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Some Analogies Between Number Theory

and Dynamial Systems

on Foliated Spaes

Christopher Deninger1

Abstract. In this article we describe what a cohomology theory related
to zeta and L-functions for algebraic schemes over the integers should look
like. We then point out some striking analogies with the leafwise reduced
cohomology of certain foliated dynamical systems.
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1 Introduction

For the arithmetic study of varieties over finite fields powerful cohomological meth-
ods are available which in particular shed much light on the nature of the corre-
sponding zeta functions. These investigations culminated in Deligne’s proof of
an analogue of the Riemann conjecture for such zeta functions. This had been
the hardest part of the Weil conjectures. For algebraic schemes over SpecZ and
in particular for the Riemann zeta function no cohomology theory has yet been
developed that could serve similar purposes. For a long time it had even been a
mystery how such a theory could look like even formally. In this article following
[D1–D4] we first describe the shape that a cohomological formalism for algebraic
schemes over the integers should take. We then discuss how it would relate to
the many conjectures on arithmetic zeta- and L-functions and indicate a couple
of consequences of the formalism that can be proved using standard methods.
As it turns out there is a large class of dynamical systems on foliated manifolds
whose reduced leafwise cohomology has many of the expected structural proper-
ties of the desired cohomology for algebraic schemes. Comparing the arithmetic
and dynamical pictures leads to some insight into the basic geometric structures

1Supported by TMR “Arithmetic Algebraic Geometry”
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164 Deninger

that dynamical systems relevant for L-functions of varieties over number fields
should have. There is also a very interesting recent approach by Connes [C] to
the Riemann conjecture for Hecke L-series which bears some formal similarities
to the preceding considerations. It seems to be closer in spirit to the theory of
automorphic L-functions though.

I would like to thank the Newton Institute in Cambridge for its hospitality
during the preparation of part of this article.

2 Geometric zeta- and L-functions

Consider the Riemann zeta function

ζ(s) =
∏

p

(1− p−s)−1 =

∞∑

n=1

n−s for Re s > 1 .

It has a holomorphic continuation to C \ {1} with a simple pole at s = 1. To its
finite Euler factors

ζp(s) = (1− p−s)−1

we add an Euler factor corresponding to the archimedian place p = ∞ of Q

ζ∞(s) = 2−1/2 π−s/2 Γ(s/2)

and introduce the completed zeta function

ζ̂(s) = ζ(s)ζ∞(s) .

It is holomorphic in C \ {0, 1} with simple poles at s = 0, 1 and satisfies the
functional equation:

ζ̂(1− s) = ζ̂(s) .

Its zeroes are the so called non-trivial zeroes of ζ(s), i.e. those in the critical strip
0 < Re s < 1. The famous Riemann conjecture asserts that they all lie on the line
Re s = 1/2.
Apart from its zeroes, the special values of ζ(s), i.e. the numbers ζ(n) for integers
n ≥ 2, have received a great deal of attention. Recently, as a special case of the
Bloch–Kato conjectures, it has been possible to express them entirely in terms
of cohomological invariants of Q; c.f. [BK], [HW]. Together with the theory of
ζ-functions of curves over finite fields this suggests that the Riemann zeta function
should be cohomological in nature. The rest of this article will be devoted to a
thorough discussion of this hypothesis in a broader context.

A natural generalization of the Riemann zeta function to the context of arith-
metic geometry is the Hasse–Weil zeta function ζX (s) of an algebraic scheme X/Z

ζX (s) =
∏

x∈|X|

(1−N(x)−s)−1 , Re s > dimX
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where |X | is the set of closed points of X and N(x) is the number of elements in
the residue field of x. For X = SpecZ we recover ζ(s), and for X = Spec ok, where
ok is the ring of integers in a number field k, the Dedekind zeta function of k. It
is expected that ζX (s) has a meromorphic continuation to C and, if X is regular,
that

