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Loal Index Theory and Higher Analyti Torsion

Jean-Michel Bismut1

Abstract. In this paper, we report on the construction of secondary
invariants in connection with the Atiyah-Singer index theorem for fami-
lies, and the theorem of Riemann-Roch-Grothendieck. The local families
index theorem plays an important role in the construction.

In complex geometry, the corresponding objects are the analytic torsion
forms and the analytic torsion currents. These objects exhibit natu-
ral functorial properties with respect to composition of maps. Gillet
and Soulé have used these objects to prove a Riemann-Roch theorem in
Arakelov geometry.

Also we state a Riemann-Roch theorem for flat vector bundles, and report
on the construction of corresponding higher analytic torsion forms.

1991 Mathematics Subject Classification: 32L10,57R20,58G10
Keywords and Phrases: Sheaves and cohomology of sections of holomor-
phic vector bundles. Characteristic classes and numbers. Index theory
and related fixed point theory.

The purpose of this paper is to report on the construction of certain secondary
invariants which appear in connection with the families index theorem of Atiyah-
Singer [4] and the Riemann-Roch-Grothendieck theorem [7]. These invariants are
refinements of the η invariant of Atiyah-Patodi-Singer [2], and of the Ray-Singer
analytic torsion for de Rham and Dolbeault complexes [50], [51], which are spectral
invariants of the considered manifolds.

Progress in this area was made possible by the development of several related
tools:

• The discovery by Quillen [48] of superconnections.
• A better understanding of local index theory (Getzler [31]) and the proof of
a local families index theorem by the author [9], and of related results by
Berline-Vergne [6], Berline-Getzler-Vergne [5].

• Progress on the theory of determinant bundles, by Quillen [49], Freed and
the author [16], and Gillet, Soulé and the author [17].

• The development of adiabatic limit techniques to study the behaviour of
certain spectral invariants (like the η-invariants of Atiyah-Patodi-Singer [2])
under degenerations, by Cheeger and the author [15], Mazzeo-Melrose [44],
and Dai [29].
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C.N.R.S., URA 1169.
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144 Jean-Michel Bismut

Algebraic geometry gave an essential impetus to the above developments. Ex-
tending earlier work by Arakelov and Faltings, Gillet and Soulé [33],[34] developed
an algebraic formalism which could use as an input results coming from analysis,
and invented the adequate Riemann-Roch-Grothendieck theorem.

Our starting point is the local families index theorem [9], [5]. Let π : X → S
be a fibration with compact even dimensional oriented Riemannian spin fibre Z.
Let E be a complex vector bundle on X . Let (DZ

s )s∈S be the associated family
of Dirac operators [3] acting along the fibres Z. Let Ind(DZ

+) ∈ K(S) be the
corresponding index bundle. In [4], Atiyah and Singer proved the index theorem
for families,

ch(Ind(DZ
+)) = π∗

[
Â(TZ)ch(E)

]
inH(S,Q).(0.1)

In [9], starting from natural geometric data, connections were introduced
on the vector bundles appearing in (0.1), so that by Chern-Weil theory, we can
represent the cohomology classes in (0.1) by differential forms. Using a special case
of a Quillen superconnection [48], the Levi-Civita superconnection [9], a “natural”
family of closed differential forms αt|t∈R+

on S was produced, which interpolates
between the differential forms representing the right-hand side of (0.1) (for t → 0)
and the left-hand side of (0.1) (for t → +∞, by [6], [5]). Moreover, following
earlier work by Quillen [49], Freed and the author [16] proved a curvature theorem
for smooth determinant bundles associated to a family of Dirac operators. Also
extending earlier work in [16], [27], Cheeger and the author [15] constructed an
odd form on S, η̃, which transgresses equation (0.1) at the level of differential
forms. These forms η̃ were used to evaluate the “adiabatic” limit of η-invariants
[16], [27], [15].

Let f : X → S be a proper holomorphic map of complex quasiprojective
manifolds, and let E be a holomorphic vector bundle on X. By Riemann-Roch-
Grothendieck [7],

Td(TS)ch(f∗E) = f∗[Td(TX)ch(E)] inH(S,Q).(0.2)

Assume that π : X → S is a holomorphic fibration with compact fibre Z. Let

E be a holomorphic vector bundle on X. Let (Ω(Z,E|Z), ∂
Z
) be the family of

relative Dolbeault complexes along the fibres Z. Let ωX be a closed (1,1)-form on
X restricting to a Kähler metric gTZ along the fibres Z, and let gE be a Hermitian
metric on E. Recall that a holomorphic Hermitian vector bundle is naturally
equipped with a unitary connection, which can be used to calculate Chern-Weil
forms. Assume that Rπ∗E is locally free. Let gRπ∗E be the L2 metric on Rπ∗E
one obtains via Hodge theory. In work by Gillet, Soulé and the author [17], and
by Köhler and the author [20], a sum of real (p, p) forms on S was constructed,
the analytic torsion forms T (ωX , gE), such that the following refinement of (0.2)
holds,

∂∂

2iπ
T (ωX , gE) = ch(Rπ∗E, gRπ∗E)− π∗

[
Td(TZ, gTZ)ch(E, gE)

]
.(0.3)

The forms T (ωX , gE) also refine the forms η̃ of [15]. The component of degree 0 of
T (ωX , gE) is the fibrewise holomorphic Ray-Singer torsion [51] of the considered
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Dolbeault complex, a spectral invariant of the Hodge Laplacians along the fibres. It
was used by Quillen [49] to construct a metric on (det(Rπ∗E))−1, whose properties
were studied by Quillen [49], and by Gillet, Soulé and the author [17].

