere. There are 14 chambers altogether ((3) + 2 for n planes in general
position). Consider the random walk on chambers generated by picking a random
vertex of the arrangement uniformly. The walk moves from its current chamber to
the chamber adjacent to the chosen vertex. It is intuitively clear that the chance
of winding up in a given region ¢ depends on the number i(c) of sides of the re-
gion, regions with large values of i(c) being more likely. In [11] we showed that
m(c) = (i(c) —2)/2(fo —2) with fo the total number of vertices in the arrangement.
Thus in Fig. 2 fo = 14 and the 8 triangular regions have 7 = 1/14 while the 6
quadrilaterals have # = 1/7. We have no intuitive explanation for this; we just
observed it was true in small cases and proved it beginning with a rather indi-
rect description of the stationary distribution given by sampling from the vertices
without replacement. We find the result surprising; for example, there are four
essentially different configurations of six planes in R3. These are shown in Table 2
together with their vital statistics. In all cases, the stationary distribution for
an i-gon is proportional to ¢ — 2. Note that some configurations don’t have any
i-gons. The eigenvalues and coupling for this example show that the walk reaches
stationarity after two steps!

These examples show that hyperplane walks have some remarkable properties.
They do not yet explain what makes things tick. The next two sections give
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GDDGD

Six great circlesin general position.
i|]A B C D
3120 14 12 12
410 12 16 18
)
6

12 6 4 0
0 0 0 2

Figure 4: Table 2: Six great circles in general position with number of i-gons

random walks on buildings where things start to break and random walks on
semi-groups, the current ultimate generalization.

4 RANDOM WALKS ON THE CHAMBERS OF A BUILDING.

There is a natural extension of the walks of a hyperplane arrangement generated
by a reflexion group such as the braid arrangement. This gives random walks on
the chambers of a building; we will work with finite objects (spherical buildings).
This section reports work of Ken Brown.

A building is a simplicial complex given with a set of subcomplexes called
apartments. These apartments must be (isomorphic to) the chambers of a eu-
clidean hyperplane arrangement generated by a finite reflexion group. The top
dimensional cells of the complex are called chambers. As an example, the follow-
ing complex is a building.

Figure 5: An As building

a
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The vertices (one-cells) are numbered a, b, ¢, d, e, f, z,y. The two-cells are the edges
shown; these are the chambers. There are three apartments

a a

d d d

Each of these may be identified with the braid arrangement in R3.

There is a natural action of a face of a building on the chambers. One of
the building axioms says that any two faces are in an apartment. Thus any face
and chamber are in an apartment and it makes sense to multiply them using the
procedure described in Section 3. In the As building pictured in Fig. 5, consider
the chamber {a, b} and the vertex d; d{a,b} = {d, ¢} because {c, d} is the closest
chamber to {a,b} adjacent to d (distance 2). Any finite tree is a building, and the
product of an edge with a vertex may be similarly defined.

A Markov chain on the chambers of a building may be defined by choosing
an arbitrary system of weights on the lower dimensional simplicies. This gener-
alizes the shuffling scheme of Section B but does not include general hyperplane
arrangements.

For the A, building pictured in Figure 5, the walk may be pictured as a
service discipline where a single server occupies an edge. Customers arrive at
vertices with given propensities and the server slides over to the edge closest to
the next customer. One may ask how much time the server spends on a given edge
in the long run.

This class of examples introduces some new behavior: It is no longer true that
the eigenvalues are positive or even sums of the weights. As an example, consider
Figure 5 with equal weights on b, f,z. The eigenvalues are real and the matrix
is diagonalizable, but the eigenvalues are algebraic numbers which are no longer
linear in the weights. It is an open problem to find examples of random walks
on buildings where the eigenvalues are complex. Despite all this, the following
example shows that these walks have some elegant special cases where everything
works out neatly:

Consider a vector space V' which is n-dimensional over a finite field I, with
q = p® elements for some prime p. A flag is a maximal increasing sequence of
subspaces. Thus it consists of a line in a plane in a three-space and so on up to an
n— 1 space. We will describe a simple random walk on the space of flags which is a
direct analog of the random to top chains in Section 1 above. The walk is driven by
a system of weights for each line I : {w;}l € P,,_1. Here w; > 0, Zwl = 1. The

1
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walk proceeds as follows: Suppose it is currently at the flag v1 C vo -+ C vy_1.
Choose a line with probability w;. Modify the flag to begin with [:

lCl+vyCl4vy---Cl+w,

If I ¢ v;_1 but I € v;, the chain of subspaces repeats since [ + v;_1 = I + v;. Strike
out this repetition to get a new maximal flag. This defines a random walk in
maximal flags which “moves a random vector to the front.” As ¢ — 1; a subspace
becomes a subset and a flag becomes a permutation; the walk becomes move to
front.

Brown [12] gives an elegant analysis of these chains which perfectly parallels
the analysis of Section 3.

THEOREM 4.1. [Brown] For the random line to front with weights {w;}, there is
an eigenvalue for each subspace x (including ¢,P")

)\I:Z wi.

lex

I (—1)kq(3)
1
This has multiplicity m;(q) = g gMAI () — [7]! E ([)T?Z, with j =
k=0 ’

codim(z), and the first sum over derangements w in S;. If w; is uniform

K =] <

(" =D ' =1 (¢ 2-1\"
(> +1)(¢g—1) (q”—l) '

Remark 5. The last bound shows that m = n — 1 steps suffice to achieve random-
ness when n is large and ¢ is fixed. This is clearly the minimum by dimension
arguments so the bound is sharp in this case.

4.1 WHAT IS THE ULTIMATE GENERALIZATION?

The results in Sections 1-4 have a marked similarity; it is natural to try to derive a
common generalization. In all cases one is “multiplying something” by an associa-
tive product (the one case where things went wrong for the Ay building of Fig. 5,
it turns out the product isn’t associative). This suggests random walk on a semi-
group as a possible general setting. Let X be a semigroup and w, a probability on
X. Let p be an ideal in X' (so zc € p for all € X, cep). Then generate a random
walk by repeatedly choosing elements from {w,} and multiplying. While there is
some general theory for these random walks [53] [20], they are too general to hope
that results such as real eigenvalues go through. Indeed, any Markov chain on a
set S can be represented as a random walk on the set of all functions from S to S.

Ken Brown [12] has shown that results of Sections 1-4 above and many others
are captured by semigroups which have all elements idempotent (x? = z) and
further satisfy the cancellation property zyxz = zy for all x,y. These are called
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“left regular bands” in the semigroup business. Brown’s proof introduces the
semigroup algebra and studies its representations. The irreducible representations
of a left regular band turn out to be one-dimensional, and this leads to a complete
description of the eigenvalues and multiplicities. The coupling bound had been
carried out earlier. [13]

Are these semigroup walks the ultimate generalization? It seems too early to
tell. Further, the tools available for hyperplane, building, and semigroup walks
are still not sharp enough to prove the cutoff phenomenon as in Theorems 1.1 and
2.2. These seem to need the more refined setting of the descent algebra. There is
much yet to understand, but the above developments give a flavor of some exciting
mathematics in progress.

5 ToOPICS NOT COVERED

The results in Sections 1-5 show the developments of a single theme. There
are many other themes that have led to exciting developments. This
brief section gives pointers to the literature. It may be supplemented
by browsing through the preprint service for Monte Carlo Markov chains:
http://www.stats.bris.ac.uk/ maspb/mcmc.  Throughout, X is a finite set,
K(x,y) is a stochastic matrix, and 7 is the stationary distribution.

5.1 COUPLING

Coupling techniques are available in some generality. In principle there is a maxi-
mal couping which is sharp in the sense the | K!—7|| = P{T > ([} for[ = 1,2,3,---.
These are usually impossible to find. At present, finding useful couplings is an art.
Lindvall [48] is a book-length introduction to coupling. Examples can be found
in Aldous [1] and in [16]. Recently, couplings have been used to solve extremely
tough problems. Finally, the coupling from the past method of Propp-Wilson [60]
has been used to allow exact generation for several distributions of interest. There
is a useful bound on the spectral gap given a coupling bound [43], [2]. All of this
said, it is still quite difficult to generate useful bounds for many chains of inter-
est using coupling. This is why the geometric theory of Markov chains has been
actively developed.

5.2 THE GEOMETRIC THEORY OF MARKOV CHAINS

Suppose that the underlying chain is reversible: 7(z)K(z,y) = 7(y)K (y,z) for
all z,y. Form a graph with vertex set X and an undirected edge from z to y if
K(x,y) > 0. The geometric theory relates geometric properties of this graph such
as diameter, volume growth and various measures of bottlenecks (curvature) to
the convergence rates of the chain. This borrows tools from spectral geometry and
PDE such as the following inequalities

Poincaré, Cheeger, Nash, Sobolev, Log Sobolev.
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Useful introductions to these ideas with many examples may be found in [5], [56],
[58]. Along with others, I have written about these things in [35], [27], [29], [30].
Expositions in graph theoretic language appear in [10][15]. The computer science
community has also written about such geometric bounds with [49], [46] being
surveys with extensive references.

The theory has been adapted to nonreversible chains [38][29]. Here is a simple
example which illustrates the geometric tools. Consider X = S, all permutations.
Let n be odd. Let S = {(1,2),(1,2,---,n)}: A transposition and an n- cycle.
L ifno~tes

Define K (o,n) = S

as “either transpose the top two cards or move the top card to the bottom.” This
simple chain should be easy to analyze , but no coupling bound is known. The
results show that there are universal constants A;, A, B such that

. This is the Markov chain described informally

Ae—Bl/n3 logn < HKl — | < Ae—Bl/n3 log n

Roughly, this says order n?logn shuffles suffice. When n = 52, n3logn is more
than half a million. Thus, this shuffling scheme is much slower than “top to
random.” Here is a brief outline of the argument:
Let L? = {f : X — R with (f, g) = >, f(z)g(x)n(x)}. For this example
m(z) = 4. Let K operate linearly on L? by K f(z) = Z K(z,y)f(y). If K, 7 were
Y

reversible, K would be self-adjoint. In the present example, K is not self-adjoint.
We first symmetrize K, forming K = KK*. This is a self-adjoint operator with
a simple description: Set T = {(1,2)(1---n)~*,(1---n)(1,2)}. Then K(o,0) =
%,f((o, () = i if §O'_1€T,[A((O', ¢) = 0 otherwise.

The eigenvalues B; of K can be characterized through the quadratic form
E(f,9) =< (I — K)f,g >. As shown in [29], Section 2, convergence rates for the
original chain K can be expressed in terms of B.

1K —x|* <

] =

nl—1
B2l

Here 3y = 1 does not appear in the sum. )
Finally, one can get good bounds on the eigenvalues 3; by comparison with

a third chain: random transpositions. K(o,() = — if 0 = ¢,2/n? if o¢~! is a
n

transposition and zero otherwise.

For this third chain, a formula for the eigenvalues and their multiplicities is avail-

able using character theory [33]. To compare K and K one shows E < An’E
for universal A. This in turn is accomplished by writing (1,2)(1,---,n)~! and
(1---n)(1,2) in terms of transpositions. Many examples of this sort appear in
[25]. Details for the present example can be found in [29], Section 2.
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The argument sketched above shows the interactions between probability,
geometry, group theory, and PDE. More sophisticated examples appear in [37],
[47], [55].

5.3 GENERAL STATE SPACES

I have principally been involved with bounding Markov chains on finite state
spaces. There has also been much work on general state spaces. At present
writing very little of this is quantitative and what is available is often too crude to
be useful to practitioners. Meyn and Tweedie [51] is a book-length development of
the asymptotic theory, and Rosenthal [54] is a recent example of the quantitative
theory with references to related work.

5.4 SOME OPEN PROBLEMS

The present article does not do justice to perhaps the most exciting develop-
ment; the infinite variety of tricks and techniques that practitioners develop to
give believable answers in practical problems. Even the most basic techniques in
widespread use—the Metropolis algorithm [32] and the Gibbs sampler are beyond
current theoretical understanding. There has been spectacular progress in special
cases such as the Ising model (work of Stroock-Zegarlinski, Martinelli, Schoneman,
and others). However, the following kind of problem is completely open: On the
symmetric group consider 7(0) = Z(0)04?:?0), Here 0 < # < 1, d is a metric on
permutations such as Y |oo(i) — o (%), oo is a fixed, known permutation, and Z is
a normalization factor. The problem is to generate from 7. One simple method:
Use the Metropolis algorithm with base chain random transpositions. Analysis of
the time to stationarity is beyond theory at present writing. It seems natural to
conjecture that order nlogn steps are necessary and suffice to reach stationarity.
See [21] for such a result for a special choice of metric.

In a similar vein; trying to make mathematical sense out of any widely used
Monte Carlo Markov chain procedure from umbrella sampling to hybrid Monte
Carlo offers very challenging mathematics problems.

5.5 MORE OPEN PROBLEMS.

Section 5.2 showed how to bound the rate of convergence of a non-reversible chain
in terms of the eigenvalues of its multiplicative reversibalization. These in turn
were bounded by comparison with a random transpositions chain. Comparison
only works for reversible chains. The problem is, find a way of using the explicit
eigenvalues of the chains in Sections 2-4 above. Here are three explicit questions.
First, is there any way of using the eigenvalues to derive explicit bounds on total
variation. There are useful bounds for reversible chains [35]. Second, can one relate
the eigenvalues of a non-reversible chain K to the eigenvalues of its multiplicative
reversibilitization? For example, for random to top, the reversibilization becomes
random to random. For riffle shuffles, the reversibilization becomes ’remove a
random subset and shuffle it back at random.’ This is a natural model of traffic
where two lanes merge into one and then split into two. Third, in the hyperplane
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setting of Section 3 a local walk can be defined on the chambers. Choose a weight
w; for each hyperplane. From a region C choose one of its bounding hyperplanes
with probability proportional to its weight and reflect to the adjacent chamber.
This gives a reversible Markov chain with stationary distribution proportional to
the sum of the weights of hyperplanes bounding a chamber. Such walks are used
to generate random tilings and elsewhere. Is there any way to use the known
eigenvalues of the chamber walks of Section 3 to analyze the local walks? These
questions go through as stated for buildings.
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CHAOTIC HYPOTHESIS AND UNIVERSAL

LARGE DEVIATIONS PROPERTIES

GIOVANNI GALLAVOTTI

ABSTRACT. Chaotic systems arise naturally in Statistical Mechanics
and in Fluid Dynamics. A paradigm for their modelization are smooth
hyperbolic systems. Are there consequences that can be drawn simply
by assuming that a system is hyperbolic? here we present a few model
independent general consequences which may have some relevance for the
Physics of chaotic systems.

Keywords and Phrases: Chaotic hypothesis, Anosov maps, Reversibility,
Large deviations, Chaos

§1. CHAOTIC MOTIONS.*

A typical system exhibiting chaotic motions is a gas in a box whose particles
interact via short range forces with a repulsive core, e.g. a hard core. No hope to
ever be able to solve the evolution equations.

In the very simple case of pure hard cores it has been possible to prove,
mathematically at least in some cases, that the system is ergodic, [Sil], [Sz], but
ergodicity in itself is only a beginning of the qualitative theory of the motion. A
similar situation arises in Fluid Mechanics: is a qualitative theory of Turbulence
possible as, clearly, there are hopes to be able, in the near future, to prove an
existence—uniqueness theorem but there is no hope for exact solutions of Navier
Stokes equations?

Equilibrium Statistical Mechanics is a brilliant example of a very successful
quantitative theory derived from a comprehensive qualitative hypothesis, the er-
godic hypothesis. The key to its success is a general expression for the probability
distribution g on phase space M providing us with the statistics of the motions
corresponding to given values of the macroscopic parameters determining the state
of the system.

The statistics p is defined in terms of the time evolution map S via the
relation:

lm =3 F(sia) = [ Flyutdy) (1)
7=0

T—>ooT‘ M

* Expanded text of the talk at the ICM98 in Berlin, 26 August 1998.
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for all smooth observables F and for almost all, in the sense of volume measure
on M, initial data x € M. In Equilibrium Statistical Mechanics the distribution
w1 is identified with the uniform distribution on the surface of constant energy
(the macroscopic state of the system being detemined by the volume V of the
container box and by the energy U), which is an obviously invariant distribution
by Liouville’s theorem of Hamiltonian Mechanics: this is a necessary consequence
of the ergodic hypothesis.

The success of Equilibrium Statistical Mechanics can be traced back to the fact
that the ergodic hypothesis provides us with a concrete general, model independent,
expression for the statistics of the motions. An expression that can be used to
derive relations among time averages of various observables without even dreaming
of ever being able to actually compute any of such averages.

The Boltzmann’s heat theorem, the positivity of compressibility and specific
heat are simple, but great, examples of such relations. They are relations which
hold for any model, provided one makes the ergodicity hypothesis, see [Gal]. A
classical argument that can be used to derive the heat theorem (i.e. the second law
of Thermodynamics) from ergodicity is provided us by Boltzmann, see Appendix
A2 and [Ga2].