ζ̂X (s) = ζX (s)ζX∞
(s)

has a simple functional equation with respect to the substitution of s by dimX −s.
Here ζX∞

(s) is a certain product of Γ-factors depending on the Hodge structure on
the cohomology of X∞ = X ⊗ R. This is known if X is equicharacteristic, i.e. an
Fp-scheme for some p, by using the Lefschetz trace formula and Poincaré duality
for l-adic cohomology.
The present strategy for approaching ζX (s) was first systematically formulated by
Langlands. He conjectured that every Hasse–Weil zeta function is up to finitely
many Euler factors the product of automorphic L-functions. One could then apply
the theory of these L-functions which is quite well developed in important cases
although by no means in general. For X with generic fibre related to Shimura
varieties this Langlands program has been achieved in very interesting examples.
Another spectacular instance was Wiles’ proof with Taylor of modularity for most
elliptic curves over Q.
The strategy outlined in section 3 of the present article is completely different and
much closer to the cohomological methods in characteristic p.
By the work of Deligne [De], it is known that for proper regular X/Fp the zeroes

(resp. poles) of ζ̂X (s) = ζX (s) have real parts equal to ν/2 for odd (resp. even)
integers 0 ≤ ν ≤ 2 dimX , and one may expect the same for the completed Hasse
Weil zeta function ζ̂X (s) of an arbitrary proper and regular scheme X/Z.
As for the orders of vanishing at the integers, a conjecture of Soulé [So] asserts
that for X/Z regular, quasiprojective connected and of dimension d, we have the
formula

ords=d−nζX (s) =

2n∑

i=0

(−1)i+1 dimGr nγ (K2n−i(X )⊗Q) . (1)

Here the associated graded spaces are taken with respect to the γ-filtration on
algebraic K-theory. Unfortunately it is not even known, except in special cases,
whether the dimensions on the right hand side are finite.

For a (mixed) motiveM over Q – intuitively a “piece” in the total cohomology
of a variety X, such as Hw(X) – analogy with the function field case leads to the
following definition of the L-function:

L(M, s) =
∏

p

Lp(M, s) where Lp(M, s) = detQl
(1− p−sFr∗p |M

Ip
l )−1 .

Here Ml is the l-adic realization of M for any l 6= p and Frp, Ip are the inverse of
a Frobenius automorphism in Gal(Q/Q) and an inertia group at p, respectively.
For example, the l-adic realization of M = Hw(X) is the w-th l-adic cohomology
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of X ⊗ Q. Rationality and independence of l of the characteristic polynomial of
Fr∗p are expected for all p, known in many cases and assumed in the following.

If X is proper and flat over SpecZ with smooth generic fibre X = X ⊗ Q,
then up to finitely many Euler factors we have:

ζX (s) =

2 dimX∏

w=0

L(Hw(X), s)(−1)
w

Adding a suitable product of Γ-factors L∞(M, s) defined in [Se] and [F-PR] III
which depends only on the real Hodge realization MB over R we obtain the com-
pleted L-function of the motive

L̂(M, s) = L(M, s)L∞(M, s) .

In terms of the filtration V on MB introduced in [D3] § 6, we have

L∞(M, s) =
∏

n∈Z

ζ∞(s− n)dn

where dn = dimGr nVMB .

Define L̂S(M, s) by omitting the Euler factors corresponding to a finite set of
places S.
For later purposes we recall the following definition due to Scholl. A motive over
Q is called integral at p if the weight filtration on the l-adic realization for l 6= p
splits as a module under the inertia group at p. For a finite set S of prime numbers
let MZS

be the category of motives over Q which are integral at all p /∈ S.
The following conjectures are a great challenge to arithmetic geometry. Ex-

cept for the fourth they have been confirmed in many cases after first identifying
the L-function of a motive with a product of automorphic L-functions.

Conjectures 2.1 Let M be a (mixed) motive over Q.