At the same time, Gillet and Soulé were pursuing their effort to construct
an intersection theory on arithmetic varieties, in order to formulate a Riemann-
Roch-Grothendieck in Arakelov geometry. In [33], [34], they constructed refined

Chow groups ĈH, and Hermitian K-theory groups K̂. They used the analytic

torsion forms T (ωX , gE) to define a direct image in K̂. From a computation with
Zagier [35] of the analytic torsion of PN equipped with the Fubini-Study metric,
they conjectured a Riemann-Roch-Grothendieck theorem in Arakelov geometry,
where the additive genus associated to an exotic power series R(x) appears as a

correction to the Todd genus T̂d.
In [11], a secondary characteristic class for short exact sequences of holomor-

phic vector bundles was constructed, which was evaluated in terms of the R class.
In [10], [18], the analogue of the above construction for submersions was car-

ried out for immersions. Namely, let i : Y → X be an embedding of complex
manifolds, let F be a holomorphic vector bundle on Y , and let (E, v) be a reso-
lution of i∗F by a complex of holomorphic vector bundles on X. Under natural
compatibility assumptions on Hermitian metrics gE , gF , gNY/X , analytic torsion
currents T (E, gE) were constructed on X, such that

∂∂

2iπ
T (E, gE) = Td−1(NY/X , gNY/X )ch(F, gF )δY − ch(E, gE).(0.4)

Again, (0.4) refines (0.2) at the level of currents. The functoriality of these con-
structions was established in work by Gillet, Soulé and the author [19].

In [21], using [11], Lebeau and the author calculated the behaviour of Quillen
metrics under resolutions. Then Gillet and Soulé [36] gave a proof of their
Riemann-Roch formula for the first Chern class. In [30], Faltings provided an
alternative strategy to a proof of the Riemann-Roch theorem of Gillet-Soulé, by
using deformation to the normal cone. In [13], the author extended his previous
result with Lebeau [21]. Namely, in the case of the composition of an embedding
and a submersion, a natural combination of analytic torsion forms is expressed in
terms of analytic torsion currents. When combined with the arguments of Gillet
and Soulé [36], this leads to a proof of the Riemann-Roch-Grothendieck theorem
of Gillet and Soulé in the general case. A remaining mystery of the theory was the
fact that the genus R seemed to appear twice in the theory: through the explicit
spectral computations in [35] of the analytic torsion of Pn, and also in the eval-
uation of certain characteristic classes in [11]. The mystery was solved by Bost
[24] and Roessler [53]. They show in particular that the evaluation in [35] of the
analytic torsion of Pn can be obtained as a consequence of [11],[21].

In [22], Lott and the author extended the formalism of higher analytic torsion
to de Rham theory. Assume that π : X → S is a fibration of real manifolds
with compact fibre Z. Let F be a complex flat vector bundle on X. Then Rπ∗F
is a flat vector bundle on S. The differential characters of Cheeger-Simons [28]
produce Chern classes of flat vector bundles on a manifold M , with values in
Hodd(M,C/Z). In [22], a Riemann-Roch-Grothendieck formula was established
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for the real part of these classes, and corresponding real higher analytic torsion
forms were introduced, whose part of degree 0 is just the Ray-Singer torsion of
[50]. From these torsion forms, one can produce certain even cohomology classes
on S. In degree 0, the Ray-Singer conjecture, proved by Cheeger [26] and Müller
[45], shows that, for unitarily flat vector bundles, the Ray-Singer torsion coincides
with the Reidemeister torsion [52]. In positive degree, the evaluation of the higher
analytic torsion forms of [22] is still mysterious, although some evidence suggests
they might possibly be related to constructions by Igusa and Klein [39] using Borel
regulators.

This paper is organized as follows. In Section 1, we state the local families
index theorem. In Section 2, we introduce the higher analytic torsion forms.
In Section 3, we describe the analytic torsion currents. In Section 4, we give a
compatibility result between analytic torsion forms and analytic torsion currents,
and we state the Riemann-Roch theorem of Gillet-Soulé. Finally, in Section 5, we
state a Riemann-Roch theorem for flat vector bundles.

For a more detailed survey on the analytic aspects of this paper, we refer the
reader to [14].

1. The local families index theorem

1.1. The local index theorem. Let Z be a compact even dimensional oriented
spin manifold. Let gTZ be a Riemannian metric on TZ. Let STZ = STZ

+ ⊕STZ
− be

the Z2-graded hermitian vector bundle of (TZ, gTZ) spinors. Let ∇TZ be the Levi-

Civita connection on (TZ, gTZ). Let ∇STZ

= ∇STZ
+ ⊕∇STZ

− be the corresponding
unitary connection on STZ = STZ

+ ⊕STZ
− . Let (E, gE ,∇E) be a complex Hermitian

vector bundle on Z, equipped with a unitary connection ∇E .
Let c(TZ) be the bundle of Clifford algebras of (TZ, gTZ). Then STZ ⊗E is

a Clifford module for the Clifford algebra c(TZ). If X ∈ TZ, let c(X) denote the
action of X ∈ c(TZ) on STZ ⊗ E. Put

H = C∞(Z, STZ ⊗ E), H± = C∞(Z, STZ
± ⊗ E).(1.1)

Let e1, · · · , en be an orthonormal basis of TZ.
Let DZ be the Dirac operator acting on H,

DZ =

n∑

1

c(ei)∇STZ⊗E
ei .(1.2)

Let DZ
± be the restriction of DZ to H±, so that

DZ =

[
0 DZ

−
DZ

+ 0

]
.(1.3)

The elliptic operator DZ
+ is Fredholm. Its index Ind(DZ

+) ∈ Z is given by

Ind(DZ
+) = dim(kerDZ

+)− dim(kerDZ
−).(1.4)

Let Â be the multiplicative genus associated to the power series

Â(x) =
x/2

sinh(x/2)
.(1.5)
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Local Index Theory and Higher Analytic Torsion 147

The Atiyah-Singer index theorem [3] asserts that

Ind(DZ
+) =

∫

Z

Â(TZ)ch(E).(1.6)

If F = F+ ⊕ F− is a Z2-graded vector space, let τ = ±1 on F± define the
grading. If A ∈ End(F ), let Trs[A] be the supertrace of A, i.e. Trs[A] = Tr[τA].
Now we state the McKean-Singer formula [42].