Consider a mechanical system: viewing its phase space as a discrete set of
points the ergodic hypothesis says that motion is a one cycle permutation of the
points. Given a initial datum with energy U and with volume V' we define temper-
ature the time average of kinetic energy T = (K) and pressure the time average of
the derivative of the potential ¢ with respect to the volume V' (note that the force
acting on the particles consists of the internal pair forces and of the force that the
walls exercize upon the particles which depends on the position of the walls, hence
it does change when the volume varies). Here and below (F') will denote the time
average of the observable F.

A general elementary property of a system whose motion on each energy
surface is a single periodic motion is that if one calls p = (v ) then:

au +pdV
— =

which means that if the energy U and a parameter V' on which the potential
depends (it will be the volume in our case) are varied by dU and dV respectively
then the differential in (1.2) is exact.

An elementary classical calculation shows that p, see Appendix A2, in the
case of a gas in a box, has the meaning of average force exercized per unit surface
on the walls of the container as a consequence of the particles collisions: thus we
see that the ergodic hypothesis plus a general, trivial, identity among the averages
of suitable mechanical quantities yields a relation (“equality of cross derivatives”)
holding without free parameters.

The reason why such relation is physically relevant for macroscopic systems
is that the time necessary for the averages defining T',p to be reached within a
good approximation by the finite time averages of K, 9y ¢ is not the unobservable
recurrence time (i.e. the superastronomic time for the system to complete a single
tour of the energy surface U) but it is a much shorter physically observable time

exact (1.2)
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(whose theory is also due to Boltzmann being the essence of the Boltzmann’s
equation) because the quantities K,y have an essentially constant value on
the energy surface if the number of particles is large (so that the average of such
observables “stabilizes” very rapidly compared to the recurrence times).

To summarize: a simple hypothesis allows us to find the statistics of the
motions of an equilibrium system: this implies simple parmeterless relations among
averages of physically relevant quantities (i.e. GV% = Oy %) which are observable
in large systems because such quantities average very quickly compared to the
recurrence times (being practically constant on the surface of given energy if the
system is large).

Thus a natural question arises: is there anything analogous in Non Equilib-
rium Statistical Mechanics? and in developed Turbulence?

The first problem is “what is the analogue of the uniform Liouville’s distri-
bution?”. This is a really non trivial question that, once answered, will possibly
allow us to try to find relations between time averages of mechanical quantities.
The nontriviality is due to the fact that as soon as a system is out of equilibrium,
i.e. nonconservative forces act upon it, dissipation is necessary in order to be able
to reach a stationary state. But this means that any model used will be necessar-
ily described by an evolution equation which will have a nonzero divergence: so
that phase space will necessarily contract, in the average, and the statistics of the
motion will be concentrated on a set of zero Lebesgue volume, see [Ru3|.

Ruelle’s proposal in the early 1970’s was that one should regard such systems
as hyperbolic so that there would be a unique stationary distribution describing the
statistics of almost all initial data (chosen with the uniform distribution on phase
space), [Rul]. The ideas of Krylov, [Kr79], inspired Sinai in his development of
the theory of Anosov systems via Markov partitions and, see [Si2], in conceiving
complex mechanical systems as hyperbolic, and Ruelle’s new ideas and his principle
emerged, profiting of the important technical and conceptual achievements of Sinai.

This principle has been interpreted in [GC] as the following:

Chaotic hypothesis: A chaotic mechanical system can be regarded for practical
purposes as a topologically mixing Anosov system.

This means that the closure of the attractor is a smooth surface on which
the evolution is a Anosov system: of course assuming Axiom A instead of Anosov
would be more natural, particularly in few degrees of freedom systems, [Rul].
However I prefer to formulate the hypothesis in terms of Anosov system as frac-
tality of the closure of the attractor seems to be of little relevance in systems with
large number of degrees of freedom occurring in Statistical Mechanics.

The locution practical purposes is deliberately ambiguous as we know that
even in Equilibrium Statistical Mechanics the corresponding ergodic hypothesis
may fail while its consequences, at least some of them, will not (like the heat
theorem in a free gas or in a harmonic chain).

The above physical discussion serves as a quick motivation of the mathemat-
ical question: are there general properties shared by mechanical systems that are
transitive or mizing Anosov systems?.
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In the next sections I provide some affirmative answer in the class of time
reversible Anosov maps and of weakly interacting chains of Anosov maps. Re-
call: a time reversal symmetry for a dynamical system (M, S) is any isometric
diffeomorphism I such that:

I’ =1, IS=8"1I (1.3)

Examples in Hamiltonian mechanical systems are the velocity reversal, or the
composition of the velocity reversal and the parity symmetry, or the composition
of the velocity reversal, parity symmetry and charge conjugation symmetry. In
general a time reversal may be a symmetry quite different from the naive one that
can be imagined, see [BG].

Hamiltonian systems on which further anholonomic constraints are imposed
via Gauss’ principle of least constraint often generate systems which show a time
reversal symmetry, see Appendix A1, thus providing the simplest examples.

§2. TIME REVERSIBLE DISSIPATIVE ANOSOV SYSTEMS. FLUCTUATION THEOREM.

We now study a C*°, topologically mixing, Anosov system (M, S) on a compact
manifold M.

Let M be a d-dimensional, C'*°, compact manifold and let S be a C°°, mixing
(transitive would suffice) Anosov diffeomorphism, [AA], [Sil]. If W¥ W2 denote
the unstable or stable manifold at x € M, we call W;"‘S, W;"s the connected parts
of Wi, W2 containing x and contained in the sphere with center  and radius 6.
Let d,,ds be the dimensions of W', W2: d = d,, + ds. We shall take § always
smaller than the smallest curvature radius of W, W7 for x € M. Transitivity
implies that W}, W; are dense in M for all x € M.

The map S can be regarded, locally near z, either as a map of M to M or of
W to W§,, or of W7 to W§_. The Jacobian matrices of the ”three” maps will be
d x d, d, x d,, and ds x ds matrices denoted respectively 95(x), 3S(z)y, 0S(x)s.
The absolute values of the respective determinants will be denoted A(x), A, (),
As(x) and are Holder continuous functions, strictly positive (in fact A(z) is C*°),
[Si1], [AA], [Rud]. Likewise one can define the Jacobians of the n—th iterate of S;
they are denoted by appending a label n to A, A, As; and are related to the latter
by the differentiation chain rule:

Ap(x) = 1:[ A(S7x), Ayn(z) = 1:[ A (S7),
=0 =0

- (2.1)
Aen(92) = [ Aen(572),  An(@) = Aun (@) Agn () xn (@)
j=0

sin a(S"x)

and X"(x) = sin a(z)
between W* and W* at the points S™z and z. Hence x,(z) is bounded above
and below in terms of a constant B > 0: B~ < x,(z) < B, for all z (by the
transversality of W* and W#).

is the ratio of the sines of the angles a(S™z) and a(x)
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We can define the forward and backward statistics or “SRB distributions”
W, pi— of the volume measure po via the limits:

Jim Z P(5%a) = [ ps@) (o) = s (F) (2.2)

which exist for all smooth functions F' on M and for all but a set of zero volume
of nitial points x, see [Sil].

Therefore it is the probability distribution g4 that is the statistics p of the
motions (almost surely with respect to the volume measure po on M), see (1.1):
it plays the role of the Gibbs distribution, or microcanoncial ensemble, of equilib-
rium Statistical Mechanics. Hence we are looking for general properties of p,
independent of the system considered, if possible.

Let A(z) = |det 9S(x)]; let pt be the forward and backward statistics of the
volume measure yg (i.e. the SRB distributions for S and S ~1).

Definition: The system (M, S) is dissipative if:
- [ psldr)ogA @) =7 > 0 (2.3)
M

Remarks: 1) Existence of a time reversal symmetry I, see (1.3), implies 77, = 7_
and A(z) = A ~1(I z); furthermore I W* = W7 and the dimensions of the stable
and unstable manifolds ds, d,, are equal: d, = ds and d = d,, + d; is even.

2) if Ay(z), As(x) denote the absolute values of the Jacobian determinants of S as
a map of W to W¥ and of W2 to W§_, then A, (z) = As({z) 1.

3) If a system (M, S) is dissipative then the system (M’,S’) with M’ = M x M
and S'(z,y) = (Sx, S~'y) provides us with an example, setting I(z,y) = (y, ), of
a dynamical system in the general class of “reversible” Anosov maps considered
in §1. Tt is remarkable that for Anosov systems it is 7, > 0, see [Ru3].

From now on only reversible dissipative Anosov dynamical systems (M, S) will
be considered: it is for such systems that it will be possible to derive general model
independent properties.

Definition: The “dimensionless entropy production rate” or the “phase space con-
traction rate” at x € M and over a time T is the function e, (x):

T/2—1

1 —__
x—er(x) = Z log A "1 (S9x) = —— log A, 1(3@) (2.4)
[y R— T

with A (z )def HT/2 1A(SJ:E) Hence (see (2.2)) it is, with po—probability 1:

(e2)s = lim Z = [ e =1 (2.5)

T~>+oo
j=0
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From the general theory of Anosov systems, [Sil], it follows that the pi—
probability that p = e,(x) is in the interval [p — §,p + d] can be written as
maXge(p—s,p+4] e™¢(@) for some suitably chosen function {(p) and up to a factor
bounded by B*!' with 0 < B < +o0. This is a deep result of Sinai that holds
because the statistics p4 can be regarded as a Gibbs distribution and one can
use the large deviation theory for such distributions: see Appendix A3 below for
details. Then the following theorem holds, see [GC]:

Fluctuation theorem: The “large deviation function” {(p) is analytic in an interval
(=p*, +p*) with p* > 1 and verifies the relation:

=1 Ipl<p” (2.6)
i.e. the odd part of Z(p) s in general linear and its slope is equal to the average
entropy creation rate.

What one really checks, see [Ga3], is the existence of p* > 1 such that the
SRB distribution 4 verifies:

+({er(z) elp—d,p+4]})
{er(x) e =[p—=0,p+4]}) ~

1
p—09 < lim _—logﬂu p+9 (2.7)

T T T +(

for all p, |p| < p* and for any § > 0.

The above theorem was first informally proved in [GC] where its interest
for nonequilibrium statistical mechanics was pointed out. The theorem can be
regarded as a large deviation result for the probability distribution py. Although
I think that the physical interest of the theorem far outweighs its mathematical
aspects it is useful to see a formal proof. A proof is reproduced in Appendix A3
below: it is taken from [Ga3].

The relation (2.6) has been tested numerically in several cases: it was in fact
discovered in a numerical experiment, see [ECM2], and tested in other experiments,
see [BGG], [BCL], [LLP]. Why does one need to test a theorem? the reason is that
in concrete cases not only it is not known whether the system is Anosov but, in
fact, it is usually clear that it is not, see [RT]. Hence the test is necessary to check
the Chaotic Hypothesis which says that the failure of the Anosov property should
be irrelevant for “practical purposes”.

Another interesting aspect, that cannot be treated here for limitations of
time, of the above theorem is that it can be interpreted as an extension to non
zero forcing (i.e. 77, > 0) of the Green-Kubo relations: see [Ga6].

§3. FLUCTUATIONS IN LARGE SYSTEMS.

An important drawback of the above fluctuation theorem, besides the reversibility
assumption which is not verified in many important cases, is that it can be prac-
tically verified, for physical as well as mathematical reasons, only in (relatively)
small systems.

DOCUMENTA MATHEMATICA -+ EXTRA VOLUME ICM 1998 - I - 205-233



CHAOTIC HYPOTHESIS ... 211

In fact the logarithm of the entropy creation rate distribution 7 Z(p) is, usually,
not only proportional to 7, i.e. to the time interval over which the entropy creation
fluctuation is observed, but also to the spatial extension of the system, i.e. to the
number of degrees of freedom; so that it is extremely unlikely that observing p in
a large system one can see a value p which is appreciably different from 1 (note
that the normalizing constant 77, in (2.4) is so chosen that the average of p in the
stationary state is 1).

For this reason in macroscopic (or just “large”) systems the phase space con-
traction rate is essentially constant (and its physical interpretation is of strength
of the friction) much as the density is constant in gases at equilibrium. Therefore
one can hope to see entropy creation rate fluctuations only if one can define a local
entropy creation rate ny,(x) associated with a microscopic region Vy of space.

I now discuss, heuristically, why one should expect that a local entropy creation
rate can be defined, at least in some cases, and verifies a local version of the
fluctuation law (2.6). This is discussed in a special example, see [GaT7], as in
general one can doubt that a local version of the fluctuation law holds, see [BCL].

The special example that we select is the chain of weakly coupled Anosov
maps, well studied in the literature, [PS]. The system has a translation invari-
ant spatial structure, i.e. it is a chain (or a lattice) of weakly interacting chaotic
(mixing Anosov) system. This can be described as follows.

Let (M',S’) be a dynamical system whose phase space M’ is a product of
2N + 1 identical analytic manifolds Mo: M’ = M(?N—H and S : M' - M'is a
small perturbation of a product map Sg x ... x So def Sy on M’. We assume that
(Mg, Sp) is a mixing Anosov systems. The size N (an integer) will be called the
“spatial size” of the system.

For ,y,z € Mg let F.(z,z,y) be analytic and such that z — F.(z,z,y) is a
map, of M into itself, e—close to the identity and e-analytic for |¢| small enough.
We suppose that, if z = (z_n,...,2n) € M":

(S'g)l :Fg(xi_l,xi,xi+1)osoxi (31)
where x4 (1) is identified with x5y (i.e. we regard the chain as periodic); we call
such a dynamical system a chain of interacting Anosov maps coupled by nearest
neighbors. It is a special example of the class of maps considered in [PS].!

It is difficult, maybe even impossible, to construct a (non trivial) reversible
system of the above form: we therefore (see [Ga3]) consider the system (M, S)
where M = M’ x M’ and define Sy = So x (So)~! and s g« (871, called
hereafter the free evolution and the interacting evolution, respectively. So that the
system can be considered as time reversible with a time reversal map I(z, y) =
(y,z). Note that the inverse map to (3.1) does not have the same form. The
map S is, however, still in the class considered in [PS] because it can be written

1 Tn the paper [PS] it is assumed that also Sy (hence Sg) is close to the identity, e.g. within
e: such condition does not seem necessary for the purposes of the present paper, hence it
will not be assumed.
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as S(z,y)i=(S(z,y)i,S(z, y)i2) with:

S(z, y)in =Fe(zi—1, 75, 7i11) 0 So 5
(z,y)n (w51 71+1) 0 (32)
S(Qvg)ﬁ :Gs,z'(g)o 0o Yi

where G has “short range”, i.e. |Go(y )i —G:(y'):| is of order €* if y and y’ coin-
cide on the sites j with |j —i| < k. By definition the system (M, S) is “reversible”,
i.e. the volume preserving diffeomorphism I verifies (1.3) above.

Therefore the points of the phase space M will be (z,y) =
(T_N+Y—_N+- -, TN,Yn): however, to simplify notations, we shall denote them by
z = (v_n,...,2N), with ; denoting, of course, a pair of points in M.

If € is small enough the interacting system will still be hyperbolic, i.e. for every
point z it will be possible to define a stable and an unstable manifolds W3, W,
[PS], so that the key notion of “Markov partition”, [Sil], will make sense and it
will allow us to transform, following the work [PS], the problem of studying the
statistical properties of the dynamics of the system into an equivalent, but much
more familiar, problem in equilibrium statistical mechanics of lattice spin systems
interacting with short range forces. The reader will recognize below that this
method is the natural extension to chains of the method used in Appendix A3 to
study a single Anosov system.

The main notion that we want to introduce for our chain is the notion of local
entropy creation rate ny,(x ), the entropy creation rate inside a fixed finite set
Vo C [=N, N] of Anosov systems among the 2N + 1 composing the chain.

Definition: Fized a point = (..., Z¢—1,%¢, Tp41,-..) consider the map (3.1) as
def .
amap of xv, = (xj)jev, = (T—_g,...,x¢) into:
2y, =S i1, Ty Teg1s )V (3.3)

defined by (3.1) for i € [—£,¢]. We call “local entropy production rate” as-
sociated with the “space like box” Vo = [—{,f] at the phase space point x =
(.., Te—1,%0,Tos1,...) the quantity ny,(x) equal to minus the logarithm of the
determinant of the 2(2¢ + 1) x 2(2¢ + 1) Jacobian matrix of the map (3.3).

Given a finite region Vy centered at the origin and a time interval
Ty, let niy denote the average density of entropy creation rate, i.e ny =

: 11 [Tol-1 i .
limvy, 7,00 777 V5T dimo M (S7x), then we set:

1 3T

pP=—— Z A (ij), V= Vo X To (34)
n: Vil j=—73ITol
=72

where 7y, (z) denotes the entropy creation rate in the region V;.