1. L(M, s) and hence L̂(M, s) have a meromorphic continuation to C and there is
a functional equation

L̂(M, s) = ε(M, s)L̂(M∗, 1− s)

where ε(M, s) = a ebs for some real a, b.

2. L̂(M, s) = L̂1(M, s)L̂02(M, s)−1

where L̂1(M, s) is entire of genus one and L̂02(M, s) is a polynomial in s whose
zeroes are integers.

3. (Artin) If M is simple and not a Tate motive Q(n), the L-function L(M, s) has
no poles.

4. (Riemann) If M is pure of weight w, e.g. M = Hw(X) for a smooth proper
variety X/Q, then the zeroes of L̂(M, s) lie on the line Re s = w+1

2 .

5. (Deligne, Beilinson, Scholl) For M in MZ

ords=0L(M, s) = dimExt1MZ
(Q(0),M∗(1))− dimHomMZ

(Q(0),M∗(1)) .

Documenta Mathematica · Extra Volume ICM 1998 · I · 163–186



Some Analogies 167

3 The conjectural cohomological formalism

In this section we interpret many of the conjectures about zeta- and L-functions
in terms of an as yet speculative infinite dimensional cohomology theory. We
also describe a number of consequences of this very rigid formalism that can be
proved directly. Among these there is a formula which expresses the Riemann
ζ-function as a zeta-regularized product. After giving the definition of regularized
determinants in a simple algebraic setting we first discuss the formalism in the case
of the Riemann zeta function and then generalize to Hasse–Weil zeta functions and
motivic L-series.

Given a C-vector space H with an endomorphism Θ such that H is the count-
able sum of finite dimensional Θ-invariant subspaces Hα, the spectrum sp (Θ) is
defined as the union of the spectra of Θ on Hα, the eigenvalues being counted with
their algebraic multiplicities. The (zeta-)regularized determinant det∞(Θ |H) of
Θ is defined to be zero if 0 ∈ sp (Θ), and by the formula

det∞(Θ |H) :=
∏

α∈sp (Θ)

α := exp(−ζ ′Θ(0)) (2)

if 0 /∈ sp (Θ). Here

ζΘ(z) =
∑

0 6=α∈sp (Θ)

α−z , where − π < argα ≤ π ,

is the spectral zeta function of Θ. For (2) to make sense we require that ζΘ be
convergent in some right half plane, with meromorphic continuation to Re z > −ε,
for some ε > 0, holomorphic at z = 0. For an endomorphism Θ0 on a real vector
space H0, such that Θ = Θ0 ⊗ id on H = H0 ⊗C satisfies the above requirements,
we set

det∞(Θ0 |H0) = det∞(Θ |H) .

On a finite dimensional vector space H we obtain the ordinary determinant of Θ.
As an example of a regularized determinant, consider an endomorphism Θ whose
spectrum consists of the number 1, 2, 3, . . . with multiplicities one. Then

det∞(Θ |H) =

∞∏

ν=1

ν =
√
2π since ζ ′(0) = − log

√
2π .

The regularized determinant plays a role for example in Arakelov theory and in
string theory. In our context it allows us to write the different Euler factors of
zeta- and L-functions in a uniform way as we will first explain for the Riemann
zeta function.

Let Rp for p 6= ∞ be the R-vector space of real valued finite Fourier series on
R/(log p)Z and set

R∞ = R[exp(−2y)] for p = ∞ .
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These spaces carry a natural R-action σt via (σtf)(y) = f(y+ t) with infinitesimal
generator Θ = d/dy. The eigenvalues of Θ on Cp = Rp ⊗ C are just the poles of
ζp(s).

Proposition 3.1 We have ζp(s) = det∞
(

1
2π (s−Θ) |Rp

)−1
for p ≤ ∞.