Proposition 1.1. For any t > 0,

Ind(DZ
+) = Trs[exp(−tDZ,2)].(1.7)

Let Pt(x, y) be the smooth kernel of exp(−tDZ,2) with respect to the volume
element dy, so that (1.7) can be written as

Ind(DZ
+) =

∫

Z

Trs[Pt(x, x)]dx.(1.8)

In Patodi [46], Gilkey [32], Atiyah-Bott-Patodi [1], it was proved that, as con-
jectured in [42], “fantastic cancellations” occur in the asymptotic expansion of
Trs[Pt(x, x)] , so that as t → 0,

Trs[Pt(x, x)] → {Â(TZ,∇TZ)ch(E,∇E)}max.(1.9)

Another proof of (1.9) by Getzler [31] has considerably improved our geometric
understanding of the above cancellations. Equation (1.9) is known as a local index
theorem. From (1.8), (1.9), one recovers the index formula (1.6).

1.2. Quillen’s superconnections. Here we follow Quillen [48]. Let E = E+⊕
E− be a Z2-graded vector bundle on a manifold S.

Definition 1.2. A superconnection is an odd first order differential operator A
acting on C∞(S,Λ(T ∗S)⊗̂E) such that if ω ∈ C∞(S,Λ(T ∗S)), s ∈ C∞(S,E),

A(ωs) = dωs+ (−1)degωωAs.(1.10)

By definition, the curvature of A is A2 ∈ C∞(S, (Λ(T ∗S)⊗̂End(E))even). Let
ϕ : ω ∈ Λ(T ∗S) → ϕω = (2iπ)− degω/2ω ∈ Λ(T ∗S).

Definition 1.3. Let ch(E,A) be the even form on S,

ch(E,A) = ϕTrs[exp(−A2)].(1.11)

Theorem 1.4. The even form ch(E,A) is closed, and its cohomology class

[ch(E,A)] is given by

[ch(E,A)] = ch(E+)− ch(E−).(1.12)

Remark 1.5. Observe the striking algebraic similarity of the right-hand sides of
(1.7) and (1.11) with the density exp(−x2) of the gaussian distribution on R.
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1.3. Local families index theorem and adiabatic limits. Let π : X → S
be a submersion of smooth manifolds with even dimensional compact fibre Z. We
assume that TZ is oriented and spin. Let gTZ be a Riemannian metric on TZ.
Let (E, gE ,∇E) be a Hermitian vector bundle on X with unitary connection. Let
(DZ

s )s∈S be the family of Dirac operators acting fibrewise along the fibres Z on
Hs = H+s ⊕H−s. Then to the family of Fredholm operators (DZ

+,s)s∈S , there is

an associated virtual vector bundle Ind(DZ
+) ∈ K(S). The families index theorem

of Atiyah-Singer [4] asserts in particular that

ch(Ind(DZ
+)) = π∗[Â(TZ)ch(E)] inHeven(S,Q).(1.13)

Assume temporarily that X and S are even dimensional oriented compact
spin manifolds. Let gTX , gTS be Riemannian metrics on TX, TS. For ε > 0, put

gTX
ε = gTX +

1

ε
π∗gTS .(1.14)

Letting ǫ tend to 0 is often described as taking an adiabatic limit. Let DX
ǫ be the

Dirac operator associated to (gTX
ǫ ,∇E).

Let ∇TX
ε and ∇TS be the Levi-Civita connections on (TX, gTX

ǫ ) and
(TS, gTS). Let THX be the orthogonal bundle to TZ in TX with respect to
gTX . If U ∈ TS, let UH ∈ THX be the lift of U in THX. Let PTZ be the
projection TX = THX ⊕ TZ → TZ. Let ∇TZ be the connection on (TZ, gTZ),

∇TZ = PTZ∇TX
ε ,(1.15)

which does not depend on ε > 0. A trivial calculation shows that as ε → 0,

Â(TX,∇TX
ε ) → π∗[Â(TS,∇TS)]Â(TZ,∇TZ).(1.16)

Let P ε
t (x, y) be the smooth kernel of exp(−tDX,2

ε ). Then by (1.9),

Trs[P
ε
t (x, x)] → {Â(TX,∇TX

ε )ch(E,∇)}max.(1.17)

We change our notation slightly, and temporarily assume that gTX
ǫ is given

by gTX
ǫ = π∗ gTS

ǫ ⊕ gTZ . If U, V ∈ TS, put

T (U, V ) = −PTZ [UH , V H ].(1.18)

If U ∈ TS, let divZ(U
H) be the divergence of UH with respect to the vertical vol-

ume form dvZ . Let (e1, . . . , en) and (f1, . . . , fm) be orthogonal bases of (TZ, gTZ)
and (TS, gTS). If STX

ǫ is the vector bundle of (TX, gTX
ǫ ) spinors,

STX
ε = π∗STS⊗̂STZ .(1.19)

Put

DH =
m∑

1

c(fα)(∇π∗STS⊗̂STZ⊗E
fα +

1

2
divZ(f

H
α )).(1.20)

Then by [15],

DX,ε =
√
εDH +DZ − ε

8
c(fα)c(fβ)c(T (fα, fβ)).(1.21)
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Local Index Theory and Higher Analytic Torsion 149

Put

H = C∞(Z, (STZ ⊗ E)|Z).(1.22)

Then H = H+⊕H− is an infinite dimensional Z2-graded vector bundle on S, and
C∞(M,π∗STS ⊗ E) = C∞(S, STS⊗̂H).

Definition 1.6. Let ∇H be the connection on H, such if U ∈ TS, s ∈ C∞(S,H),

∇H
U s = ∇STZ⊗E

UH s+
1

2
divZ(U

H)s(1.23)

Then DH is the Dirac operator action on C∞(S, STS⊗̂H) associated to
(gTS ,∇H). Following [9], we formally replace c(fα) by fα ∧ . in (1.21).

Definition 1.7. For t > 0, put

At = ∇H +
√
tDZ − 1

8
√
t
fαfβc(T (fα, fβ)).(1.24)

Then At is a superconnection on H, the Levi-Civita superconnection associ-
ated to (THX, gTZ ,∇E).

For t > 0, let αt be the even form on S

αt = ϕTrs[exp(−A2
t )].(1.25)

Now we state the local families index theorem [9], [6], [5].