Calling 7y (p) the probability distribution of p in the stationary state .,
i.e. in the SRB distribution, and assuming that the system is a weakly coupled
chain of Anosov systems 1 shall show, heristically, that:
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Proposition: It is my(p) = eCPIVIHOUVD ywhere |0V| denotes the size of the
boundary of the space—time region V' and ((p) is a function analyticin p € (—p*, p*)
for some p* > 1. And:

¢(p) —C(=p) .
T Ipl <o (3.5)
Cp) =r<¢(p), Ty =rny

where 1 is the total “volume” (2N + 1) of the system, i.e. the “global” and “local”
distributions are trivially related if appropriately normalized.

Note that this implies that if V; is an interval of length L = |Vp| and if
H = |Ty| then the relative size of the error and of the leading term will be, for
some length R, of order (L + H)R compared to order LH. Hence a relative error
O(H™! + L™1) is made by using simply ((p) to evaluate the logarithm of the
probability of p as defined by (3.4)).

The interest of the above statements lies in their independence on the total
size 2N + 1 of the systems and the relevance of the above proposition for concrete
applications should be clear.

It means that the fluctuation theorem leads to observable consequences if one
looks at the far more probable microscopic fluctuations of the local entropy creation
rate. One can test the relation (3.5) in a small region Vp even when the system is
very large: in such regions the entropy creation rate fluctuations will be frequent
enough to be observable and carefully measurable. These fluctuations behave,
therefore, just as ordinary density fluctuations at equilibrium: also the latter are
not macroscopically observable but they are easily observable in small volumes.

The key results for the analysis leading to the above proposition are the papers
[GC], [Ga3] and, mainly, [PS]: the latter paper provides us with a deep analysis of
chains of Anosov systems and it contains, I believe, all the ingredients necessary
to make the analysis mathematically rigorous: however I do not attempt at a
mathematical proof here. The analysis is presented in Appendix A4 below.

Other types of fluctuation theorems (concerning non SRB distributions) had
been previously found, see [ES]; extensions to stochastic systems have been recently
discussed, see [Ku], [LS].
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APPENDIX Al:THE GAUSS’ MINIMAL CONSTRAINT PRINCIPLE.

Let o(&,2) =0, z = {ij, gj} be a constraint and let R(z, 2) be the con-
straint reaction and F (&, z) the active force, see also Appendix Al of [Ga3].
Consider all the possible accelerations a compatible with the constraints and
a given initial state £, x. Then R is ideal or verifies the principle of minimal
constraint if the actual accelerations a, = mil( F,+ R,) minimize the effort:

N N

—(FE,; —m;a;)? < F,—mja,) - 6a,=0 Al.l
;mi(_z mia;) ;(_1 mia,)-da; (AL.1)
for all possible variations ¢ @, compatible with the constraint ¢. Since all possible
accelerations following &, z are such that vazl 8L<p(i, z)-da; =0 we can
write:

Ei—mz@i—aagi@(iai): 0 (A1.2)
with « such that £o(i, z) =0, de. :

iy Dz, 0+ %Ei : aii‘:")
a= — (A1.3)
2imi (0, 9)?
which is the analytic expression of the Gauss’ principle, see [LA].

Note that if the constraint is even in the &; then « is odd in the velocities:
therefore if the constraint is imposed on a system with Hamiltonian H = K +V,
with K quadratic in the velocities and V depending only on the positions, and
if on the system act other purely positional forces (conservative or not) then the
resulting equations of motion are reversible if time reversal is simply defined as
velocity reversal.

The gaussian principle has been somewhat overlooked in the Physics literature
in Statistical Mechanics: its importance has been only recently brought again to
the attention, see the review [HHP]. A notable, though ancient by now, exception
is a paper of Gibbs, [Gi], which develops variational formulas which he relates to
the Gauss principle of least constraint.

APPENDIX A2. HEAT THEOREM FOR MONOCYCLIC SYSTEMS. EVALUATION OF
THE AVERAGE (Jy ).

Consider a 1-dimensional system with potential ¢(z) such that |¢'(x)] > 0 for
|z| > 0, ¢"(0) > 0 and ¢(x) === + oo (in other words a 1-dimensional system
in a confining potential). There is only one motion per energy value (up to a shift
of the initial datum along its trajectory) and all motions are periodic so that the
system is monocyclic. Assume also that the potential ¢(x) depends on a parameter
V.

One defines state a motion with given energy F and given V. And:

U = total energy of the system = K + ¢
T = time average of the kinetic energy K
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V' = the parameter on which ¢ is suposed to depend
p = — time average of Jy ¢

A state is parameterized by U,V and if such parameters change by dU, dV respec-
tively we define:

dL = —pdV, dQ = dU + pdV (A2.1)

then:
Theorem (Helmholtz): the differential (dU + pdV')/T is exact.

In fact let:

z4(U,V) x4 (U,V)
S =2log K(x;U,V)dzx = 2log VU — p(z)dz (A2.2)
z_(U,V) z_(U,V)

(1S is the logarithm of the action), so that:

J(dU = dyp(a)dV) -4

S = VK (A2.3)
K%
and, noting that j—% = ,/%dt, we see that the time averages are given by inte-

dz

grating with respect to NG and dividing by the integral of \/% We find therefore:

_dU + pdV
o T

Boltzmann saw that this was not a simple coincidence: his interesting (and
healthy) view of the continuum (which he probably never really considered more
than a convenient artifact, useful for computing quantities describing a discrete
world) led him to think that in some sense monocyclicity was not a strong assump-
tion.

In general one can call monocyclic a system with the property that there is a
curve ¢ — x(¢), parameterized by its curvilinear abscissa ¢, varying in an interval
0 < ¢ < L(E), closed and such that x(¢) covers all the positions compatible with
the given energy E.

Let © = z(¢) be the parametric equations so that the energy conservation can
be written:

ds (A2.4)

1

§mé2 +o(z(0) =E (A2.5)
then if we suppose that the potential energy ¢ depends on a parameter V and if
T is the average kinetic energy, p = —(Jy ) it is, for some S:
dE + pdV
dS = ——F—.  p=—(ve), T=(K) (42.6)
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where (-) denotes time average.

The above can be applied to a gas in a box. Imagine the box containing the
gas to be covered by a piston of section A and located to the right of the origin at
distance L: so that V = AL.

The microscopic model for the pistion will be a potential P(L — &) if © =
(&, 7, () are the coordinates of a particle. The function $(r) will vanish for r > ro,
for some rg, and diverge to +o0o at r = 0. Thus r¢ is the width of the layer near
the piston where the force of the wall is felt by the particles that happen to roam
there.

Noting that the potential energy due to the walls is ¢ = >, B(L — §;) and

that 9y ¢ = A=101p we must evaluate the time average of:

Opp(x) =—-) #(L-¢) (A42.7)
J
As time evolves the particles with &; in the layer within r¢ of the wall will feel the
force exercized by the wall and bounce back. Fixing the attention on one particle
in the layer we see that it will contribute to the average of dr¢(x) the amount:

1 b

total time /t0 L= &)t (42.8)
if tg is the first instant when the point j enters the layer and ¢; is the instante when
the {—compoent of the velocity vanishes “against the wall”. Since —@'(L — §;) is
the &-component of the force, the integral is —2m|¢;| (by Newton’s law), provided
£; > 0 of course.

The number of such contributions to the average per unit time are therefore
given by pyai A fv>0 2mu f(v)vdv if pyeu is the density (average) of the gas
near the wall and f(v) is the fraction of particles with velocity between v and
v + dv. Using the ergodic hypothesis (i.e. the microcanonical ensemble) and the
equivalence of the ensembles to evaluate f(v) it follows that:

de _
P 2 (Ove) = pwauB™" (A2.9)

where =1 = kT with T the absolute temperature and kp the Boltmann’s con-
stant. That the (A2.9) yields the correct value of the pressure is well known, see
[MP], in Classical Statistical Mechanics; in fact often it is even taken as microscopic
definition of the pressure.

APPENDIX A3. A PROOF OF THE FLUCTUATION THEOREM.
(A) Description of the SRB statistics.

A set F is a rectangle with center x and azxes A%, A® if:
1) A%, A® are two connected surface elements of W', W7 containing x.
2) for any choice of £ € A" and nn € A* the local manifolds Wg 2 and W#"s intersect
in one and only one point x(§,n) = W;"S N W#*S. The point z(£,n) will also be
denoted & x 1.
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3) the boundaries A" and JA?® (regarding the latter sets as subsets of W} and
W?) have zero surface area on W} and W;.
4) E is the set of points A" x A,

Note that any 2’ € E can be regarded as the center of E because there are
A’ A’® both containing 2’ and such that A* x A% = A"™ x A’®. Hence each E
can be regarded as a rectangle centered at any ' € E (with suitable axes). See
figure.

EXm
AS n

The circle is a small neighborhood of z; the first picture shows the axes; the intermediate picture
shows the x operation and W#’(S, W§’6; the third picture shows the rectangle E with the axes

and the four marked points are the boundaries A% and dA®. The picture refers to a two
dimensional case and the stable and unstable manifolds are drawn as flat, i.e. the A’s are very
small compared to the curvature of the manifolds. The center z is drawn in a central position,
but it can be any other point of E provided A" and A® are correspondingly redefined. One
should meditate on the symbolic nature of the drawing in the cases of higher dimension.

The unstable boundary of a rectangle E will be the set 9, F = A" x 0A®; the
stable boundary will be 0sF = 0A" x A®. The boundary JF is therefore 0F =
0,E U O, E. The set of the interior points of E will be denoted E°. A pavement
of M will be a covering & = (E1,...,Ex) of M by N rectangles with pairwise
disjoint interiors. The stable (or unstable) boundary Os€ (or 9,E) of £ is the union
of the stable (or unstable) boundaries of the rectangles E;: 0,€ = U;0,F; and
0,€ = U0, E;.

A pavement £ is called markovian if its stable boundary 9s& retracts on itself
under the action of S and its unstable boundary retracts on itself under the action
of S71, [Sil], [Bo], [Rul]; this means:

S0,E C 85€, S19,.E C 0.E (A3.1)

Setting M; j» =0, 7,5 € {1,..., N}, if SEY N E}, = 0 and M; ;» = 1 otherwise we
call C' the set of sequences j = (jr)3_o, Jx € {1,...,N'} such that My, ;, ., =1.
The transitivity of the system (M, S) implies that M is transitive: i.e. there is a
power of the matrix M with all entries positive. The space C' will be called the
space of the compatible symbolic sequences. If £ is a markovian pavement and ¢ is
small enough the map:

X:jeC—oaz= () S*E, eM (A3.2)

k=—o0

is continuous and 1 — 1 between the complement My C M of the set N =
U S*OE and the complement Cy C C of X~}(N). This map is called the
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symbolic code of the points of M: it is a code that associates with each x ¢ N a
sequence of symbols j which are the labels of the rectangles of the pavement that

are successively visited by the motion S7z.

The symbolic code X transforms the action of S into the left shift ¥ on C-:
SX(j)=X(0¥37). Akey result, [Sil], is that it transforms the volume measure g
on M into a Gibbs distribution, [LR], [Ru2], fi, on C' with formal Hamiltonian:

H(j)= i ho(0%§) +ho(G) + > he(0%)) (A3.3)
k=0

k=—o0

where, see (2.1):

h-(j)=—logAs(X(4)), hs(j) =logAu(X(5)),

1 . (43.4)
ho(j) = —logsina(X(j))

If F is Holder continuous on M the function F'(j)
a

= F(X(j)) can be repre-
sented in terms of suitable functions @ (j_g, ..., k) as:

F(5) =Y @k i), Ok (s -5 k)] < e (A3.5)
k=1

where ¢ > 0, > 0. In particular hy (and hg) enjoy the property (A3.5) (short
range).
If iy, i_ are the Gibbs states with formal Hamiltonians:

doohe@ ), Y h(0F)) (43.6)
k=—o0 k=—o0
the distributions py on M, images of 7iy via the code X in (A3.2), will be the
forward and backward statistics of the volume distribution pg (corresponding to
Ty via the code X), [Sil]. This means that:

fim 7 30 F(a) = [ paldn)F) = ps(F) (43.7)

for all smooth F' and for pg—almost all z € M. The distributions p4 are often called
the SRB distributions, [ER]; the above statements and (A3.6),(A3.7) constitute the
content of a well known theorem by Sinai, [Sil].

An approximation theorem for py can be given in terms of the coarse
graining of M generated by the markovian pavement & = Vf}T S—kg3 If
Ej y.jr=nN__,S™*E; and x; , ;. is a point chosen in the coarse grain
set I;_ ... jr, so that its symbolic sequence is obtained by attaching to the right

3 Where V denotes the operation which, given two pavements £, £’ generates a new pavement
£ v &' the rectangles of £ v & simply consist of all the intersections E N E' of pairs of
rectangles E € € and E' € &'
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and to the left of j_p,...,jr arbitrary compatible sequences depending only on
the symbols ji7 respectively. We define the distribution pr , by setting:

1
. i Au‘r Tj_p,...5 F-’L", eerd
:U/T,T(F) = / MT,T(dZC)F(ZC) = - : ( J—il JT) ( — JT)
M Zj,T,...,jT Au,T(z]?T ----- ]T) (A38)

T/2-1

Rr@) T Au(S™2)

k=—1/2

Then for all smooth F' we have: limp>; /o 700 pi,7 (F) = py (F). Note that
equation (A3.8) can also be written:

_ T/2-1 Ao (9% 50 .
Zj,T 777 e Zk:77/2 +(0% 4 )F(X(ZO))

MTT(F) = = T/2—1 (A39)
’ =y he (R 50)
Zj—T »»»»» jr € S
where j° € C is the compatible sequence agreeing with j_r, ..., jr between —T

and T (i.e. X(ZO) =2 4.5 € Ej .. ) and continued outside as above.
Notation: to simplify the notations we shall write, when 7T is regarded as having a
fixed value, g for the elements ¢ = (j_r,...,jr) of {1,...,N}* 1 and E, will

denote F;_,. and z, the above point of E,.

seesJT
Remark: Note that the weights in (A3.9) depend on the special choices of the
centers x, (i.e. of 10); but if z, varies in E, the weight of £, changes by at
most a factor, bounded above by some B < oo and below by B~!, for all T > 0,
and essentially depending only on the symbols corresponding to the sites close to
+T.

The last formula shows that the forward statistics of up can be regarded as a
Gibbs state for a short range one dimensional spin chain with a hard core interac-
tion. The spin at k is the value of ji € {1, ..., N'}; the short range refers to the fact
that the function hy(j) = logAw(X (7)), (Au(z) being Hélder continuous), can
be represented as in (A_3.5) where the ®;, play the role of ”many spins” interaction
potentials and the hard core refers to the fact that the only spin configurations j

allowed are those with Mj, ;. ., =1 for all integers k.

(B) A Legendre transform.

First the function (2.4) is converted to a function on the spin configurations
JjecC:
1 T/2—-1
E(j)=e(X(4) == Y L) (A3.10)

-
k=—1/2
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where L(l) = %bgAil(X(i)) has a short range representation of the type
(A3.5).

The SRB distribution j is regarded (see above) as a Gibbs state 77, with
short range potential on the space C' of the compatible symbolic sequences, associ-
ated with a Markov partition &, [Sil], [Ru2]. Therefore, by general large deviations
properties of short range Ising systems ([La], [El], [O]], there is a function ((s) real
analytic in s for s € (—p*, p*) for a suitable p* > 0, strictly convex and such that
if p<p*and [p—4d,p+d] C (—p*,p*) we have:

1 _

“logr, ({&-(j) € [p—6,p + 0]}) == A3.11

Flogfi (& (1) €lp—0p+ oY) 7= _max  ((5) ( )
and the difference between the r.h.s. and the Lh.s. tends to 0 bounded by D7t !

for a suitable constant D. The function ¢(s) is the Legendre transform of the
function A(8) defined as:

.1 FBE () — .
A(B) = lim —10g/e P, (dj) (A3.12)

T—00 T
i.e. M) = maxge(—p po)(Bs + {(s)), where the quantity p* can be taken p* =
limg_s yoo g8 A(B) and the function A(f) is a real analytic, [CO], strictly convex
function of 8 € (—o0, 00) and ﬁ_l)\(ﬁ)m +p*, i.e. it is asymptotically linear.
The above (A3.11) is a ”large deviations theorem” for one dimensional spin

chains with short range interactions, [La].
Hence it will be sufficient to prove the following; if I, s = [p — §,p + 4]:

(43.13)

1 Ay ({&:(j) € Lpsgnin}) { <p+d6+1(r)
&7 >p—6—1'(r)

with (1), 7' (7) =0
(C) Thermodynamic formalism informations.

In this section X will denote a lattice interval, i.e. a set of consecutive integers
X =(x,z+1,...,2+n—1): hence it should not be confused with the code X of
(A3.2).

Let j . = (Js Jot1s - -y Jagn—1) if X = (x,z+1,...,24+n—1) and n is
odd, and call X = z + (n — 1)/2 the center of X. If j € C is an infinite spin
configuration we also denote j , the set of the spins with labels € X. The left
shift of the interval X will be denoted by ¥; i.e. by the same symbol of the left
shift of a (infinite) spin configuration j.