This is easily proved by applying a classical formula of Lerch for the derivative
of the Hurwitz zeta function at zero [D3] 2.7.
In a sense SpecZ = SpecZ ∪ ∞ is analogous to a projective curve over a finite
field. The Grothendieck Lefschetz trace formula in characteristic p together with
the proposition, suggest that a formula of the following type might hold:

ζ̂(s) =
2∏

i=0

det∞
(

1
2π (s−Θ) |Hi(“SpecZ”,R)

)(−1)i+1

. (3)

Here Hi(“SpecZ”,R) would be some real cohomology vector space equipped with
a canonical endomorphism Θ associated to some space “SpecZ” corresponding to
SpecZ. As recalled earlier ζ̂(s) has poles only at s = 0, 1 and these are of first

order. Moreover the zeroes of ζ̂(s) are just the non-trivial zeroes of ζ(s). If we
assume that the eigenvalues of Θ on Hi(“SpecZ”,R) are distinct for i = 0, 1, 2 it
follows therefore that

• H0(“SpecZ”,R) = R with trivial action of Θ, i.e. Θ = 0,

• H1(“SpecZ”,R) is infinite dimensional, the spectrum of Θ consisting of the
non-trivial zeroes ρ of ζ(s) with their multiplicities,

• H2(“SpecZ”,R) ∼= R but with Θ = id.

• For i > 2 the cohomologies Hi(“SpecZ”,R) should vanish.

Formula (3) implies that

ξ(s) :=
s

2π

(s− 1)

2π
ζ̂(s) =

∏

ρ

1

2π
(s− ρ) .

This formula turned out to be true [D2], [SchS]. Earlier a related formula had
been observed in [K].
If H is some space with an endomorphism Θ let us write H(α) for H equipped
with the twisted endomorphism ΘH(α) = Θ− α id. With this notation we expect
a canonical “trace”-isomorphism:

tr : H2(“SpecZ”,R)
∼−→ R(−1) .

In our setting the cup product pairing

∪ : Hi(“SpecZ”,R)×H2−i(“SpecZ”,R) −→ H2(“SpecZ”,R) ∼= R(−1)

induces a pairing for every α in C:

∪ : Hi(“SpecZ”, C)Θ∼α ×H2−i(“SpecZ”, C)Θ∼1−α −→ H2(“SpecZ”, C)Θ∼1 ∼= C .
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Here Θ ∼ α denotes the subspace of

Hi(“SpecZ”, C) = Hi(“SpecZ”,R)⊗ C

of elements annihilated by some power of Θ−α. We expect Poincaré duality in the
sense that these pairings should be non-degenerate for all α. This is compatible
with the functional equation of ζ̂(s). For the precise relation see [D3] 7.19.
In the next section we will have more to say on the type of cohomology theory that
might be expected forHi(“SpecZ”,R). But first let us note a nice consequence our
approach would have. Consider the linear flow λt = exp tΘ on Hi(“SpecZ”,R).
It is natural to expect that it is the flow induced on cohomology by a flow φt on
the underlying space “SpecZ”, i.e. λt = (φt)∗. This implies that λt would respect
cup product and that Θ would behave as a derivation. Now assume that as in the
case of compact Riemann surfaces there is a Hodge ∗-operator:

∗ : H1(“SpecZ”,R)
∼−→ H1(“SpecZ”,R) ,

such that

〈f, f ′〉 = tr(f ∪ (∗f ′)) for f, f ′ in H1(“SpecZ”,R) ,

is positive definite, i.e. a scalar product on H1(“SpecZ”,R). It is natural to
assume that (φt)∗ and hence Θ commutes with ∗ on H1(“SpecZ”,R). From the
equality:

f1 ∪ f2 = Θ(f1 ∪ f2) = Θf1 ∪ f2 + f1 ∪Θf2

for f1, f2 in H1(“SpecZ”,R) we would thus obtain the formula

〈f1, f2〉 = 〈Θf1, f2〉+ 〈f1,Θf2〉 ,

and hence that Θ = 1
2 + A where A is a skew-symmetric endomorphism of

H1(“SpecZ”,R). Hence the Riemann conjecture would follow.
The formula Θ = 1

2 + A is also in accordance with numerical investigations on
the fluctuations of the spacings between consecutive non-trivial zeroes of ζ(s). It
was found that their statistics resembles that of the fluctuations in the spacings
of consecutive eigenvalues of random real skew symmetric matrices, as opposed
to the different statistics for random real symmetric matrices; see [Sa] for a full
account of this story. In fact the comparison was made between hermitian and
symmetric matrices, but as pointed out to me by M. Kontsevich, the statistics in
the hermitian and real skew symmetric cases agree.
The completion of H1(“SpecZ”,R) with respect to 〈, 〉, together with the un-
bounded operator Θ would be the space that Hilbert was looking for, and that
Berry [B] suggested to realize in a quantum physical setting.

The following considerations are necessary for comparison with the dynamical
picture.
Formula (3) is closely related to a reformulation of the explicit formulas in analytic
number theory using the conjectural cohomology theory above, see [I] Kap. 3 and
[JL] for the precise relationship. Set R+ = (0,∞).
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Proposition 3.2 For a test function ϕ ∈ D(R+) = C∞0 (R+) define an entire

function Φ(s) by the formula

Φ(s) =

∫

R

ϕ(t)ets dt .

Then we have the “explicit formula”:

Φ(0)−
∑

ζ̂(ρ)=0

Φ(ρ) + Φ(1) =
∑

p

log p

∞∑

k=1

ϕ(k log p) +

∫ ∞

0

ϕ(t)

1− e−2t
dt .

We wish to interpret this well known formula along the lines of [P] § 3. For this
we require the following elementary notion of a distributional trace. Consider a
real or complex vector space H with a linear R-action

λ : R×H → H , λ(t, h) = λt(h) ,

which decomposes into a countable direct sum of finite dimensional invariant sub-
spaces Hn. Let Tr(λ |Hn)dis be the distribution on R+ associated to the function
t 7→ Tr(λt |Hn

), and set

Tr(λ |H)dis =
∑

n

Tr(λ |Hn)dis (4)

if the sum converges in the space of distributions D′(R+). By assumption λ can
be written as λt = exp tΘ with an endomorphism Θ of H, and we have

Tr(λ |H)dis =
∑

α∈sp (Θ)

〈etα〉 in D′(R+)

if the series converges. Here 〈f〉 ∈ D′(R+) denotes the distribution associated to
a locally integrable function f on R+. Thus

〈Tr(λ |H)dis, ϕ〉 =
∑

α∈sp (Θ)

∫

R

ϕ(t)etα dt =
∑

α∈sp (Θ)

Φ(α)

for any test function ϕ in the Schwartz space D(R+). Conjecturally (3.2) can thus
be reformulated as the following identity of distributions

∑

i

(−1)iTr(φ∗ |Hi(“SpecZ”,R))dis =
∑

p

log p

∞∑

k=1

δk log p + 〈(1− e−2t)−1〉 . (5)

Using the Poisson summation formula one sees that

Tr(σ |Rp)dis = log p
∞∑

k=1

δk log p for finite p .

A direct calculation shows that

Tr(σ |R∞)dis = 〈(1− e−2t)−1〉 .
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Hence (5) can be rewritten as a sheaf theoretic Lefschetz trace formula

∑

i

(−1)iTr(φ∗ |Hi(“SpecZ”,R))dis =
∑

p≤∞

Tr(φ∗ |Rp)dis . (6)

For more on this see [D5], [DSch].