Theorem 1.8. The form αt is real, even and closed. Moreover

[αt] = ch(IndDZ
+) ∈ Heven(B,Q).(1.26)

As t → 0,

αt = π∗[Â(TZ,∇TZ)ch(E,∇E)] +O(t).(1.27)

If kerDZ ⊂ H is a vector bundle, and ∇kerDZ

is the orthogonal projection of ∇H

on kerDZ , as t → +∞,

αt = ch(kerDZ ,∇kerDZ

) +O(
1√
t
).(1.28)

Remark 1.9. Equations (1.26) and (1.27) were proved by the author in [9], and
equation (1.28) by Berline-Vergne [6], Berline-Getzler-Vergne [5]. Equation (1.27)
is known as the local families index theorem. It extends the local index formula
given in (1.9).

2. Complex geometry and higher analytic torsion forms

2.1. The analytic torsion forms of a holomorphic complex. Here we
follow [17]. Let S be a complex manifold, and let

(E, v) : 0 → Em
v→ Em−1 . . .

v→ E0 → 0(2.1)

be a holomorphic complex of vector bundles on S. Put

E+ =
⊕

i even

Ei, E− =
⊕

i odd

Ei.(2.2)
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Then E = E+ ⊕ E− is Z2-graded. Let gE =
⊕m

i=0 g
Ei be a Hermitian metric on

E =
⊕m

i=0 Ei. Let ∇E =
⊕m

i=0 ∇Ei be the corresponding holomorphic Hermitian
connection. Let v∗ be the adjoint of v. Set

V = v + v∗.(2.3)

For t > 0, set

C
′′

t = ∇E′′

+
√
tv, C

′

t = ∇E′

+
√
tv∗,(2.4)

Ct = C ′′
t + C ′

t.

Let N be the number operator of E, which acts on Ek by multiplication by k.

Proposition 2.1. The following identities hold

C ′′2
t = 0, C ′2

t = 0,(2.5)
∂C′′

t

∂t = 1
2t [C

′′
t , N ], ∂C′

∂t = − 1
2t [C

′
t, N ].

Definition 2.2. Let PS be the set of smooth real forms on S, which are sums
of forms of type (p, p). Let PS,0 be the set of α ∈ PS which can be written as
α = ∂β + ∂γ, with β and γ smooth.

Definition 2.3. For t > 0, put

αt = ϕTrs[exp(−C2
t )], γt = ϕTrs[N exp(−C2

t )].(2.6)

The following result is obtained in [17] as an easy consequence of Proposition
2.1.

Proposition 2.4. The forms αt and γt lie in PS. Also

∂αt

∂t
=

∂∂

2iπ

γt
t
.(2.7)

Assume now that H(E, v) is of locally constant dimension. Then H(E, v)
is a holomorphic Z-graded vector bundle. By finite dimensional Hodge theory,
H(E, v) ≃ kerV inherits a Hermitian metric gH(E,v). Set

ch′(E, gE) =

m∑

i=0

(−1)ii ch(E, gE).(2.8)

By [6], [5], as t → +∞,

αt = ch(H(E, v), gH(E,v))) +O( 1√
t
),(2.9)

γt = ch′(H(E, v), gH(E,v)) +O( 1√
t
).

Definition 2.5. For s ∈ C, 0 < Re(s) < 1/2, set

R(E, g)E)(s) =
1

Γ(s)

∫ +∞

0

ts−1(γt − γ∞)dt,(2.10)

T (E, gE) =
∂

∂s
R(E, gE)(0).

As the notation suggests, by (2.9), R(E, gE)(s) extends to a holomorphic
function of s near s = 0, so that T (E, gE) is well defined.
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Proposition 2.6. The form T (E, gE) lies in PS,0, and

∂∂

2iπ
T (E, gE) = ch(H(E, v), gH(E,v))− ch(E, gE).(2.11)

2.2. Bott-Chern classes. Let E be a holomorphic vector bundle on a complex

manifold S. Let gE , g′E be two Hermitian metrics on E. Then by Bott and Chern

[25], and by [17], there is a uniquely defined class c̃h(E, gE , g′E) ∈ PS/PS,0 such
that

• If gE = g′E , c̃h(E, gE , g′E) = 0.

• The class c̃h(E, gE , g′E) is functorial.
• The following equation holds

∂∂

2iπ
c̃h(E, gE , g′

E
) = ch(E, g′

E
)− ch(E, gE).(2.12)

The above classes are called Bott-Chern classes. The same construction applies to

classes like T̃d(E, gE , g′E). The class of forms T (E, gE) ∈ PS/PS,0 constructed
in Definition 2.5 is also a Bott-Chern class.

2.3. The higher analytic torsion forms associated to a holomorphic

submersion. Following work by Gillet, Soulé and the author [17], we will extend
the arguments of Section 2.1 to an infinite dimensional situation.

Let π : X → S be a holomorphic submersion with compact fibre Z. Let E
be a holomorphic vector bundle on X, and let Rπ∗E be the direct image of E.
In the sequel TX, TZ = TX/S . . . denote the corresponding holomorphic tangent
bundles. Let ωX be a real closed (1, 1) form on X which restricts to a fibrewise
Kähler form on TZ = TX/S, so that if JTRZ is the complex structure of TRZ,
ω(JTRZ ., .) is a Hermitian product gTZ on TZ . Let gE be a Hermitian metric
on E. Let THX be the orthogonal bundle to TZ in TX with respect to ωX . Let

(Ω(Z,E|Z), ∂
Z
) be the family of relative Dolbeault complexes along the fibres Z.

Then Ω(Z,E|Z) can be equipped with the L2 metric

< s, s′ >=

∫

Z

< s, s′ >Λ(T∗(0,1)Z)⊗E

dvZ
(2π)dimZ

.(2.13)

Let ∂
Z∗

be the adjoint of ∂
Z
. Put

DZ = ∂
Z
+ ∂

Z∗
.(2.14)

Definition 2.7. Let ∇Ω(Z,E|Z) be the connection on Ω(Z,E|Z), such that if U ∈
TRS, if s is a smooth section of Λ(T ∗(0,1)Z)⊗ E,

∇Ω(Z,E|Z)

U s = ∇Λ(T∗(0,1)Z)⊗E

UH s.(2.15)

Let T be the tensor defined in (1.18) associated to (gTZ , THX). Then T is
of type (1, 1). Let N be the number operator of Ω(Z,E|Z). Let ωX,H be the

restriction of ωX to TH
R X. Then ωX,H is a smooth section of π∗Λ(1,1)(T ∗

RS).