Let Ix(j,) = 1™(udests o sdosn), and h%(j,) =
hg:l) (Jus Jot1s- -+ Jutn—1) be translation invariant, i.e. functions such that
lox(j)=1x(j) and hjy(j)= h%(j), and such that the functions h4(j),
see (2.4), and L(j), see (A3.10), can be written for suitably chosen constants
bl, b2, b, bli

DOCUMENTA MATHEMATICA - EXTRA VOLUME ICM 1998 - I - 205-233



CHAOTIC HYPOTHESIS ... 221

L(j)=> Ix(j ) (i) =D bk(iy)
X=0 X=0 (A3.14)

lUx (4 ) <bre™"", h% ()] < be™™
Then 7é,(j ) can be written as 276[_T/2 /2-1] Ix(J )
Hence 7¢,(j ) can be approximated by e (j) = Z(M)ZX(ZX) where Z(M)
means summation over the sets X C [—27—M, 27+ M], while X isin [-17, 27-1].
The approximation is described by:

ITeM () — 7E:(§)| < bge™ M (A3.15)

for suitable* bs, by and for all M > 0. Therefore if Ins=[p—dp+d and M =0
we have:

<HL({8) € Lpsing/r))
er(x) €1 s 0TS/ A3.16
uilerte) € 1)) { SE UG € vl (43.16)
It follows from the general theory of 1-dimensional Gibbs distributions, [Ru2],
that the 7z, —probability of a spin configuration which coincides with j s
17,5 is:

)
[efz*hqu
st ]

where >~" denotes summation over all the X C [-7/2,7/2 — 1]; the denominator
is just the sum of terms like the numerator, evaluated at a generic (compatible)
spin configuration j E_ ; finally P verifies the bound, [Ru2]:

T/2,7/2]
in the interval [~ 37

P( (A3.17)

Jir2,rs2)

T/2,7/2]

Bt < P(j < B (A3.18)

[77/217/2])
with Bj a suitable constant independent of j (—r/2.7/9] and of 7 (B; can be explic-

itly estimated in terms of b,b’). Therefore from (A3.16) and (A3.17) we deduce
for any T > 7/2:

pr({er (@) € Is}) STy ({67 € Tpsang/r}) <

. ’ (43.19)
< Bapr ({67 € Ipsivsyr}) < Bapir-({€r € Iy s40vs/7))

for some constant By > 0; and likewise a lower bound is obtained by replacing Bg
by By ! and b3 by —bs.

4 One can check from (A3.14), that the constants bs, by can be expressed as simple functions
of b1 N b2 .

5 /

i.e. the spin configurations j' such that jéc =jz, T € [7%7, %T}
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Then if p < p* and I, 5 C (—p*,p*) the set of the rectangles E € \/TT S—kg
with center x such that e,(x) € I, is not empty, as it follows from the strict
convexity and the asymptotic linearity of the function A(5) in (A3.12).

We immediately deduce the lemma:

Lemma 1: the distributions py and pr ., T > %T, verify:

log B3 prr({E-€lp.5})

1 10 ({ET(ZE> 5q:2b3/7—}) < 7'77+2 + Tmr 0g pr,r({é-€—1Ip s})
— logB pwrr({-€lps})
TN ({ET(ZE) 5:|:2b3/7‘}) > ——=2 4 m IOg m
(43.20)

for I, 5 C [—p*,p*] and for T so large that p+ 0 + 2b3/T < p*.
Hence (A3.13) will follow if we can prove:

Lemma 2: there is a constant b such that the approzimate SRB distribution Wr T
verifies:

log

Lo (e € Ips}) { <p+i+b/r (43.21)
.7 pr-({é- € =1, 5})

>p—0-b/T
for T large enough (so that 6 +b/T < p* —p) and for all T > 7/2.

The latter lemma will be proved in §4 and it is the only statement that does
not follow from the already existing literature.

(D) Time reversal symmetry implications

The relation (A3.20) holds for any choice of the Markov partition £. Note
that if £ is a Markov pavement so is i€ (because iS = S~1i and iW¥ = WS);
furthermore if £&; and & are Markov pavements then £ = £; V&, is also markovian.
Therefore:

Lemma 3: there exists a time reversal Markov pavement £, i.e. a Markov pavement
such that € = i€.

This can be seen by taking any Markov pavement & and setting £ = &,V i&y.
Alternatively one could construct the Markov pavement in such a way that it
verifies automatically the symmetry [G2]. Since the center of a rectangle E, € &Ep
can be taken to be any point x, in the rectangle E, we can and shall suppose
that the centers of the rectangles in Er have been so chosen that the center of iF,
Isixg, i the time reversal of the center x4, of F, N

For 7 large enough the set of conﬁguratmn q = such that e,(z) €

J

- [_TaT]
I, 5 for all z € E, is not empty® and the ratio in (A3.21) can be written, if z, is
the center of E, € &r, as: -

6 Note that p* = sup,, limsup,_, | o a-,—(ST/Qz) and let p € (—p* + 8,p™ — §); furthermore
¢(s) is smooth, hence > —oo, for all |s| < p™*.
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—— -——1
Za,—(mq)elp’é Au,T(zg) Zar(Zq)EIp,g Auﬂ_(:cg)
- — = 2 (A3.22)

——1,.
ZET(mi)e—Ip’é Au,‘r(zg) ng(mz)elp’é Au,‘r(lzg)

Define A -(z) as in (A3.8) with s replacing u: then the time reversal sym-
metry implies that A, ,(z) = K;Tl (iz), see remark 2) following definition (B), §2.7
This permits us to change (A3.22) into:

——1
Zs,(zg VELL s Au,‘r(‘rg )

Za,—(zg Vel 5 As,‘r( 1'2)

(A3.23)

where the maxima are evaluated as g varies with er(xq) € Iys.

By (2.1) we can replace Ku_i (x)Ks_Tl (x) with K;l(x)Bil, see (A3.8), (2.4); thus
noting that by definition of the set of ¢’s in the maximum in (A3.23) we have

m% 1ogK;1(ch) € I, 5, we see that (A3.21) follows with b = % log B.

Corollary: the above analysis gives us a concrete bound on the speed at which the
limits in (2.6) are approached. Namely the error has order O(t71).

This is so because the limit (A3.11) is reached at speed O(7~!); furthermore the
regularity of A(s) in (A3.11) and the size of n(7),n (r) and the error term in
(A3.21) have all order O(T71).

The above analysis proves a large deviation result for the probability distribu-
tion p: since p4 is a Gibbs distribution, see (A3.6), various other large deviations
theorems hold for it, [DV], [El], [O]], but unlike the above they are not related to
the time reversal symmetry.

APPENDIX A4: HEURISTIC PROOF OF THE LOCAL FLUCTUATION THEOREM.
(A) Markov partitions and symbolic dynamics for the chain.

The reduction of the dynamical nonequilibrium problem of a weakly interact-
ing chain of Anosov maps, see §3, to a short range lattice spin system equilibrium
problem is the content of (A), (B) of this appendix, see [Ga7]. This is an extension
of the corresponding analysis in Appendix A3 for the case of a single Anosov map:
it is necessary to discuss it again in order to exploit the short range nature of the
coupling and its weakness in order to obtain results independent on the size NV of
the chain.

Let Py = (EY,...,E}.) be a Markov partition, see [Sil], for the unper-

turbed “single site” system (Mo x Mg, Sy x 30_1). Then 5(2)N+1 = {E.},

7 Here it is essential that Ku;,—(z) is the expansion of the unstable manifold between the initial

point 577/2z and the final point 57/ de it is a trajectory of time length 7, which at
its central time is in z.
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a = (p-N,...,pNn) With E, = ES,N X E27N+1 X ... X ESN is a Markov parti-
tion of (M(Q)(QNJA), So)-

—2N
The perturbation, if small enough, will deform the partition 733 ! into a

Markov partition P for (M, S) changing only “slightly” the partition 5§N+1. The

work [PS] shows that the above “c small enough” mean that € has to be chosen
small but that it can be chosen N —independent, as we shall always suppose in what
follows.

Under such circumstances we can establish a correspondence between points of
M that have the same “symbolic history” (or “symbolic dynamics”) along f?)NH
under Sy and along P under S; we shall denote it by h; see [PS].

—2N
The Markov partition 733 1 for Sy associates with each point =z =
(x—n,...,xN) a sequence (0;;), ¢ € [-N,NJ,j € (—00,00) of symbols so that

(0i,j)52_ 18 the free symbolic dynamics of the point x;. We call the first label
i of 0;; a “space-label” and the second a “time-label”. Not all sequences can
arise as histories of points: however (by the definition of h, see above) precisely
the same sequences arise as histories of points along Py under the free evolution
Sp or along P under the interacting evolution S.

The map h is Holder continuous and “short ranged”:

|h(z)i —h(z)i] < ngli_jh/kﬂj — a7 (A4.1)

J

for some v,',C > 0, [P9], if |z — y| denotes the distance in My x My (i.e. in the
single site phase space).

Furthermore the code x «+— ¢ associating with x its “history” or “symbolic
dynamics” o () along the partition P under the map S is such that, fixed j:

o(z)i=o(a);for|i—j| <t = |xjfx;|§C€'M (A4.2)

The inverse code associating with a history ¢ a point with such history will be
denoted z (o).

If 2 =(x_n,...,zn) is coded into o (z) = (a_y,--., o n) = (0i;), with
i=—N,...,N,and j € (—o0,+00), the short range property holds also in the
time direction. This means that, fixed iq:

oij = op; for [i—iol <k [jl<p = |z(a)i, — z(a")i| < Cere
(A4.3)
for some k,7v,C > 0, see lemma 1 of [PS]. The constants x,v,C,C’, B,B" > 0
above and below should not be thought to be the same even when denoted by the
same symbol: however they could be a posteriori fixed so that to equal symbols
correspond equal values.
By construction the codes z «— ¢ (z) commute with time evolution.
The sequences (0 ;) which arise as symbolic dynamics along Po under the free
single site evolution of a point x; are subject to constraints, that we call “vertical”,
imposing that T = 1 for all 7, if T} ,, denotes the “compatibility matrix”

04,504,541
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of the “free single site evolution” (i.e. Tg,a, = 1if the Sp x S, ! image of FE,
intersects the interior of E,/ and Tg,a, = 0 otherwise). We call the latter condition
a “compatibility condition” for the spins in the i—th column.

The mixing property of the free evolution immediately implies that a large
enough power of the compatibility matrix 70 has all entries positive. This means
that for each symbol ¢ we can find semiinfinite sequences:

og(o)=(...,0_1,00 = 0), 7% =1, foralli<0
() =( 1,60 =0) ne (A4.4)
or(o) =(o = 09,01, ...), Tgim+1 =1, foralli>0

and defines two functions o, o7, called “compatible extensions”, defined on the
set {1,...,Np} of labels of the single site Markov partition Py, with values in the
compatible semiinfinite sequences.

In fact there are (uncountably) many ways of performing such compatible
extensions “from the bottom” and “from the top” of the symbol ¢ into semiinfinite
compatible sequences of symbols. We imagine to select one pair o, o arbitrarily,
once and for all, and call such a selection a “choice of boundary conditions” or “of
extensions”, on symbolic dynamics, for reasons that should become clear shortly.
All this seems unavoidable and it is closely parallel to the corresponding discussion
in the analysis of the simpler case of a single Anosov system discussed in Appendix
A3, see the discussion preceding (A3.8).

We shall therefore be able to “extend in a standard way” any finite compatible
block® @ of spins:

QQ:(Ui,j)ieL,jeK; L:(a—f,a—i—f), Kz(b—m,b—i—m) (A45)

by setting 0; ; = 0B(0ip—n)o—n—j; for j < b—n and o, ; = o7 (0ip4n)j—b—n for
7 > b+ n. Here a, b, £, m are integers.

In the free evolution there are no “horizontal” compatibility constraints; hence
it is always possible to extend the finite block g, = (0 )ier jerx to a “full
spin configuration” sequence (0 ;)ic[—N,N],je(—o0,00); Obtained by continuing the
columns in the just described standard way, using the boundary extensions o, o7,
above the top and below the bottom, into a biinfinite sequence and also by extend-
ing the spin configuration to the right and to the left to a sequence with spatial
labels running over the full spatial range [—N, N]. One simply defines o; ; for i ¢ L
as any (but prefixed once and for all) compatible biinfinite sequence of symbols
(the same for each column).

The allowed symbolic dynamics sequences for the free dynamics (on Pp) and
for the interacting dynamics (on P) coincide because the free and the interacting
dynamics are conjugated by the map h, [PS]. Therefore the above operations make
sense also if the sequences are regarded as symbolic sequences of the interacting
dynamics, as we shall do from now on.

To conclude: given a “block” o ¢ of symbols, with space-time labels (i,§) €
@ = L x K, we can associate with it a point £ € M whose symbolic dynamics

8 A block (05,5), (4,4) € Q, is naturally said to be “compatible” if Tgi s0ige1 = 1 for all
(4,5) € Q such that (i,j + 1) is also in Q.
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is the above described standard extension of g . The latter depends only on the
values of o; ; for j at the top or at the bottom of () and, of course, on the boundary
conditions o, or chosen to begin with.

(B) Expansion and contraction rates.

Consider the rates of variation of the phase space volume, Ag(z ), or, respec-
tively, of the surface elements of the stable and unstable manifolds As(z) and
Au(z) at the point z: they are the logarithms of the Jacobian determinants
95(z), 0(a)S(z), a = s,u, where J(,) denotes the Jacobian of S as a map of W§g
to Wg, where oo = u,s dlstlngulshes the unstable manifold W of z or the stable
manifold W3 of z:

Malz) = —log|detdoyS(z)l,  a=0,u,s (A4.6)

where 9yS(z) = oS(z).
A hard technical problem is to represent A,(z) in terms of the “symbolic
history” of z along P, i.e. in terms of compatible sequences ¢ = (o0;;) with
€ (=N, N), j € (—00,00). The rates A\o(z) can be expressed as:

oS ~(a
No(z) = —log|det 2= |y = 0 7 (xs) (A4.7)
= LC[—-N,N]

where L is an interval in [N, N] (with £(N + 1) identified with FN), [PS].

For o = 0 this can be done by noting that the matrix J = % has an al-
most diagonal structure: J(z) = Jo(z)(1 + A(z)) where Jo(z ) is the Jaco-
bian matrix of the free motion Jo(z) = Jo(v_n) x Jo(x_n11) X ... X Jo(xn) if
z = (v_y,...,an) and if D= (T[}__y det Jo(;)):

o (—pk-1

detJ = D . ™ los(1+8(z) — p . o207, SF—TrA)" (A4.8)

which leads to (A4.7) if one uses that the matrix elements A,, =
s ' (2)0,,0,,J(z) are essentially local, i.e. bounded by B (Ce)lP~47 for some
v,C, B >0 (see (3.1),(3.2), (A4.3)).
For oo = u, s (A4.7) can be derived in a similar way using also that:

(1) the stable and unstable manifolds of x consist of points y which have
eventually, respectively towards the future or towards the past, the same history
of x,
(2) they are described in a local system of coordinates around z =
(...,z_1,%0,21,...) by smooth “short range” functions. Suppose, in fact,
that on each factor My we introduce a local system of coordinates («, §) around
the point x; € My, such that the unperturbed stable and unstable manifolds are
described locally by graphs (a, fs(«)) or (fu(8), 3).

The unperturbed stable and unstable manifolds will be smooth graphs
(i, fs(w)) or (fu(Bi), Bi) with a; varying close to @; and B; close to B;, with
(@, ;) being the coordinates of x;.
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Fixed a point z = (z_n,...,zn) with coordinates (&;, §;)i=—n,....n the per-
turbed manifolds of the point z will be described by smooth (at least C? and in

fact of any prefixed smoothness if ¢ is sufficiently small) functions W*(a ), W*(3)

of a = (a;)i=—n,n orof B = (B;)i=—n,n which are “local”; i.e. if ¢ and o' agree
on the sites i — £,7 + £ or if 3 and ﬁ' agree on the sites ¢ — ¢, + ¢ then:

IW(B)i = fulBille < Ce, [IWH(B)i =W (B)illc= < Ce*

(A4.9)
IW*(@)i = fslai)llez < Ce, W3 ()i = W3 (@ )ille: < O
for some C' > 0, see [PS] lemmata 1,2. Here the norms in the first column are
the norms in C? as functions of the arguments B or respectively a, while the
norms in the second column are C? norms evaluated (of course) after identifying
the arguments of 3 (or o) and B’ (or a’) with labels j such that |i — j| < £.
(3) If we consider the dependence of the planes tangent to the stable and unstable
manifolds W3, W% at x we find that they are Hélder continuous as functions of
z: -
|(dW§)i — (dWZ)Z| <C Za‘iﬂ-'ﬂxj -y, a=u,s (A4.10)

J

where (dW¢); denoted the components relative to the i—th coordinate of z of the
tangent plane to Wg and C,r,v > 0.