Finally recall that Λ(T ∗(0,1)S)⊗E is a Clifford module for the Clifford algebra of
(TRZ, gTRZ).
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Definition 2.8. For t > 0, put

B
′′

t =
√
t∂

Z
+∇Ω(Z,E|Z)” − c(T (1,0))

2
√
2t

,(2.16)

B
′

t =
√
t∂

Z∗
+∇Ω(Z,E|Z)′ − c(T (0,1))

2
√

2t)
,

Bt = B
′′

t +B
′

t, Nt = N + i
ωX,H

t
.

Then one can show that, in (2.16), the superconnection Bt is a form of the
Levi-Civita superconnection At/2 considered in (1.24). Also, by [17], an obvious
analogue of Proposition 2.1 holds, with C ′′

t , C
′
t replaced by B′′

t , B
′
t, and N replaced

by Nt.

Definition 2.9. For t > 0, set

αt = ϕTrs[exp(−B2
t )], γt = ϕTrs[Nt exp(−B2

t )].(2.17)

Theorem 2.10. For t > 0, the form αt and γt lie in PS, the form αt is closed

and

[αt] = ch(Rπ∗E) inHeven(S,Q),(2.18)

∂αt

∂t
= − ∂∂

2iπ

γt
t
.

Furthermore, as t → 0, there are forms C−1, C0 ∈ PS such that

αt = π∗[Td(TZ, g
TZ)ch(E, gE)] +O(t),(2.19)

γt =
C−1

t
+ C0 +O(t).

Observe that the first equation in (2.19) is a consequence of the local families
index theorem of [9] stated in (1.27)

Assume that Rπ∗E is locally free. Then the holomorphic vector bundle
Rπ∗E ≃ kerDZ inherits a metric gRπ∗E . By [5], as t → +∞,

αt = ch(Rπ∗E, gRπ∗E) +O(
1√
t
),(2.20)

γt = ch′(Rπ∗E, gRπ∗E) +O(
1√
t
).

Definition 2.11. For s ∈ C, 0 < Re(s) < 1/2, put

R(ωX , gE)(s) = − 1

Γ(s)

∫ +∞

0

ts−1(γt − γ∞)dt,(2.21)

T (ωX , gE) =
∂

∂s
R(ωX , gE)(0).

In fact, by equations (2.19), (2.20), R(ωX , gE)(s) extends to a holomorphic
function of s near s = 0, so that T (ωX , gE) is well-defined. The forms T (ωX , gE)
are called higher analytic torsion forms. The following result was established in
work by Gillet-Soulé and the author [17], and Köhler and the author [20].
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Theorem 2.12. The form T (ωX , gE) lies in PS. Moreover

∂∂

2iπ
T (ωX , gE) = ch(Rπ∗E, gRπ∗E)− π∗[Td(TZ, g

TZ)ch(E, gE)].(2.22)

Remark 2.13. Clearly (2.22) refines (0.2) at the level of differential forms. Köhler
and the author [20] showed that T (ωX , gE) ∈ PS/PS,0 depends on ωX , gE

via Bott-Chern classes. This result was proved before in degree 0 in [17]. A
consequence of [20] is that T (ωX , gE) ∈ PS/PS,0 depends on ωX only via

gTZ . Let P kerDZ

be the orthogonal projection of Ω(Z,E|Z) on kerDZ . Set

P kerDZ ,⊥ = 1− P kerDZ

. For s ∈ C,Re(s) >> 0, put

θ(s) = −Trs[N(DZ,2)−sP kerDZ ,⊥](2.23)

Then

T (ωX , gE)(0) =
∂θ

∂s
(0).(2.24)

Also exp(− 1
2
∂θ
∂s (0)) is called the Ray-Singer analytic torsion [51] of the complex

Ω(Z,E|Z). The Ray-Singer torsion is an alternate product of generalized determi-
nants of Laplacians.

By [17], the odd form η̃ = 1
4iπ (∂ − ∂)T (ωX , gE) coincides with the form

constructed by Cheeger and the author in [15].

2.4. Quillen metrics. Assume temporarily that S is a point. Put

λ = (detH .(Z,E|Z))
−1.(2.25)

Then λ is a complex line, the inverse of the determinant of the cohomology of
E. Let | |λ be the metric on λ induced by the fibrewise L2 metric on gH(Z,E|Z),
which we obtain by identifying H(Z,E|Z) to the corresponding harmonic forms.

Definition 2.14. The Quillen metric ‖ ‖λ on λ is defined by

‖ ‖λ = | |λ exp(−
1

2

∂θ

∂s
(0)).(2.26)

In the general case where S is not a point, we still assume the existence of a
form ωX taken as in Section 2.3. Let gTZ be an arbitrary fibrewise Kähler metric
on TZ. Let gE be a Hermitian metric on E. We no longer assume Rπ∗E to be
locally free. Put

λ(E) = (detRπ∗E)−1.(2.27)

Then by Knudsen-Mumford [40], λ(E) is a holomorphic line bundle on S, and for
any s ∈ S, there is a canonical isomorphism.

λ(E)s ≃ (det(H(Zs, E|Zs
)))−1.(2.28)

By Definition 2.14, the fibres λ(E)s are equipped with the Quillen metric
‖ ‖λ(E)s . The following result was established by Quillen [49] in the case where
the fibres Z are a fixed Riemann surface, and by Gillet, Soulé and the author
[17], following earlier work by Freed and the author [16] on smooth determinant
bundles.
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Theorem 2.15. The Quillen metric is smooth on λ(E). Moreover

c1(λ(E), ‖ ‖λ(E)) = −π∗[Td(TZ, g
TZ)ch(E, gE)](2).(2.29)

Remark 2.16. Theorem 2.15 is a consequence of (2.22), and also of anomaly formu-
las [17], describing the variation of Quillen metrics when gTZ , gE themselves vary.
These anomaly formulas extend the Polyakov anomaly formulas for generalized
determinants on Riemann surfaces [47].