The above properties and the Hélder continuity (A4.1), (A4.2), (A4.3) imply
that the “horizontal potentials” S(La)(g 1) in (A4.7) are “short ranged”:

185 (2 )| < B(C2)IH=0 a=us (A4.11)

for some B, C, v > 0; we denote |L| the number of points in the set L.
We shall use the symbolic representation of x € M to express the rates

A(O‘)(g). For this purpose let z = (2;);=—n,~ and suppose that such z cor-
responds to the symbolic dynamics sequence ¢ = (o j);?‘;foo where o i =
(6-N,j,---,0n,;). We denote ¢ ; the sequence ¢ ; = (05)icL,j=—o0,00-

Then o ; does not determine z ; (unless there is no interaction, i.e. &€ = 0):
however the short range property, (A4.3), of the symbolic codes and of the map
h conjugating the free evolution and the interacting evolution shows that, if L’
is a larger interval containing L and centered around L, then the sequence o ;.
determines each point of z; within an approximation < (C’s)(‘LlHLD’Y. Hence

we can define 5\ (g ;) so that:

0Nz =Y 85 (ap), 0y (ay) < B (e

L'DL
. (A4.12)
Aalz) = 26 (g )
L

for some B’,C’,~. This leads to expressing \,(z) in terms of the symbolic dy-
namics of z and of the “space—localized” potentials 5(La)( o)
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Let Q, = L x K where K = [—n,n] is a “time—interval” and set
o def N« «
£8.(20,) ¢ 07 (20, ~ 0 (2q,.) (44.13)

if n > 1 and [g ¢, ] denotes a standard extension (in the sense of §3) of g, ; or

just set L, défg(La)([ng]) for n = 0. We define L3(c ) for @ = L x K and
K not centered (i.e. K = (a —n,a+ n), a # 0) so that it is translation invariant
with respect to space time translations (of course the horizontal translation invari-
ance is already implied by the above definitions and the corresponding translation
invariance of 55*).

The remarkable property, consequence of the Holder continuity of the functions
in (A4.6) and of the (A4.3),(A4.12), see [PS], is that for some =, x, B,C > 0:

IL&(a )l < B(CeV)'e™™ (A4.14)

if ¢, 7 are the horizontal and vertical dimensions of Q.

In this way we define a “space-time local potential” Eg‘ ) which is, by
construction, translation invariant and such that, if A denotes the box A =
[-N, N] x [-M, M] the following representations for the rates in (A4.6) hold:

—log |det 9oy S*MFH(S™z)| = Y L&(a o) + O(|OA]) (A4.15)
QCA

where O(|OA]) is a “boundary correction” due to the fact that in (A4.15) one
should really extend the sum over the @’s centered at height < M and contained
in the infinite strip [—N, N] x [—00, 0o] rather than restricting @ to the region A.
Hence the remainder in (A4.15) can, in principle, be explicitly written, in terms
of the potentials Eé?a), in the boundary term form usual in Statistical Mechanics

of the 2-dimensional short range Ising model and it can be estimated to be of
O(|OA|) by using (A4.14).

(C) Symmetries. SRB states and fluctuations.

Besides the obvious translation invariance symmetry the dynamical system
has a time reversal symmetry; this is the diffeomorphism I, see (1.3), which anti-
commutes with S and Sp:

IS =871, 1Sy=Sol !, =1 (A4.16)

We can suppose that the Markov partition is time reversible, i.e. to each element
E, of the partition P one can associate an element £,/ = IE, which is also an
element of the partition. Here we simply use the invariance of the Markov partition
property under maps that either commute or anticommute with the evolution S:
hence it is not restrictive, see [Gab],[Ga3], to suppose that for each ¢ one can
define a ¢’ so that £, = IE,. We shall denote such ¢’ as ¢ or also —g. For
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€ = 0, i.e. for vanishing perturbation, the map I will act independently on each
column of spins of ¢. This property remains valid for small perturbations; hence:

To ={o};} ={-0i-}< — o' (A4.17)

i.e. time reversal simply reflects the spin configuration corresponding to a phase
space point and changes “sign” of each spin.

The functions A\, (z ) and their “potentials” L& (a ) verify, as a consequence,
if Q@ =[—¢,4] x [k, k] is a centered rectangle:

Mallz)==da(z),  Ly(ag)=—LY(-ab) (A4.18)

where o/ = sifa=wvand o/ =uif a =s,a =0if « =0. The above symmetries
will be translated into remarkable properties of the SRB distribution.

The “local entropy production rate” associated with the “space like box” V) =
[/, ¢] at the phase space point & = (...,Z¢—1,%¢, Zs41,...) has been defined in
§3 in therms of the Jacobian matrix of the map S. We can likewise consider the
corresponding Jacobian determinants of the restriction of the map S to the stable
and unstable manifolds of z. Such determinants will depend not only from z;,
i € Vp, and on the nearest neighbors variables 1, but also on the other ones xy
with |k| > ¢ + 1: however their dependence from the variables with labels |k| > ¢
is exponentially damped as e(¥I=67 by (A4.14). Thus we can define N, My, 0 a
way completely analogous to 77‘0/0 in (3.3).

If we look at the average phase space variation rates 779,0, My My, between the
time — and ¥ we can find, via a power expansion like the one in (A4.8) along the
lines leading from (A4.8) to (A4.15), a mathematical expression as:

e, (z) =Y "LE(ag) (A4.19)
Q

where the Zzg @ runs over rectangles ) centered at O-time Q = [a—¥, a+{]x[—k, k]
with [a —£,a+ (] C Vp. This could be taken as an alternative definition of 1, , as
it is a rather natural expression. For our purposes, if V = V) x [=¢, 9], one needs
to note that (A4.19) holds at least in the sense that:

9
1 3 (s 1 > o(|av))
Vo- (20 +1) j:—ﬁnvn (5'2) Vo - (20+1) QCVKQ(QQ) * \4 ( 0)

i.e. expression (A4.19) can be used to compute the average local entropy creation
rate in the space—time region V up to boundary corrections O(|0V|) (that can be
neglected for the purposes of the following discussion).

We now study the SRB distribution p: denoting by (F), the average value
with respect to p of the observable F' we can say, see [Sil], [PS], that if A =
[-N,N] x [-T,T]:

¥, Flg)edae oo
(F); = lim =< _ (44.21)
T 300 > GZQU L£(aq)
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We want to study the properties of the fluctuations of:

1 . . 1 u
p= V—77+ Z ‘CQ(QQ)a it ny = Vlgnoo % Z <£’Q>+ (A4.22)
QCV QCV

for which we expect a distribution of the form my (p) = conste¥<(P)+OOV)  The
SRB distribution gives to the event that p is in the interval dp the probability
v (p)dp with:

v (p) = const Z eZQCA Loleq) (A4.23)

at fized p
and (defining implicitly U"):

NoLi(eg) =Y Lhlag)+ Y Lhlag)+ O(ov]s Y

QCA QCVv QCA/V (A4_24)
def 1y u —
= Uy(ay)+Uxv(anw)+O0(0V]k b

with k£ > 0, having used the “short range” properties (A4.14) of the potential.

In the sums in (A4.21) we would like to sum over o and over g,y as if
such spins were independent labels. This is not possible because of the vertical
compatibility constraints. However the mixing property supposed on the free
evolution implies that the compatibility matrix T raised to a large power R has
positive entries. Hence if we leave a gap of width R above and below V we can
regard as independent labels the labels o; ; with ¢ in the space part Vj of the region

V =V x [-9,9] and with |j| > ¢ + R, by a distance > R above or below the

region V. Denoted V + R Vo x [-9 — R, ¥ + R] remark that:

> Lh(aq) =Udav) + Uk jvim(@ajvir) + OOV (R+ k1)) (A4.25)
QCA

Hence, proceeding as in [GC1], we change the sum over (the dummy label) ¢ in
the denominator to a sum over — ¢! and using L‘fé, (—gé) =—LH(ag):

> LE(ag) UY (o )
E: . el=Qcv TR\=Q/ YA/ (V+R)\Z A/ (V+R)
at fizxed p oY — C 5 ; eO(|6V|) ( 4426)
Z E: —+olZqg A — 0 )A/(V+R)
at fized pe eV e AR

7y (p)
mv(=p)

with the summation being over the spin configurations in the “whole space-time”

A, subject to the specified constraint of having the same value for p, i.e. the
same average local entropy creation rate in the space—time region V. The latter
expression becomes, since the labels o, — o ! (respectively in the numerator and
denominator of (A4.26)) are independent dummy labels:

Eat fized p eZQCV Lé(gQ)Z(A/(V + R))
Eat fized p eZQCV _La(gQ)Z(A/(V + R))

eCUoVD (A4.27)
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so that by the (A4.20), (A4.22) and since the symmetry relations above im-
ply the relation } oy (£4(aq) +L£4(ag)) = V ngp, up to corrections of size
O(|oV|k~1) we find, (note the repetition of the comparison argument given in
[GC)):
7y (p) — 1+ Vi G0(l0V]) (A4.28)
v (=p)

yielding a local fluctuation law, i.e. the first of (3.5). The second line of (3.5) is a
(simple) consequence of the above analysis but we do not discuss it here.

REFERENCES.

[AA] Arnold, V., Avez, A.: FErgodic problems of classical mechanics, Benjamin,
1966.

[BCL] Bonetto, F., Chernov, N., Lebowitz, J.: , preprint, 1998.

[BG] Bonetto, F., Gallavotti, G.: Reversibility, coarse graining and the chaoticity
principle, Communications in Mathematical Physics, 189, 263276, 1997.

[BGG] Bonetto, F., Gallavotti, G., Garrido, P.: Chaotic principle: an experimental
test, Physica D, 105, 226-252, 1997

[Bo] Bowen, R.: Markov partitions for Aziom A diffeomorphisms, American Jour-
nal of Mathematics, 92, 725-747, 1970.

[CO] Cassandro, M., Olivieri, E.: Renormalization group and analyticity in one
dimension. A proof of Dobrushin’s theorem, Communications in mathematical
physics, 80, 255-269, 1981.

[DV] Donsker, M.D., Varadhan, S.R.S.: Asymptotic evolution of certain Markov
processes expectations for large time, Communications in Pure and Applied Math-
ematics, 28, 279-301, 1975; 29, 389-461, 1976; 36, 182-212, 1983.

[ECM2] Evans, D.J.,Cohen, E.G.D., Morriss, G.P.: Probability of second law vio-
lations in shearing steady flows, Physical Review Letters, 71, 2401-2404, 1993.

[E]] Ellis, R.S.: Entropy, large deviations and statistical mechanics, New York,
Springer Verlag, 1985.

[ER] Eckmann, J.P., Ruelle, D.: Ergodic theory of strange attractors, Reviews in
Modern Physics, 57, 617-656, 1985.

[ES] Evans, D.J., Searles, D.J.: Equilibrium microstates which generate second law
violating steady states, Physical Review E, 50E, 1645-1648, 1994.

[Gal] Gallavotti, G.: Chaotic dynamics, fluctuations, nonequilibrium ensembles,

Chaos, 8, 384392, 1998,
[Ga2] Gallavotti, G.: Statistical Mechanics, Springer—Verlag, in print.

[Gad] Gallavotti, G.: Chaotic hypothesis: Onsager reciprocity and fluctuation—
dissipation theorem, Journal of Statistical Phys., 84, 899-926, 1996.

[Ga3] Gallavotti, G.: Reversible Anosov maps and large deviations, Mathematical
Physics Electronic Journal, MPEJ, (http:// mpej.unige.ch), 1, 1-12, 1995.

[Gab] Gallavotti, G.: New methods in nonequilibrium gases and fluids, Proceedings
of the conference Let’s face chaos through nonlinear dynamics, U. of Maribor, 24

DOCUMENTA MATHEMATICA -+ EXTRA VOLUME ICM 1998 - T - 205-233



232 GIOVANNI GALLAVOTTI

June— 5 July 1996, ed. M. Robnik, in print in Open Systems and Information
Dynamics, Vol. 5, 1998 (also in mp_arc@ math. utexas.edu #96-533 and chao-
dyn #9610018).

[Ga6] Gallavotti, G.: Eatension of Onsager’s reciprocity to large fields and the
chaotic hypothesis, Physical Review Letters, 77, 4334-4337, 1996.

[Ga7] Gallavotti, G.: A local fluctuation theorem, in chao-dyn 9808005.

[GC] Gallavotti, G., Cohen, E.G.D: Dynamical ensembles in nonequilibrium sta-
tistical mechanics, Physical Review Letters, 74, 2694-2697, 1995. And Dynamical
ensembles in stationary states, Journal of Statistical Physics, 80, 931-970, 1995.

[Gi] Gibbs, J. W.: On the fundamental formula of dynamics, American J. of
Mathematics, Vol.II, 49-64, 1879. See also Volume II, Part 2 of Gibbs’ Collected
Works.

[HHP] Holian, B.L., Hoover, W.G., Posch. H.A.: Resolution of Loschmidt’s para-
doz: the origin of irreversible behavior in reversible atomistic dynamics, Physical
Review Letters, 59, 10-13, 1987.

[Kr] Krylov, N.S.: Works on the foundations in statistical physics, Princeton Uni-
versity Press, 1979, (english translations of selected papers).

[Ku] Kurchan, J.: Fluctuation theorem for stochastic dynamics, Journal of Physics
A, 31, 3719-3729, 1998.

[LA] Levi-Civita, T., Amaldi, U.: Lezioni di Meccanica Razionale, Zanichelli, Bo-
logna, 1927 (reprinted 1974), volume 3.

[La] Lanford, O.: Entropy and equilibrium states in classical statistical mechanics,
ed. A. Lenard, Lecture notes in Physics, Springer Verlag, vol. 20, p. 1-113, 1973.
[LLP] Lepri. S., Livi, R., Politi, A. Energy transport in anharmonic lattices close
and far from equilibrium, preprint, cond-mat@xyz. lanl. gov #9709156, to appear
on Physica D.

[LR] Lanford, O., Ruelle, D.: Observables at infinity and states with short range
correlations in statistical mechanics, Communications in Mathematical Physics,
13, p. 194-215, 1969.

[LS] Lebowitz, J.L., Spohn, H.: The Gallavotti-Cohen Fluctuation Theorem for
Stochastic Dynamics, preprint, Rutgers University, June 1998.

[MP] Marchioro, C., Presutti, E.: Thermodynamics of particle systems in presence
of external macroscopic fields, Communications in Mathematical Physics, 27, 146—
154, 1972. And 29, 265-284, 1973.

[MR] Morriss, G.P., Rondoni, L.: Applications of periodic orbit theory to N-
particle systems, Journal of Statistical Physics, 86, 991, 1997.

[O1] Olla, S.: Large deviations for Gibbs random fields, Probability Theory and
related fields, 77, 343-357, 1988.

[PS] Pesin, Y.B., Sinai, Y.G.: Space-time chaos in chains of weakly inteacting
hyperbolic mappimgs, Advances in Soviet Mathematics, 3, 165-198, 1991.

[RT] Rom-Kedar, V., Turaev, D.: Big islands in dispersing billiard-like potentials,
preprint, Weizmann Institute, April 2, 1998.

DOCUMENTA MATHEMATICA -+ EXTRA VOLUME ICM 1998 - T - 205-233



CHAOTIC HYPOTHESIS ... 233

[Rul] Ruelle, D.: A measure associated with axiom A attractors, American Journal
of Mathematics, 98, 619-654, 1976. And Sensitive dependence on initial conditions
and turbulent behavior of dynamical systems, Annals of the New York Academy of
Sciences, 356, 408416, 1978.

[Ru2] Ruelle, D.: Statistical mechanics of a one dimensional lattice gas, Commu-
nications in Mathematical Physics, 9, 267-278, 1968.

[Ru3] Ruelle, D.: Positivity of entropy production in nonequilibrium statistical
mechanics, Journal of Statistical Physics, 85, 1-25, 1996. And: Entropy production
in nonequilibrium statistical mechanics, Communications in Mathematical Physics,
189, 365-371, 1997.

[Rud] Ruelle, D.: Elements of differentiable dynamics and bifurcation theory, Aca-
demic Press, 1989.

[Sil] Sinai, Y.: Gibbs measures in ergodic theory, Russian Mathematical Surveys,
27, 21-69, 1972 and Lectures in ergodic theory, Lecture notes in Mathematics,
Princeton U. Press, Princeton, 1977.

[Si2] Sinai, Y.G.: Development of Krylov’s ideas, in Krylov, N.S.: Works on the
foundations in statistical physics, Princeton University Press, 1979, p. 239-281.

Giovanni Gallavotti

Fisica, Universita La Sapienza
Roma, Italy
giovanni@ipparco.romal.infn.it

DOCUMENTA MATHEMATICA -+ EXTRA VOLUME ICM 1998 - I - 205-233



234

DOCUMENTA MATHEMATICA + EXTRA VOLUME ICM 1998 - 1



Doc. MaTH. J. DMV 235

FroM CLASSICAL NUMERICAL MATHEMATICS

TO SCIENTIFIC COMPUTING

WOLFGANG HACKBUSCH

ABSTRACT. The challenge of Numerical Mathematics by the fast devel-
opment of the computer technology has changed this field continuously.
The need of efficient algorithms is described. Their development is sup-
ported by certain principles as “hierarchical structures”, and “adaptivi-
ty”, “decomposition”. These principles and their interactions are demon-
strated in the lecture.
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45110
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ary value problems, Adaptivity, Decomposition

1 INTRODUCTION

This papers tries to sketch the structural changes in Numerical Mathematics. Due
to the pages restrictions, the illustrating examples must be omitted.

1.1 THE SCOPE OF NUMERICAL MATHEMATICS

First, we characterise the typical topics which already appeared in Numerical
Mathematics when this field developed in the mid of this century. Two essential
keywords are the approximation (or discretisation) and the algorithm.

The algorithm!® establishes the constructive part of Numerical Mathematics.
In the following, we will often refer to the solution of the linear system

Az =b (z,b € R") (1)

as a standard example of a problem to be solved. A possible (but slow) algorithm
would be the Gauf} elimination performing the mapping b — .

Since, in general, the mathematical problems are not solvable by finitely many
elementary operations, one needs some kind of approximation. The following
examples are chosen from the field of partial differential equations (pde). Since
the solution is sought in infinitely dimensional spaces, a ‘discretisation’ is needed

IFormally, an algorithm is a function, which maps input data = € X into the desired output
data y € Y and which is explicitly described by a finite product of elementary operations.
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before an algorithm can be applied. The usual discretisation of a (linear) partial
differential equation is a linear system (1).2
We obtain the following picture:

‘ original problem, e.g., pde ‘ (2a)

J discretisation process (2b)

‘discrete problem, e.g., system of equations ‘ (2¢)
1 solution algorithm (2d)

| discrete solution (2e)

In the classical form of Numerical Mathematics the processes (2b) and (2d)
are well separated.

Finally, the discretisation process (2b) as well as the solution algorithm (2d)
are subjects of a Mathematical Analysis. The analysis of the discretisation pro-
cess concerns, e.g., the discretisation error. The analysis of an algorithm may
investigate its stability or its convergence speed (for iterative algorithms) etc.

1.2 CHALLENGE BY LARGE SCALE PROBLEMS

Large scale computations are those which are almost too large to be computed
on present machines.?> Then, improvements are required to make the problem
feasible. In the field of pde’s it is always possible to pose larger and more complex
problems than those treated at present. The increasing demands concern not
only the problem dimension but also the mathematical complexity. One source of
mathematical complexity is the fact that simplified models are replaced by more
and more realistic ones. This may, e.g., lead to

- nonlinear problems (in the simplest case this requires a series of linear aux-
iliary problems to be solved, in more complicated situations the solution structure
may cause further difficulties and needs respective strategies),

- complicated geometries (although the mathematical analysis of a pde for
a simple two-dimensional and a complicated three-dimensional domain may be
similar from a theoretical point of view, the implementation of the algorithm is by
far much more involved).

Often the solution of a (discretised) pde is only a small part of the whole
computation. This happens for inverse problems which may be well-posed or ill-
posed. Examples are

- parameter identification problems,

- optimisation of various parameters (coefficients, shape, etc.).

2Another kind of approximation occurs on a lower level: the exact arithmetical operation
with real number must be replaced by approximate operations in the set of machine numbers.

3Here, ‘large scale’ is to be understood in a relative sense: large compared with the computer
capacity available today. In this sense, all present large scale computations will become small
under future conditions.
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1.3 ScIENTIFIC COMPUTING

It is the challenge by large scale problems which have changed Numerical Mathe-
matics continuously into its present form. The changes cannot be described only
by great strides made in the algorithms and in the discretisation techniques. The
modern approach is characterised by a combined design of both, discretisations
and algorithms. Even the modelling is more and more involved in the whole pro-
cess. Computer Science is involved, e.g., by the modern computer architecture but
also by the implementation process, which more and more becomes the bottleneck.

This paper tries to show the main strategies which have been developed and
led to the present structure. In particular, we name the

- hierarchical structures,

- adaptive approaches,

- (de)composition techniques.

Hierarchies are very successful for algorithms (see §2.3), but also important for
the discretisation and modelling process. Adaptive techniques are indispensable
for large scale problems (see §3.2). The composition and decomposition techniques
have theoretical aspects in mathematics as well as quite practical aspects as the
use of parallel computers (see §4.1).

2 EFFICIENT ALGORITHMS

It may be self-evident that we would like the algorithms to be as efficient as
possible, i.e., they should yield the desired results for lowest computational costs.
This vague request can be made more precise. Below, we explain why in the case
of large scale computations, the development of the computer technology leads
to the need of algorithms with linear complexity. The notation of complexity is
recalled below.

2.1 ALGORITHMS AND THEIR COMPLEXITY

In the following, we fix the discretisation (2b) and discuss the algorithm (2d).

While the structural properties of algorithms are quite similar to those of
proofs in mathematics, two algorithms o, : X — Y mapping the input = into
the same output a(x) = B(z) are not considered to be equal but are valuated
according to their costs. Typical cost criteria are the required computer time
and storage. Since the time needed for the computation depends on the speed
of the computer, we may take the number of elementary arithmetical operations
as a measure.? Since, by definition, each algorithm o : X — Y is a well-defined
product & = i, 0. .. 0 1 of elementary operations «;, the arithmetical costs C(«)
of an algorithm is well-defined, too.

Usually, the data sets X, Y are not fixed but can be parametrised (e.g., X =
R™). Let n be the maximum of the number of input and output data. The
complexity of an algorithm « is O(¢(n)), if C(a) = O(p(n)) as n — .

4This is a simplifying assumption. In fact, on modern computers the relation between the
number of arithmetical operations and the computer time is no more linear, e.g., because of
pipelining effects.
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There are difficult problems, for which it is considered as a success if the
complexity is polynomial (i.e., ¢p(n) = nP for some p). To this respect, problems
from Linear Algebra are simple. For instance, the n x n system (1) can be solved
by GauB elimination with complexity O(n?). But as we will see below, the O(n?)
complexity is quite unsatisfactory.

Since, except trivial counter-examples, n data require at least one operation
per datum, the linear complexity O(n) is the best possible (as a lower bound).
Whether linear complexity can be achieved is often an open problem.

Instead of the polynomial complexity behaviour O(n?), one often finds the
asymptotic behaviour® O(n? log?n). Because of the slow increase® of the loga-
rithm, the logarithmic factor is considered as less important. We say that the
complexity is almost linear if p =1, while ¢ > 0 is allowed.

To simplify the discussion, we have concentrated on the number of arithmeti-
cal operations (computer time) and have not mentioned the storage requirements.
If nothing else is said, we suppose that the storage requirement is (almost) linear
in n.

2.2 WHY LINEAR COMPLEXITY IS NECESSARY

The asymptotic description of the algorithmic complexity is uninteresting as long
as we are not forced to increase n. This need is caused by the computer technology.
In the former times of hand calculations or mechanical calculators, there were
obvious reasons why n was rather small. This is why Numerical Mathematics did
not appear as a discipline of its own before the help of electronic computers was
available.

As pointed out in §1.2, we would like to compute problems as large as the
computer resources allow. Assuming a storage requirement of O(n), we conclude
that the dimension n of the largest problem we can handle increases directly with
the storage of the computer.

The steady improvement of the computer technology can be described quan-
titatively. In spite of the technological jumps, the improvement of the storage size
is rather uniform over the past decades. One observes an improvement by a factor
about 100 over 10 years. A similar factor can be found for the increase in speed.
The only interesting fact from these data is that storage and speed increase by
almost the same factor per time. This has an immediate impact on the computer
time for the problems to be solved.

Suppose an algorithm with complexity O(n?) = CnP. Replacing the old
computer by a new one with storage and speed improved by the factor ¢ > 1, we
want to solve problems of dimension cn instead of n (due to the increased storage).
This requires C(cn)P operations. Because of the improved speed, the computer
time is now C(cn)P/c = C'cP~InP instead of CnP previously. We conclude that an
improvement of the computer facilities by ¢ increases the computer time by c?~1.
Hence, only if the algorithm has (almost) linear complexity, the run time does not
deteriorate.

50r more general O(n9t¢) for any € > 0.
61n fact, the constants in two O(nP log? n) terms can be more important than the logarithm.
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The conclusion for algorithms with complexities worse than the linear one is
that either the algorithm can only be used for small size problems or one has to
tolerate larger and larger computational times.

2.3 HIERARCHICAL STRUCTURES

One basic principle that may lead to efficient algorithms it the use of hierarchies.
A typical advantage of a hierarchical structure is the possibility of recursive algo-
rithms. Below, we give a well-known example.

2.3.1 ExampLE: FFT

Consider Eq. (1) with matrix entries aj; = w’* (0 < j,k < n — 1), where w =
exp(£2mi/n). Then the matrix-vector multiplication = — b = Az describes the
mapping from the vector coefficients x into the Fourier coefficients of b = F,,(x)
(or vice versa, depending on the =+ sign).

The standard matrix-vector multiplication algorithm has O(n?) complexity.
Let n = 2%. The idea of the Fast Fourier Transform (FFT), which can be traced

back to GauB, is to split the unknown Fourier coefficients b = (bg,b1,... ,bp—1)
into bogq = (b1,b3,... ,bp—1) and beyen = (bo, b2, ... ,bp—2) and to construct the
related Todd, Teven With boga = Fp/2(Todd), beven = Frnyj2(Teven). This allows a

recursive application: One problem of dimension n = 27 (level q) is transferred
into 2 problems of dimension n/2 = 2971 (level ¢ — 1), etc. until it is reduced to
n = 27 problems of the trivial dimension 1 (level 0). The costs per step are O(n).
Since q¢ = log, n is the number of levels, we result in the almost linear complexity
O(nlogn).

Here, the vector spaces X, = R™ of dimension ny, = 2¢ (¢ =0, 1,...) form the
hierarchy. The typical characteristics of the FFT algorithm are: (i) The problem
is trivial at level 0, while (ii) it is easy (and cheap) to reformulate the problem of
level £ by those of level £ — 1. In more general cases, (ii) takes the form that an
essential part of the algorithm is the solution of problems on the lower level.

2.3.2 EXAMPLE: WAVELETS

The fact that the number of involved hierarchy levels grows like log, n does not
necessarily imply that this logarithmical factor must appear in the complexity.
The wavelet transformation, which is quite close to the Fourier Transform, relies
much stronger on the hierarchical structure (functions f of level” ¢ define functions
f(2-) of level £ + 1 and vice versa). Supposing a finite filter length, the wavelet
transform and its back transform have exactly linear complexity.

The hierarchy for wavelets defined on R is the family {G, = {z = k27¢ :
k € Z} : ¢ € Z} of uniform grids. Since the wavelets are a part of Mathematical
Analysis and a tool for the approximation, we see that the concept of hierarchies
is also essential for the discretisation process.

"In wavelet terminology ‘level’ is called ‘scale’.
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2.3.3 EXAMPLE: SOLUTION OF SPARSE SYSTEMS BY MULTI-GRID

Most of the discretisation methods for pde produce a so-called sparse matrix A in
(1), i.e., the number of non-zero entries is much smaller than n?; in the following,
we assume that there are O(n) non-zero entries. A trivial consequence is that the
matrix-vector multiplication 2 — Ax is cheap (linear complexity). Therefore, the
hope is to approximate® the solution by an iterative process using only a fixed
(n-independent) number of such matrix-vector multiplications.

Although A is sparse, the inverse A~! is, in general, a full matrix. This
allows the following illustration of the difficulty about linear complexity. Even if
we would be able to get the inverse matrix A~! for free, the computation of = by
x := A~'b involves the multiplication of a full matrix by a vector and is therefore
of complexity O(n?).

Linear iterations for solving Az = b are of the form®

2™ = ®(2™,b) := Ma™ + Nb=z™ — N(Ax™ —b)

with the iteration matrix M = I — NA (N arbitrary). The iteration converges,
x™ — x = A71b, if the convergence speed which equals the spectral radius p(M)
of the matrix M is < 1. In order to get the best results for minimal costs, one has
to minimise the effective work

cost per iteration step

Eff(®):= oz p(M) = min

over all linear iterations ®. It turns out that ® leads to an almost O(n?) complexity
for the solution of (1) if Eff(®) = O(nP). Due to the sparsity, we may assume
‘cost per iteration step’= O(n); hence, Ef f(®) = O(nP) is equivalent to p(M) =
1 — O(n'~P). In particular, linear complexity requires p(M) < p < 1 for all n.

Unfortunately, there is no iteration known so far which ensures linear com-
plexity for all sparse matrices A. Instead one looks for fast iterations that work
for certain classes of matrices.

Such a class are the sparse matrices resulting from the discretisation of el-
liptic partial differential equations, where the multi-grid iteration leads to linear
complexity. The characteristic structure of the multi-grid method is the use of
a hierarchy of discrete problems. The standard hierarchy parameter is the grid
size h. Denote the discrete problem on hierarchy level £ by Apxy = b, for decreas-
ing mesh sizes hg > hy > ... > hy > ... . The iteration for solving a discrete
problem of level ¢ involves the lower levels 0,1,... ,¢ — 1 as auxiliary problems.
A Dbrief explanation of the fast convergence is as follows: Standard classical it-
erations have a local range and reduce very well the oscillatory iteration errors.
Long range errors need long range corrections which can be performed efficiently

8There is no need to compute the discrete solution too accurate, since we are interested in
the solution of the problem (2a). The discrete solution is affected with the discretisation error
in any way. Hence, an additional approximation error of the size of the discretisation error is
acceptable.

9For details see Hackbusch: Tterative solution of large sparse systems of equations. Springer,
New York 1994.
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only by coarser grids corresponding to lower levels. Algebraic properties of A like
positive definiteness, symmetry, etc. are less important!®. The main properties
needed in the convergence proof is the fact that the family of matrices A, stems
from a discretisation of an elliptic pde.

2.3.4 DIFFICULTIES DUE TO COMPLICATED GEOMETRIES

Large scale problems involve possibly an increasingly detailed geometry, since now
more and more data are available for the geometric description. While technical
objects have a comparably simple shape, problems from medicine or geography
etc. may be rather complicated.

We recall that the multi-grid method requires a hierarchy of grids of size hy
starting with a quite coarse grid size hg. Although these grids can be constructed by
the very flexible finite elements, the existence of such a grid hierarchy seems to be
in conflict with a detailed geometry, since a complicated geometry requires that all
describing grids are small enough. Here, a progress can be reported. Independent
of the smallness of the geometrical details, one can construct a hierarchy of nested
(conforming) finite element spaces

VocWVic...cVigCcVeC...C H(Q)

(so-called composite finite elements'!) so that dimVp can be a small number
(equivalently, the corresponding mesh size hg can be rather larger, e.g., hy can
be of the diameter of the domain). Although the size hy may be much larger
than the size of the geometrical details, one can prove the standard approxima-
tion inf{|ju — uell g1 gy + ue € Vo} < Chellullgzqy for all w € H?*(Q), which is
fundamental for the error estimation and multi-grid convergence.

2.4 ROBUSTNESS VERSUS EFFICIENCY

The example of the multi-grid method has shown that, in order to obtain efficiency,
one has to make use of the special properties of the considered subclass of problems.
In the case of multi-grid, the strength of ellipticity is one of these properties. In
singular perturbation problems, ellipticity is fading out. Furthermore, there are
other problem parameters which can have a negative influence on the convergence
speed of the iteration. As soon as convergence can turn into divergence, the
method becomes unreliable.

We call an algorithm robust (with respect to a certain set and range of param-
eters) if its performance does not fail when the problem parameters vary. Often,

10This is underlined by the fact that even nonlinear systems can be solved by (nonlinear)
multi-grid iterations with asymptotically the same speed.

HDetails in a) Hackbusch, Sauter: Composite finite elements for the approximation of PDEs on
domains with complicated mirco-structures. Numer. Math. 75 (1997) 447-472; b) Hackbusch,
Sauter: Composite finite elements for problems containing small geometrical details. Part II:
Implementation and numerical results. Computing and Vizualization in Science 1 (1997) 15-25;
¢) Sauter: Composite finite elements for problems with complicated boundary. Part I1I: Essential
boundary conditions. Report 97-16, Universitat zu Kiel.
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one has to find a compromise between quite efficient but non-robust and very ro-
bust but inefficient methods. There are various approaches to robust multi-grid
variants, e.g., the ‘algebraic multi-grid method’. The term ‘algebraic’ indicates
that the method uses only the information of the algebraic data in (1) and does
not require details about the underlying pde and the discretisation process. Such
a method comes closer to a ‘black-box method’, but is has to be emphasised that
the algebraic multi-grid methods are still restricted to a subclass of systems.!'?
The preference for robust or for very efficient but more specialised methods
also depends on the kind of user. While the numerical mathematician likes highly
efficient algorithms for a special application, other users prefer robust methods
since either the mathematical background is not well-understood or not available.