2.5. Functoriality of the analytic torsion forms with respect to

composition of submersions. Let

Z //

πZ/Y

��

W

πW/V

��

πW/S

  ❆
❆

❆

❆

❆

❆

❆

❆

Y // V πV/S

// S

(2.30)

be a diagram of submersions πW/S , πV/S , πW/V , with compact fibres Z, Y,X.

Let ωW , ωV be closed (1,1) forms on W,V as in Section 2.3 . Let (E, gE) be
a holomorphic Hermitian vector bundle on W , such that RπW/S∗E,RπW/V ∗E,

RπW/S∗RπW/V ∗E are locally free. Let TW/V (ω
W , gE), TW/S(ω

W , gE), TV/S(ω
V ,

gRπW/V ∗E) be the analytic torsion forms which are associated to the maps in the
above diagram. Then in work by Berthomieu and the author [8] and by Ma [41], us-
ing the adiabatic limit techniques of Cheeger and the author [15], Mazzeo-Melrose
[44] and Dai [29], these forms were shown to be naturally compatible, i.e. they
verify a relation which refines the functoriality of Riemann-Roch with respect to

the composition of submersions. Namely, let T̃d(TZ, TY, gTZ , gTY ) ∈ PW /PW,0

be the Bott-Chern class such that

∂∂

2iπ
T̃d(TZ, TY, gTZ , gTY ) = Td(TZ, gTZ)− π∗

W/V

[
Td(TY, gTY )

]
Td(TX, gTX).

(2.31)

Under suitable assumptions, Ma [41] has constructed a Bott-Chern class α ∈
PS/PS,0 such that

∂∂
2iπα = ch(RπV/S∗RπW/V ∗E, gRπV/S∗RπW/V ∗E)(2.32)

−ch(RπW/S∗E, gRπW/S∗E),

for which the following result holds.

Theorem 2.17. The following identity holds

TW/S(ω
W , gE) = TV/S(ω

V , gRπW/V ∗E) + πW/S∗[Td(TY, g
TY )TW/V (ω

W , gE)]

+α− πW/S∗[T̃d(TZ, TY, g
TZ , gTY )ch(E, gE)] in PS/PS,0.(2.33)

Remark 2.18. The case where S is a point was considered in [8].
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3. The analytic torsion currents associated to an embedding

3.1. Construction of the analytic torsion currents. Let i : Y → X be
an embedding of complex manifolds. Let NY/X be the normal bundle to Y in X.
Let F be a holomorphic vector bundle on Y . Let

(E, v) : 0 → Em
v→ Em−1 . . .

v→ E0 → 0(3.1)

be a holomorphic complex of vector bundles on X, which, together with a holomor-
phic restriction map: r : E0|Y → F , provides a resolution of the sheaf i∗OY (F ).
In particular (E, v) is acyclic on X \Y. By [10], H(E, v)|Y is a holomorphic vector
bundle on Y . Move precisely, if U ∈ TX|Y , let ∂Uv be the derivative of v in
any holomorphic trivialization of (E, v) near Y . Then by ∂Uv only depends on
the image z ∈ NY/X of U , and (∂zv)

2 = 0. Let π : NY/X → Y be the canonical
projection. Then there is a canonical isomorphism

(π∗H((E, v)|Y ), ∂zv) ≃ (π∗(Λ(NY/X)⊗ F ),
√
−1iz).(3.2)

Let gE = ⊕m
i=0g

Ei , gNY/X , gF be Hermitian metrics on E = ⊕m
i=0Ei, NY/X , F . As

in (2.3), put V = v + v∗. Then H(E, v)|Y ≃ kerV|Y ⊂ E|Y . Let gH(E,v) be the
corresponding metric on H(E, v).

We will say that gE verifies assumption (A) with respect to gNY/X , gF if (3.2)
is an isometry. By [10], given gNY/X , gF , there exists gE = ⊕m

i=0g
Ei such that

assumption (A) is verified. From now on, we assume that (A) holds. For t > 0,
we define αt, γt ∈ PX as in (2.6). Let δY be the current of integration on Y . The
following result was proved in [10], using formulas of Mathai and Quillen [43].

Theorem 3.1. As t → +∞,

αt = Td−1(NY/X , gNY/X )ch(F, gF )δY +O(
1√
t
),(3.3)

where O( 1√
t
) is taken in the suitable Sobolev space.

Remark 3.2. Using (1.12), we find that (3.3) refines the theorem of Riemann-Roch-
Grothendieck [7] stated in (0.2) at the level of currents.

By (3.3), one can construct a current T (E, gE) on X as in (2.10). Let PX
Y be

the set of real currents which are sum of currents of type (p, p), whose front set

is included in N∗
Y/X,R. We define PX,0

Y as in Definition 2.2. The following result

was proved in [18].

Theorem 3.3. The current T (E, gE) lies in PX
Y . Moreover

∂∂

2iπ
T (E, gE) = Td−1(NY/X , gNY/X )ch(F, gF )δY − ch(E, gE).(3.4)

Remark 3.4. Harvey and Lawson [38] have also constructed currents related to
smooth versions of Riemann-Roch-Grothendieck for embeddings.
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3.2. Functoriality of the analytic torsion currents with respect to

the composition of embeddings. Let i′:Y ′ → X,F ′, (E′, v′) be another set of
data similar to the above data. Assume that Y and Y ′ intersect transversally. Put
Y ′′ = Y ∩ Y ′. Then (E⊗̂E′, v⊗̂1 + 1⊗̂v′) is a resolution of (F|Y ′′⊗̂F ′

|Y ′′).

Let (gE , gNY/X , gF ) and (gE
′

, gNY ′/X , gF
′

) be metrics verifying (A). Recall

that NY ′′/X = NY/X|Y ′′ ⊕NY ′/X|Y ′′ . Then (gE⊗̂gE
′

, g
NY/X

|Y ′′ ⊕g
NY ′/X

|Y ′′ , (gFY ′′⊗̂gF
′

Y ′′))

also verify (A). Let PX
Y ∪Y ′ , P

X,0
Y ∪Y ′ be the obvious analogues of PX

Y , PX,0
Y , when

replacing Y by Y ∪ Y ′. The following result was proved by Gillet, Soulé and the
author in [19].

Theorem 3.5. The following identity holds

T (E⊗̂E′, gE⊗̂E′

) = T (E, gE)ch(E′, gE
′

) +(3.5)

Td−1(NY/X , gNY/X )ch(F, gF )T (E′, gE
′

)δY

inPX
Y ∪Y ′/P

X,0
Y ∪Y ′ .

Remark 3.6. In [19], Theorem 3.5 is used to evaluate the currents T (E, gE) in
terms of the arithmetic characteristic classes of Gillet and Soulé [33], [34].

4. Analytic torsion forms and analytic torsion currents

4.1. Composition of an embedding and a submersion. Let i : W → V be an
embedding of complex manifolds, and let S be a complex manifold. Let πW/S , πV/S

be holomorphic submersions of W,V onto S, with compact fibres X,Y , so that
πV/Si = πW/S . Then we have the diagram

Y //

i

��

W

i

��

πW/S

  ❆
❆

❆

❆

❆

❆

❆

❆

X // V πV/S

// S

(4.1)

Let F be a holomorphic vector bundle on W . Let (E, v) be a complex of holo-
morphic vector bundles on V as in (3.1), which together with a restriction map
r : E0|V → F , provides a resolution of i∗F . In the sequel we assume that
RπW/S∗F is locally free. Let RπV/S∗E be the direct image of E. Tautologically,

RπV/S∗E ≃ RπW/S∗F . Let ωV , ωW be (1,1) closed forms on V,W which restrict

to Kähler forms on the fibres X,Y . Note that NW/V ≃ NY/X . Let gNY/X , gF

be Hermitian metrics on NY/X , F . Let gE = ⊕m
i=0g

Ei be a Hermitian metric on

E = ⊕m
i=0Ei, which verifies (A) with respect to gNY/X , gF .

4.2. Functoriality of the analytic torsion objects with respect to

the composition of an embedding and a submersion. Let ζ(s) =

+∞∑

n=1

1

ns
be

the Riemann zeta function. Now we introduce the power series R of Gillet-Soulé
[35].
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Definition 4.1. Let R be the formal power series

R(x) =
∑

n≥1
n odd


2

ζ ′(−n)

ζ(−n)
+

n∑

j=1

1

j


 ζ(−n)

xn

n!
.(4.2)

We identify R(x) with the corresponding additive genus. The power series
R was obtained by Gillet-Soulé and Zagier by an explicit computation of the

analytic torsion of Pn, as a correction to the Todd genus T̂d of Gillet-Soulé’s
theory, which would fit into a conjectural form of Riemann-Roch-Grothendieck in
Arakelov geometry.

Let T̃d(TX|Y , g
TY , gTX

|Y , gNY/X ) ∈ PW /PW,0 be the Bott-Chern class such

that

∂∂

2iπ
T̃d(TX|Y , g

TY , gTX|Y , gNY/X ) = Td(TX|Y , g
TX|Y )(4.3)

−Td(TY, gTY )Td(NY/X , gNY/X ).

Let T (ωV , gE) ∈ PS be the analytic torsion forms associated to the family of

double complexes (Ω(X,E|X), (∂
X

+ v)). Observe that RπV/S∗E ≃ RπW/S∗F is

now equipped with twoL2 metrics gRπV/S∗E and gRπW/S∗F . The following result
was proved by Lebeau and the author [21] in the case where S is a point, and
extended by the author in [13] to the general case.

Theorem 4.2. The following identity holds

c̃h(RπW/S∗F, g
RπW/S∗E , gRπV/S∗F )− T (ωW , gF ) + T (ωV , gE)(4.4)

−πV/S∗[Td(TX, gTX)T (E, gE)] + πW/S∗

[
T̃d(TX|W ,gTY ,g

TX|W ,g
NY/X )

Td(NY/X ,g
NY/X )

ch(F, gF )

]

−πV/S∗ [Td(TX)R(TX)ch(E)] + πW/S∗[Td(TY )R(TY )ch(F )] = 0 inPS/PS,0.

Remark 4.3. The main result of [21] is formulated as a formula of comparison of
Quillen metrics on the determinant lines λ(E) ≃ λ(F ). An important idea in
[21],[13] is to replace v by Tv, with T > 0, and to study the behaviour of the
corresponding analytic torsion forms as T → +∞. Then one has to describe the
behaviour of the associated harmonic forms, and also the full spectrum of the
corresponding Laplacians In [21], [13], the appearance of the additive genus R
is related to the evaluation in [11] of a characteristic class, the higher analytic
torsion forms associated to a short exact sequence of holomorphic vector bundles.
The evaluation of this class involves computations on a harmonic oscillator. The
coincidence of this class of forms with the genus evaluated by Gillet and Soulé [35]
remained unexplained until Bost [24] and Roessler [53] showed that the evaluation
of the analytic torsion of Pn given in [35] can be obtained as a consequence of [21].
Of course, Theorems 2.17, 3.5 and 4.2 are compatible. In [12], the main result of
[21] was interpreted as an excess intersection formula for Bott-Chern currents in
infinite dimensions.
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4.3. The Riemann-Roch theorem of Gillet and Soulé. Let X be an arith-
metic variety, i.e. a regular flat scheme over Spec(Z). In [33], [34], Gillet-

Soulé constructed an arithmetic Chow group ĈH(X). By definition, ĈH(X) =

Ẑ(X)/R̂(X), where Ẑ(X) is the group of arithmetic cycles (Z, gZ) , with Z an
algebraic cycle, and gZ is a Green current on XC, i.e. it is a sum of real currents

of type (p, p), smooth on XC\ZC, such that ∂∂
2iπ gZ + δZ = ωZ is a smooth form

on X, and R̂(X) is an equivalence relation which refines linear equivalence.
Let (E, gE) be an arithmetic vector bundle on X. Namely E is an algebraic

vector bundle on X, gE is a Hermitian metric on XC. Then Gillet and Soulé con-

structed arithmetic characteristic classes of (E, gE) with values in ĈH(X)Q. More

precisely they constructed a Grothendieck group K̂0(X) with contains equivalence
classes of vector bundles (E, gE), and also classes of forms of the type PX/PX,0,

and a Chern character map ĉh : K̂0(X) → ĈH(X)Q.
Let now π : X → S be a projective flat morphism of arithmetic varieties.