3  EFFICIENT DISCRETISATION METHODS

It is not enough that the solution method is efficient. Also the discretisation of the
partial differential equation must be considered. In academic situations, the order
of the discretisation is essential and new kinds of approximations can be proposed
(see next Subsection). Nevertheless, in general, one needs adaptive methods. The
reasons for adaptivity and the tools for its implementation are considered in §3.2.

3.1 COMPARISON OF DIFFERENT DISCRETISATION METHODS

So far, we have taken the discrete problem as given and were looking for an effi-
cient solution algorithm. Hence, the discretisation process in (2b) was considered
to be fixed. Instead, one should also compare different discretisation methods.
The success of an discretisation can be judged by the discretisation error, the dif-
ference!® between the exact and approximate solution, or a suitable norm of the
discretisation error. Here, it is to be emphasised that the discretisation method
does not produce only one particular discrete problem, but at least a sequence (or
as we shall see later, even a larger set) of discrete problems. Using the dimension n
as an index, we may write the discretisation method D as the sequence (P,)
of discrete problems P, with solution x, and discretisation error &,,.

Usually, the aim is to reach the best accuracy for minimal costs. To be more
precise, two particular strategies are of interest:

neN'CN

o Accuracy oriented choice: Let an accuracy € > 0 be given. For a fixed dis-
cretisation choose the minimal dimension n = n. such that the discretisation
error is X €. The arithmetical costs are denoted by Costs(P,_). Choose that
discretisation method for which Costs(P,,) is minimal.!*

12The scope of the method is not easy to describe, since one observes that it performs well
even for situations where convergence proofs are still missing.

13The definition of this ‘difference’ is not quite unique since the discrete and the continuous
solution are elements from different sets.

1471f the discrete problems of the different discretisations are of the same kind (hence, the costs
depend only on n), the discretisation with minimal n. is sought.
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e Memory oriented choice: Let a maximal data size N be given (e.g., the whole
memory of the computer). Choose that discretisation method which yields
a discrete solution zx (for the particular N) with best accuracy en.

The accuracy oriented choice is the more advanced one. The difficulty in
practice is twofold. The first difficulty concerns the prediction of €. Often it is
not easy to tell how accurate (with respect to what — global or weighted — norm)
the solution should be. Second, it is not trivial to judge the error of the discrete
solution, i.e., to check whether error 3 e.

The memory oriented choice is a lazy choice. The whole computer capacity
may be used although the result will be much too accurate for the purpose in
mind.

These alternatives can be illustrated for two discretisation methods of different
order. Let Dy be a first discretisation of order a, i.e., the discretisation error e y
behaves like!® O(n~%), when the dimension n varies. Similarly, let D;; be a second
discretisation method of order j. For the accuracy oriented choice, e = O(n;“) =
O(n}lﬂ) yields n; = O(e~Y) and nr; = O(e~/#). Hence, a < f implies that
(at least asymptotically) ny; < ny and therefore the higher order discretisation is
more efficient. For the memory oriented choice, n = N is fixed. Again, the higher
order B > « is preferred, since the accuracy e = O(N~#) is (asymptotically)
smaller than 77 = O(N~9).

Attempts have be made to improve the polynomial behaviour ¢ = O(n™?).
One approach is the p-finite element method, where the step size h remains fixed,
while the order p = p(n) is increasing. Under perfect conditions, an exponential
behaviour e = O(exp(—cn®) (¢, a > 0) is obtained.'6

Another approach are the sparse grids, where the discretisation error is almost
of the order e, = O(hP), whereas the grid has only n = O(h™!) grid points even
if the domain is a subset of R?. Then, the discretisation error equals £, = O(n~P)
instead of O(n~P/). Since d = 3 is the standard spatial dimension, this approach
promises a much better accuracy for the same dimension n.

In practice, both of the methods mentioned above cannot be applied to general
boundary value problems, but only to local parts. In the case of the p-method, the
solution must be very smooth, which may happen in the interior of the domain with
a fixed distance from the boundary but is in general not true at the boundary. This
gives rise to the hp-method which combines the standard finite element method
with the p-method in an adaptive manner. In the case of sparse grids, these grids
correspond to a special domain (square, cube etc. or their smooth image), which
is usually only a part of the whole domain. Therefore, in general, the use of p- and
sparse-grid methods require in addition adaptive techniques as they are explained
below.

15This definition is simplified. Usually the order is defined by O(h~%), where h is the mesh
size. h and n are connected by n = O(h~%), where d is the dimension of the domain Q C R%.

16To be precise, one has also to take into account that the p-method requires much more
accurate quadratures for the system matrix entries and that the resulting linear system is harder
to solve than standard finite element systems.
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3.2 ADAPTIVITY
3.2.1 ABSTRACT SETTING

To be precise, the result of a discretisation is a family of discrete problems P =
{P; : i € I}, where the index set I usually coincides with N or an infinite subset
of N. If x; is the solution of P;, we expect a certain of convergence of z; to the
solution z of the continuous problem, i.e., the discretisation error ¢; should tend
to 0. In the case of the ‘accuracy oriented choice’ from §3.1, we want to find
the minimiser P;, , of min{costs(P;) : i € I and ¢; < €}. The trivial strategy for
finding 4ot is to test the solution z; and to proceed to index ¢ + 1 (this can, e.g.,
mean a halving of the mesh size) if ¢; > e.

In the adaptive case, the index set I has a much more general structure, e.g.,
it may be a graph. Then, given a discrete problem P;, there are several next
finer discrete problems {p; : j successors of i}. The solution of the minimisation
problem min{Costs(P;) : i € I and &; < £} must be avoided.!” Instead, one needs
a heuristic H selecting a convergent subsequence {P;, : k € N}, i, = H(x;,_,).

If, in the Galerkin case, adaptation is understood more generally as the op-
timal approximation by any kind of function spaces, the theoretical background
traces back to the n-widths introduced by Kolmogorov.

3.2.2 WHAT PARAMETERS CAN BE ADAPTED?

The finite element discretisation decomposes the whole domain into triangles
(tetrahedra) or other geometric elements. Starting with a given (coarse) finite
element triangulation of a domain with step size hg, we can consider a uniform
refinement (e.g., each triangle is regularly divided into four smaller ones). This
yields a sequence of discrete problems with the uniform step size hy = 27 %hy.
On the other hand, the finite element discretisation allows to choose different el-
ement sizes at different locations, i.e., the mesh size may become a function h(zx).
Among all finite element discretisations one has to select a sequence satisfying
lim max, h(z)= 0. Usually, the triangulations 7; of this sequence are not chosen
independently, but given a triangulation 7; the next one, 7,41, is obtained by local
refinement. The question arises where to refine the grid.

The adaptation by local grid refinement is the most important example which
we shall discuss below. For completeness, also other subjects of adaptation are
mentioned. (i) Another possibility is to adapt the order of the finite element
functions (hp-method). (ii) Usually, one avoids flat (almost degenerated) triangles.
However, under certain circumstances, flat triangles with a prescribed direction of
the longest side are desired. Therefore, the orientation and degree of degeneration
is a possible subject of adaptation. (iii) The kind of discretisation technique may
change in different subregions of the boundary value problem.

17The minimisation over certain discretisation parameters is a problem of a much higher com-
plexity than the original task. Hence, the final costs is not Costs(p;) for a suitable 7, but Costs(p;)
plus a large overhead for the minimisation.
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3.2.3 WHY SHOULD BE ADAPTED?

A uniform step size is (almost) optimal, if the function to be approximated is
uniformly smooth. In practice, one has to approximate functions with different
smoothness in different parts, e.g., (i) very smooth in one part ;) of the domain
and (ii) less smooth in another part Q). Then the mesh size might be constant
(= h{;)) in Q) and constant (= h{;;)) in Q;) but with hf;) > A, Choosing the
uniform but coarse mesh size h = h’("l.) everywhere, we result in a large discretisation
error because of the bad approximation in ;). On the other hand, the uniform
choice h = hz‘ii gives (by definition) a satisfactory discretisation error, but because
of h’&-i) < hz‘i), this grid is much too fine in €2;) and leads to a total dimension
much larger than necessary.

Often, a further situation arises: (iii) The function has singular derivatives at
a certain point zp. Then, one needs a mesh with h*(x) decaying in a certain way
as z approaches xo. Note that h*(z) takes very small values only in very smalls
parts of the domain. Choosing such a fine grid everywhere would be a huge waste
of computer time.

Altogether, one has to construct a mesh with local mesh width h(x) <

a), hz‘ii), h*(x) in the respective parts.

3.2.4 WHAT MAKES ADAPTATION DIFFICULT?

The reason for the different choices of h(x) is the smoothness of the function u(z)
to be approximated. In simple cases like quadrature, the function u and possibly
its derivatives are explicitly available. A different situation occurs in the case of
differential equations. Here, the function w is the quantity we are looking for. The
question arises whether we can get the information about the smoothness of «
before we have computed the approximation of w.

The answer to the latter question is that an iterative approach is used. Start-
ing with a rough approximation of u°, one tries to find informations for adapting
the mesh from which the next approximation u! is computed, etc.

This iteration combines the discretisation process and the solution process,
since they are performed in a cyclic manner.

3.2.5 How TO CONTROL THE ADAPTATION?

There are cases, where the adaptation to the problem can be designed a priori,
but, usually, the adaptation process is done a posteriori, more precisely, during
the computational process. For the a posteriori adaptation, we have to describe
the control mechanism steering the details of the adaptation.

A general strategy to this respect consists of two fundamental considerations:

e The discretisation error is to be described as a sum of local errors. Usually,
the local residuum is such a tool.

e The desired situation is the equidistribution of the local errors. That means,
one tries to adapt the mesh so that all local errors are equally sized. The
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argument is that a locally small error is a waste of computation without
improving the global error essentially.

The control mechanism is first explained for the ‘memory oriented choice’ ex-
plained in §3.1. In this case, one refines as long as further storage is available. The
only critical decision is where to refine the finite element grid. For this purpose, a
lot of ‘error indicators’ exist which indicate where (possibly) the error is dominat-
ing. Many of these criteria are heuristic. The theory-based error estimators are
explained below.

The ‘accuracy oriented choice’ from §3.1 requires two decisions. First, we need
an indication that the discretisation error is below the required accuracy ¢. In the
negative case, we have to decide where to refine locally (as discussed above). Both
decisions are supported by the error estimators explained in the next Subsection.

In particular in time dependent problems, not only an adaptive refinement
but also a coarsening may be necessary.

3.3 ERROR INDICATORS AND ESTIMATORS

The a posteriori error estimators, first introduced by Babugka and Rheinboldt'®,
are a fundamental tool for the adaptive refinement. Let 7 be a triangulation of the
domain €2, i.e., Q is the disjoint union of the elements A € 7. The finite element

solution for the triangulation 7 is denoted by w,. Then, the error estimator has

the form
Q(ur) = /X paerpalur),

where @A is a computable!® function depending only on the data restricted to A
(or its neighbourhood). Denoting the error of u, by e(u,) (e.g., e(u;) = ||u — u,||
for a suitable norm |-||), we would like to have constants A, B such that

Ad(ur) < e(u,) < BO(u,).

If e(ur;) < B®(u,) holds, ® is called reliable since knowing its value we can
guarantee an error estimate. If A®(u,) < e(u,), ® is called efficient since we
avoid overestimation.

3.4 COMBINATION OF THE DISCRETISATION AND SOLUTION PROCESS

In the beginning, we said that in the classical form of Numerical Mathematics
the discretisation of the continuous problem and the algorithm for the discrete

18See Babuska-Rheinboldt: A posteriori error estimates for the finite element method. Int. J.
Numer. Meth. Engrg. 12 (1978) 1597-1615. For a recent survey see Verfiirth: A review of a
posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner 1996.

9T be quite precise, there are two alternatives to be considered. 1) If pa is a mathematical
expression including integration, we can obtain reliable error estimates. 2) For computational
purposes, such a pa (e.g., the integration contained in ¢ ) must be discretised and yields an
algorithm @a. Then, & cannot be reliable in general without (a priori) assumptions on the
smoothness of the integrands.
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problem were well separated. With the adaptive approach we have reached a new
level, where a new kind of algorithm is directly applied to the continuous problem,
i.e., the design of the discretisation has become a part of the solution algorithm
itself.

The reason for this development is not only the efficacy we want to obtain, but
also the huge amount of data. As long as we compute only few numbers, we may
be able to judge their quality and possibly improve the discretisation. However,
when we compute a massive set of data corresponding, e.g., to a relative dense
three-dimensional grid, we have already problems to perceive the data. We need
special visualisation tools to interpret the computed results. The judgement of
their accuracy is even more difficult. Therefore, it is an obvious consequence that
the control over the discretisation process is given to the algorithm itself.

The new kind of algorithm can be considered as a triple (D,.A, H), where
D is the discretisation method (offering a large variety of discrete problems, e.g.,
all finite element triangulations), A are the algorithms for solving the discrete
problems produced by D, while the heuristic H is the adaptive strategy controlling
the discretisation process.

3.5 HIERARCHY PLUS ADAPTIVITY

In the following, we discuss the hierarchy of grids used by the multi-grid method.
Then adaptive approaches can be realised in two ways.

1) Global grids. Let {G¢: £ =0,1,...} be the sequence of grids (finite element
meshes etc.), where Gy41 is constructed adaptively from the solution z, in grid
Gy.

2) Local grids. Let Gjy = Gy be a starting grid and denote by G, the regular
refinement (¢ partitioning steps in all elements). An adaptive (local) refinement
G1 of Gy can be considered as a union of G1p := G, and of a subset G11 C G}. In
general, a local refinement Gy is a union of subsets G, C G}, (0 <k < /).

The second approach works also for the wavelet hierarchy: There the local
refinement is replaced by adding the wavelet functions (2z — k) of level ¢ for
only few shifts k.

So far, the hierarchical structure does allow adaptivity. Of course, extra
overhead occurs to administrate the additional description of the local grid details.

4 PARALLELISM

The costs of an algorithm are not determined by mathematics but by kind of
computing tools. If the technology is changing also the valuation of algorithms
might change. For instance, on a vector computers Costs(Ar)<Costs(A;r) may
hold, although algorithm A; requires more scalar operations than Ajy, provided
that A; exploits the vector operations.

In the last decade, the parallel computer became available which allows to
perform the computation in parallel on a number of processors, provided the com-
putations are independent. In the optimal case (optimal balance, no overhead) the
computation time decreases by the factor p=number of processors. Another effect
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is the enlarged storage (p times the storage of each processor), provided that the
algorithm can use the distributed memory. Since, in the optimal case, speed and
storage increases by the same factor, the considerations of §2.1 show that also the
parallel algorithms must be of linear complexity.

Let a sequential algorithm Ag be given. One can try to construct a parallel
algorithm A, which yields identical results. For its construction, one needs at least
a data decomposition.

Usually, one tries to construct a special parallel algorithm. One strategy for
its construction is the problem decomposition of the full problem into subtasks.

4.1 COMPOSITION, DECOMPOSITION
4.1.1 COMPOSITION

Often, large scale problem are obtained by composing subproblems. Difficulties in
the decomposition process may possibly arise from

a) different kinds of differential equations and/or integral equations in the
subproblems,

b) different coordinate systems in the subproblems,

¢) different discretisations in the subproblems,

d) non-fitting meshes even when all subproblems are discretised by the same
kind of finite elements.

The coupling conditions, which are similar to the boundary conditions, must
be integrated into the complete problem. If the meshes do not fit, one has to
ensure the connection in a weak sense, e.g., by Lagrange multipliers (so-called
‘mortar element method’).

4.1.2 DECOMPOSITION

The decomposition of the whole problem into subproblems can have different rea-
sons:

1) software is available for the specific subproblems,

2) the iterative scheme makes use of the solution of the subproblems,

3) the problem must be decomposed to use a parallel computer.

Another question is how the complete problem can be divided. Two different
approaches are relevant:

a) The given problem is already a composed problem, then the obvious can-
didates for the subproblems are the basic components.

b) If the given problem is uniform, a partitioning must be defined. Differently
from a), the number of subtasks can be chosen according to the number of available
processors.

Reason 1) is, in particular, important for large scale problems which are im-
plemented by a team where each expert is responsible for a particular subtask.

Reason 2): For iterative schemes?’, it is a standard approach to correct the

20Details in Chapter 11 of Hackbusch: Iterative solution of large sparse systems of equations.
Springer, New York 1994.
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actual approximation by a solution of a simpler problem?!, where the ‘simpler
problem’ is obtained by neglecting the coupling of subproblems. The simplest
subproblems of a system (1) are the separate n scalar equations. Solving the
ith scalar equations with respect to x; yields the classical Jacobi and Gauf-Seidel
iteration. Since a partitioning according to Approach a) is obvious, we consider the
Approach b). In the context of elliptic pde’s discretised over a mesh in the domain
), one can partition {2 into subdomains Q; (together with their meshes) such that
UQ; = Q. This leads to the domain decomposition method. The decomposition
may also use overlapping domains. Since the first domain decomposition method
(with two overlapping domains) was used by H. A. Schwarz (1870) to prove the
existence of a holomorphic function in a composed domain, these iterations are
also called Schwarz iteration.

The use of parallel computers for domain decomposition methods is obvious:
The solution of the ¢th subproblem on §2; involves intensive computations on the
ith processor. Afterwards communication is needed to initialise the next iteration
step, but the communication concerns only the overlapping region or in the sim-
plest case only the common interior boundary. Since the communication involves
only a rather small part of all unknowns, there is a hope for a good speed-up
factor.

However, the use of the domain decomposition principle only cannot be suc-
cessful. If p is the number of subdomains (and parallel processors), the overlapping
Schwarz method does lead to a speed-up by p, but the convergence speed of the
iteration slows down by the same factor. Therefore, in the meantime it is well-
accepted that one has to add a coarse-grid subspace.?? This makes the domain
decomposition approach very similar to the multi-grid method: The coarse-grid
correction has a larger step size ratio hfine/hcoarse, While the subspace solutions
form the smoothing process of the two-grid iteration.

The addition of the coarse-grid subspace leads to a generalisation of the do-
main decomposition principle: The decomposition of the vector space into sub-
spaces. The resulting notation of a subspace iteration is general enough to describe
the domain decomposition methods as well as the multi-grid iterations. The the-
ory developed so far?? is more or less restricted to positive definite system matrices
A. Applied to multi-grid iterations, the results use weaker assumptions but yield
also weaker convergence results.

4.2 INTERACTION OF THESE PRINCIPLES

4.2.1 HIERARCHY PLUS DECOMPOSITION

The hierarchy can be considered as a vertical structure providing problems of differ-
ent discretisation levels, whereas the decomposition yields an horizontal structure.

21Let W be ‘close’ to A but such that Wy = d is easy to solve. Then the iterative scheme
anew = gold _ W —1(Azgold — ) requires the solution of Wy = d with d = Az°!® —b.

22Divide the domain  into pieces Q; of size H and introduce a global mesh of size h. Then
the coarse-grid mesh has size H.

23Survey in Xu: Iterative methods by space decompositions and subspace correction. SIAM
Review 34 (1992) 581-613.
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These structures are essentially orthogonal and do not conflict with each other.

The traditional domain decomposition method has two hierarchy levels, the
global problem and many local subproblems. It is possible to repeat the domain
decomposition principle for each subproblem. Another possibility is to use the
same decomposition structure over all levels on the hierarchy. This is the standard
approach for data decomposition for the purpose of parallel computations.

Hierarchy plus parallelism may create a specific problem. Usually, the algo-
rithm works sequentially over the hierarchy levels. If the lower levels are connected
with coarser grids and therefore less computational work, the communication part
may predominate.

4.2.2 DECOMPOSITION PLUS ADAPTIVITY

When using the decomposition for parallelising, the idea is to associate each sub-
problem with one of the processors. At the starting time of each iteration step,
all processors must get the new (boundary and right-hand side) data for the sub-
problems. Since the iteration cannot proceed before all results are collected, one
should ensure that all subtask computations need almost the same time. This
requirement can be satisfied by creating subdomains with nearly the same number
of unknowns.

In this case, adaptivity leads to a severe conflict. By definition, the adaptive
refinement yields locally different changes. One subdomain may be strongly re-
fined, whereas another one remains unchanged. Obviously, even if the dimensions
of the subtasks are equidistributed initially, the subproblems may lose their bal-
ance. Without a rearrangement of the subdomains, the parallel algorithm becomes
poor.

The rearrangement process is called load balancing. On the one hand side,
the load balancing must be cheap in order not to spoil the overall performance
time. On the other hand, the load balancing is a very delicate task because a) the
optimal decomposition is NP-hard, b) the subdomain data to be rearranged on one
processor are distributed over different processors. It becomes even more difficult
in the multi-grid case where also the vertical level structure is to be considered.?*

If the load balancing is successfully implemented, the algorithm decides not
only about the termination (when the accuracy is reached) and local refinement,
but also about the decomposition structure.

5 MODELLING AND IMPLEMENTATIONAL ASPECTS

5.1 MODELLING

We started with an approximation (discretisation) separated from the algorithm
for the discrete problem. As shown in §3.4, both have become more and more
intertwined. However, the mathematical problem from (2a) is not really fixed.
Usually, it is the result of a modelling process for some problem from outside

24See Bastian: Parallele adaptive Mehrgitterverfahren. Teubner, Stuttgart 1996.
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mathematics (e.g., mechanics; see (3a)). The modelling process may be an ap-
proximation®® by itself. The model might be more or less involved, certain aspects
may be neglected or simplified or represented in full detail. Often, the details of
the modelling process should be related to the accuracy required for the discrete
problem. This gives rise to a hierarchy of models.

‘ physical (chemical etc.) problem‘ (3a)

J modelling process (3b)

‘ mathematical problem, e.g., pde ‘ (3c)

J discretisation process (3d)

‘discrete problem, e.g., system of equations ‘ (3e)
1 solution algorithm (3f)

| discrete solution (3g)

From the mathematical point of view it is very interesting when the model
hierarchy leads to different scales in the solution. Such different scales may be time
scales for time-dependent problem: Certain processes are much faster than others
(e.g., mechanical changes faster than thermal ones or chemical reactions faster than
the flow dynamics). This gives rise to interesting discretisation techniques. The
consideration of scales in the discretisation can also be regarded as an adaptation
process (using the smallest time scale for all components would be a waste of
computer time).

Details in a model may also lead to geometric scales. The diameter of the do-
main (of the boundary value problem Lu = f) is the coarsest scale. The coefficient
function of L may be oscillatory giving rise to the wavelength as next geometric
scale. In regular cases, the homogenisation technique offers a tool to split the true
solution into a sum of a homogenised part and the details.

5.2 IMPLEMENTATION

In (3f) the box ‘computer’ should indicate the interaction of the solution algorithm
with the computer. This includes that the algorithm depends on the computer
architecture. Another important software aspect is mentioned next.

The steadily increasing volume of the data and the increasing problem com-
plexity on the one hand and the development in the computer architecture on the
other hand have made the implementation more and more involved. Although al-
gorithms and computers have become faster, the act of implementation consumes
an increasing time of work. Since Scientific Computing needs extensive software,
its production (i.e., the implementation process) must become a scientific topic of
Scientific Computing by its own.2°

25This approximation process is meant when engineers speak about a simulation.
26For a positive example see Bastian et al.: UG - A flexible software toolbox for solving partial
differential equations. Computing and Visualization in Science 1 (1997) 27-40.
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6 TREATMENT OF NON-SPARSE MATRICES

The request of linear complexity is very restrictive and seems to exclude, e.g., the
treatment of linear systems with a full matrix, since then even simple operations
like the matrix-vector multiplication are of quadratic complexity. The survey is
concluded by a discussion of this problem.

6.1 BOUNDARY INTEGRAL EQUATIONS

A linear and homogeneous boundary value problem Lu = 0 in a domain  C R?
can be reformulated as an integral equation of the form Au(z) = (Ku)(z) + g(x)
for x € T with the boundary integral operator

(Ku)(x) ;:/Fk(x,y)u(y)dry

defined on the boundary I' = 0€2. The kernel k is the fundamental solution of L
or some derivative.

The advantage of the boundary integral representation is due to the fact that
the domain 2 with spatial dimension d is replaced by a manifold of dimension
d — 1. Using elements of size h, the discretisation of  requires O(h~%) elements,
whereas T leads to only n = O(h'~9) elements. In particular for exterior problems
(where Q is infinite), the integral equation is much simpler.

The disadvantage of the integral equation is caused by the fact that a dis-
cretisation of an integral operator (the so-called boundary element method) leads
to full matrices (instead of the sparse ones for the local differential operators).
For the interesting case d = 3, one finds that the boundary element method with
dimension n = O(h!~?) is cheaper than the standard finite element method only
if the complexity is better than O(n3/2). In particular, O(n?) complexity cannot
be accepted.

This is a typical situation, where the full matrix A with its n? entries seems to
prevent any algorithm from better complexity than O(n?). Indeed, yet the compu-
tation of the system matrix A consumes O(n?) operations where the constant may
be rather large. Hence, first of all the use of the full matrix A must be avoided
and replaced by a matrix (linear mapping) which can be described by (almost)
O(n) data. One might ask why this should be possible. The reason is that the
pseudo-differential operator K has quite similar properties as standard differential
operators. The latter ones can be approximated by sparse matrices depending on
only O(n) data.

Essentially, there are two different approaches for a realisation:

e Matriz compression. One can look for a special discretisation of K such that
most of the entries of A are extremely small so that their replacement by zero
yields an (almost) sparse matrix A. Such a discretisation can be obtained by
a Galerkin approach based on suitable wavelet functions.?7

27The delicate requirement is that the entries which should be suppressed must be known before
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e Panel clustering. Given any discretisation of K with system matrix A, one
can try to approximate A by another matrix A which is easily describable
by almost O(n) data. This ensures that only almost O(n) data are to be
stored. Furthermore, the matrix-vector multiplication  — Az must be per-
formable by almost O(n) operations. This is achieved by the panel clustering
method.?® The main idea is the replacement of the (smooth) kernel func-
tion k in the far-field. Different from the wavelet matrix compression, the
panel clustering method is not a discretisation by itself but can be combined
with any collocation or Galerkin method. Further, it is independent of the
smoothness of the boundary T.

In both cases, one can prove that the replacement of A by A yields an addi-
tional error which is of the same size as the discretisation error or even smaller.

6.2 GENERAL NON-SPARSE SYSTEMS

Recently, L. N. Trefethen (Oxford) posed a number of maxims of which the twenty
first one reads as follows:

e Is there an O(n?*¢) algorithm?® for solving an n x n system Az = b? This is
the biggest unsolved problem in numerical analysis, but nobody is working
on it.3%

Since the multiplication of a full matrix times a vector costs O(n?) opera-
tions, a sufficient condition would be that the inverse A~! can be computed by an
O(n**¢) algorithms. Unfortunately, I cannot offer such an algorithm. Instead, I
would like to ask whether for a restricted (but interesting) subclass of problems,
the following related question can be answered:

e Is it possible to compute a good approximate B of the inverse A~! by almost
O(n) operations such that B requires a storage of almost O(n) and such that
the multiplication of B by an n-vector b costs almost O(n)?

At first sight, this seems impossible, since in general A~! is a full matrix with
n? entries. Indeed, for the exact inverse B = A~! we find only very few positive
examples. However, as in the panel clustering method mentioned above, it may
be possible to find an approximation B ~ A~! with this property.

In fact, it is possible to give a positive answer to the latter question if A
is a discretisation of an elliptic operator including pseudo-differential operators.
Because of the hierarchical structure of the applied matrix representation, we call
the set of approximating matrices H-matrices.?! The precise results are as follows:

their computation. For details see, e.g., Schneider: Multiskalen- und Wavelet-Matrixkompression.
Teubner, Stuttgart 1998.
28Gee, e.g., §9.7 in Hackbusch: Integral equations. ISNM 120, Birkhsuser, Basel 1995.
290bviously, it is meant that € may be any positive number. For a system with a full matrix
A, which cannot be represented by less than n? data, N = n? + n is the data size of the input
data (A, b). Therefore, an O(n2?) = O(N) complexity for solving Az = b is linear complexity!
30STAM News, vol 31, No 1 (1998) page 4.
31Details will be in a forthcoming paper.
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- the storage of the H-matrix data is of the size O(nlogn),

- the (approximate) sum of two H-matrices costs O(nlogn),

- the (approximate) product of two H-matrices costs O(nlog®n),

- the (approximate) product of an H-matrix with an n-vector costs O(nlogn).

Since the inverse can be obtained by multiplications (by suitable transforma-
tion matrices), also the (approximate) inversion of an H-matrix costs O(n log® n)
operations.

Even if one wants to perform the usual iterative techniques, often a Schur
complement occurs which is of the form S = D — BA~'C. Since the Schur com-
plement contains the inverse matrix A~!, S is usually a full matrix. Therefore,
one can neither represent the matrix .S nor its inverse in the standard form. Up to
now, the only remedy is to know a good preconditioner for S. Then it is enough to
have an efficient algorithm for the matrix-vector multiplication x +— Sz which can
make use of the representation S = D — BA~'C. The H-matrix algorithm opens
new possibilities, since the explicit approximate computation of S = D — BA™'C
can be performed, provided that A, B, C, D are H-matrices.
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Universitat zu Kiel
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D-24098 Kiel, Germany
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Dynamics, TorpoLoGY, AND HoLoMORPHIC CURVES

HeLmuT H. W. HOFER

ABSTRACT. In this paper we describe the intimate interplay between cer-
tain classes of dynamical systems and a holomorphic curve theory. There
are many aspects touching areas like Gromov-Witten invariants, quantum
cohomology, symplectic homology, Seiberg-Witten invariants, Hamilto-
nian dynamics and more. Emphasized is this interplay in real dimension
three. In this case the methods give a tool to construct global surfaces
of section and generalizations thereof for the large class of Reeb vector
fields. This class of vector fields, includes, in particular, all geodesic flows
on surfaces.

1991 Mathematics Subject Classification: 32, 34, 35, 49, 58, 70
Keywords and Phrases: Hamiltonian dynamics, contact forms, Reeb vec-
tor fields, quantum cohomology, Gromov-Witten invariants, Arnold con-
jecture, Weinstein conjecture, holomorphic curves, symplectic homology,
surfaces of section.

1 PERIODIC ORBITS OF DYNAMICAL SYSTEMS

Symplectic and contact geometry as well as Hamiltonian dynamics experienced in
the last decade a tremendous growth. In order to cover some aspects in a certain
depth one faces the serious dilemma of making a selection. Rather than touching
many areas, it seems more appropriate to focus only on a few aspects. The choice
made here was to describe the subtle relationship between Hamiltonian dynamics,
topology and a theory of holomorphic curves. So many aspects are only briefly
mentioned or even ignored. However, they are being dealt with in other papers
contained in the proceedings of the ICM Berlin. In particular the contributions by
S. Donaldson, Y. Eliashberg, K. Kuperberg, D. McDuff, J. Moser, L. Polterovich,
Y. Ruan and C. Taubes.

The aim of this paper is to explain some of the recent progress at the interface
of Hamiltonian dynamics and symplectic geometry. In order to appreciate the
special features of (certain) Hamiltonian dynamics versus general dynamics we
begin with the following classical problem.

In 1950 Seifert, [79], raised the question if a given non-singular vector field X
on the three-sphere admits a periodic orbit:

&= X(z) and 2(0) = =(T), T > 0.
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As it turned out this is a subtle problem. In higher dimensions Wilson, [87],
provided in 1966 examples of non-singular vector fields on $?"~! n > 3, without
periodic orbits. However, dimension three poses more difficulties due to lack of
room in order to make some of the higher dimensional ideas work. After all,
destroying periodic orbits, which are 1-dimensional sets, should be easier in higher
dimensions.

In 1974 Schweizer, [77], showed that there exist non-singular C*-vector fields
on S? without any periodic orbits. The regularity of the counterexample was
strengthened to C? in [36]. In 1994 the question was finally settled by K. Kuper-
berg, [59], who constructed a real analytic counterexample.

THEOREM 1.1 (K. KUPERBERG) There exists a nowhere vanishing real analytic
vector field on S® without any periodic orbit.

So, asking for periodic orbits, given an arbitrary smooth vector field on S3
(and as the method shows on any three-manifold) is not a good question if we only
know little about the dynamical system. On the other hand, at the end of the
seventies most notably by Rabinowitz, [74, 75], and Weinstein, [85], there were
some positive results concerning special vector fields coming from Hamiltonian
systems. Rabinowitz’s somewhat more general result is the following:

THEOREM 1.2 (RABINOWITZ) A regular energy surface of an autonomous Hamil-
tonian system in R®"™, which bounds a star-shaped domain, carries a periodic orbit.

Weinstein proved a slightly weaker result assuming that the energy surface bounds
a convex domain.

Figure 1: A starshaped energy surface is diffeomorphic to a sphere centered at
some point via radial transformation.

We note that from a symplectic purist’s point of view the results are not sat-
isfactory, since the assumptions are not invariant under symplectic (or canonical)
transformations.

Abstractly speaking we have here an existence result for certain non-singular
vector fields on spheres $2"~!. What is interesting now, of course, is the cut-off
line between “Guaranteed Existence” and “Possible Non-Existence”.

Based on the above mentioned results by Rabinowitz and his own contribu-
tion, Weinstein made in 1978 a conjecture, [86], which together with the earlier
Arnold conjectures, [2], in symplectic fixed point theory had a tremendous impact.

Rabinowitz’s result were extremely important, in particular psychologically,
since the degenerate and indefinite classical Hamiltonian variational principle was
used for the first time to study existence problem of periodic orbits in Hamiltonian
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dynamics. One should k