Suppose that π : XQ → YQ is smooth. Let ωX be a smooth real (1, 1) form on

XQ as in Section 2.3. Let (E, gE) ∈ K̂0(X) be such that Riπ∗E = 0 for i > 0. In

[35], Gillet and Soulé defined π!(E, gE) ∈ K̂0(S) by the formula

π!(E, gE) = (Rπ∗E, gRπ∗E)− T (ωX , gE).(4.5)

This definition is then extended to arbitrary (E, gE)) ∈ K̂0(X). Put

TdA(TX/S, gTX/S) = T̂d(TX/S, gTX/S)(1−R(TX/S)).(4.6)

The following result was conjectured by Gillet and Soulé in [35] and proved in [36],
[37], using Theorem 4.2.

Theorem 4.4. The following identity holds

ĉh(π!(E, gE)) = π∗[Td
A(TX/S, gTX/S)ĉh(E, gE)] in ĈH(S)Q.(4.7)

Remark 4.5. Assume that S = Spec(Z). Then (4.7) is an equality in R. It ex-
presses the Arakelov degree of det(Rπ∗E) in terms of arithmetic characteristic
classes.

In [30], Faltings has indicated an alternative strategy to the proof of the Gillet-
Soulé theorem, based on the technique of deformation to the normal cone. Then
one has to study the behaviour of the analytic torsion forms, as smooth fibres are
deformed to the union of two smooth fibres intersecting transversally.

5. Higher analytic torsion and flat vector bundles

Let X be a smooth manifold, and let F be a complex flat vector bundle
on X. Then by [28], the bundle F has Chern classes c(F ) ∈ Hodd(X,C/Z).
For Re(c)(F ) ∈ H(X,R), there is a corresponding Chern-Weil theory. In fact
let ∇F be the flat connection on F . Let gF be a Hermitian metric on F . Put
θ = (gF )−1∇F gF . Then for k odd, Re(ck)(F, g

F ) = (2iπ)−(k−1)/22−kTr[θk] is a
closed form which represents Re(ck)(F ) ∈ Hk(X,R).

Let π : X → S be a submersion of smooth manifolds, with compact fibre Z.
Then Rπ∗F is a Z-graded flat vector bundle on S. Let e(TZ) ∈ H(X,Q) be the
Euler class of TZ.
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Now we state a result by Lott and the author [22], which was proved using
flat superconnections.

Theorem 5.1. For any k ∈ N, k odd,

Re(ck)(Rπ∗F ) = π∗[e(TZ)Re(ck)(F )].(5.1)

Given a metric gF and a Euclidean connection ∇TZ , let gRπ∗F be the L2

Hermitian metric on Rπ∗F which is obtained via fibrewise Hodge theory. In [22],
higher analytic torsion forms T (gF ,∇TZ) are constructed such that

dT (gF ,∇TZ) = π∗[e(TZ,∇TZ)Re(c.)(F, g
F )]− Re(c.)(Rπ∗F, g

Rπ∗F ).(5.2)

In degree 0, T (gF ,∇TZ) is the Ray-Singer analytic torsion of [50]. The Ray-
Singer conjecture, proved by Cheeger [26] and Müller [45] says that for unitarily
flat vector bundles, the Ray-Singer analytic torsion coincides with a geometrically
defined invariant of the manifold, the Reidemeister torsion [52]. In higher degree,
the interpretation of T (gF ,∇TZ) is still mysterious. There is a possible link with
work by Igusa and Klein [39] on Borel regulators. For related results in an algebraic
context, we refer to Bloch and Esnault [23].
Acknowledgements The author is indebted to J.-B. Bost, E. Getzler and C.

Soulé for their comments and suggestions on a preliminary version of this paper.
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[36] Gillet, H. Soulé, C. : An arithmetic Riemann-Roch theorem. Inv. Math., 110,
473-543 (1992).

[37] Gillet, H., Soulé C. : To appear.
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with a singular connection. Astérisque 213. Paris: S.M.F. (1993).

[39] Igusa, K., Klein J.: The Borel regulator map on pictures II: An example from
Morse theory. J. of K-theory, 7, 225-267 (1993)

[40] Knudsen, F.F., Mumford, D. : The projectivity of the moduli space of stable
curves, I: Preliminaries on “det” and “div”. Math Scand. 39, 19-55 (1976).

[41] Ma, X. : Formes de torsion analytique et familles de submersion. C.R.A.S.
324 (Série I), 205-210 (1997).

[42] McKean, H., Singer, I.M. : Curvature and the eigenforms of the Laplacian.
J. Diff. Geom. 1, 43-69 (1967).

[43] Mathai, V., Quillen, D. : Superconnections, Thom classes, and equivariant
differential forms. Topology 25, 85-110 (1986).

[44] Mazzeo, R., Melrose, R. : The adiabatic limit, Hodge cohomology and Leray’s
spectral sequence of a fibration. J. Diff. Geom. 31, 185-213 (1990).

[45] Müller W. : Analytic torsion and R-torsion of Riemannian manifolds. Adv.
in Math. 28, 233-305 (1978).

[46] Patodi, V.K. : Curvature and the eigenforms of the Laplacian. J. Diff. Geom.
5, 233-249 (1971).

[47] Polyakov, A.M.: Quantum geometry of bosonic strings. Phys. Letters B, 103,
207-210 (1981).

[48] Quillen, D. : Superconnections and the Chern character. Topology 24, 89-95
(1985).

[49] Quillen, D. : Determinants of Cauchy-Riemann operators over a Riemannian
surface. Funct. Anal. Appl. 19, 31-34 (1985).

[50] Ray, D.B., Singer, I.M. : R-torsion and the Laplacian on Riemannian mani-
folds. Adv. in Math. 7, 145-210 (1971).

Documenta Mathematica · Extra Volume ICM 1998 · I · 143–162



162 Jean-Michel Bismut

[51] Ray, D.B., Singer, I.M. : Analytic torsion for complex manifolds. Ann. of
Math. 98, 154-177 (1973).

[52] Reidemeister K. : Homotopieringe und Linsenräume. Hamburger Abhandl.
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