We now turn to Hasse–Weil zeta functions of algebraic schemes X/Z. A
similar argument as for the Riemann zeta function suggests that

ζX (s) =
2d∏

i=0

det∞

(
1

2π
(s−Θ) |Hi

c(“X”,R)

)(−1)i+1

(7)

where Hi
c(“X”,R) is some real cohomology with compact supports associated to

a dynamical system “X” attached to X and d = dimX . Here Θ should be the
infinitesimal generator of the induced flow on cohomology. In particular we would
have

ords=α ζX (s) =

2d∑

i=0

(−1)i+1 dimHi
c(“X”, C)Θ∼α .

For a regular connected X the Poincaré duality pairing

∪ : Hi
c(“X”,R)×H2d−i(“X”,R) −→ H2d

c (“X”,R)
∼−→ R(−d) (8)

should identify

Hi
c(“X”, C)Θ∼α with the dual of H2d−i(“X”, C)Θ∼d−α .

In particular we would get:

ords=d−n ζX (s) =

2d∑

i=0

(−1)i+1 dimHi(“X”, C(n))Θ∼0 ,

where C(α) is the sheaf C on “X” with action of the flow twisted by e−αt. Thus

Hi(“X”, C(n))Θ∼0 = Hi(“X”, C)Θ∼n .

For a regular X we expect formal analogues of Tate’s conjecture

Hi
M(X ,C(n)) := Gr nγK2n−i(X )⊗ C

∼−→ Hi(“X”, C(n))Θ∼0 , (9)

and in particular that

Hi(“X”, C(n))Θ∼0 = 0 for i > 2n .

Note that the latter assertion says that the weights of Θ on Hi(“X”, C), i.e. twice
the real parts of its eigenvalues, should be ≥ i. This would imply Soulé’s conjecture
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(2.1).
Again the explicit formulas could be expressed in terms of cohomology in the form

∑

i

(−1)iTr(φ∗ |Hi
c(“X”,R))dis =

∑

x∈|X|

logN(x)

∞∑

k=1

δk logN(x) . (10)

In support of these ideas we have the following result.

Theorem 3.3 On the category of algebraic Fp-schemes X there is a cohomology

theory in C-vector spaces with a linear flow such that (7) holds. For a regular

connected X of dimension d it satisfies Poincaré duality (8). Moreover (9) reduces
to the Tate conjecture for l-adic cohomology.

See [D3] § 4, [D4] § 2 for more precise statements and the simple construc-
tion based on l-adic cohomology. This approach cannot be generalized to non-
equicharacteristic X/Z.

If there were a dynamical cohomology theory Hi(“X”,R) attached to some
Arakelov compactification X of X such that

ζ̂X (s) =

2d∏

i=0

det∞

(
1

2π
(s−Θ) |Hi(“X”,R)

)(−1)i+1

,

then as above Poincaré duality for Hi(“X”,R) would be in accordance with the

expected functional equation for ζ̂X (s). A Hodge ∗-operator

∗ : Hi(“X”,R) −→ H2d−i(“X”,R)

defining a scalar product via 〈f, f ′〉 = tr(f ∪ (∗f ′)) and for which

φt∗ ◦∗ = (et)d−i ∗ ◦φt∗ , i.e. Θ ◦∗ = ∗ ◦ (d− i+Θ) ,

holds, would imply that Θ−i/2 is skew symmetric, hence the Riemann hypotheses

for ζ̂X (s). The last equation means that the flow changes the metric defining the
∗-operator by the conformal factor et.

As we mentioned above the zeta function ζX (s) is up to finitely many Euler
factors the alternating product of the L-functions of the motives Hi(X). In [D1]
we constructed cohomology R-vector spaces Hw

ar with a linear flow on the category
of varieties over R or C such that

ζX∞
(s) =

2 dimX∞∏

i=0

det∞

(
1

2π
(s−Θ) |Hi

ar(X∞)

)(−1)i+1

.

Cup product and functoriality turn the spaces Hi
ar(X∞) into modules under

H0
ar(X∞) = H0

ar(SpecR) = R∞ of rank equal to dimHi(X∞,Q). Philosophically
the scheme X should have bad semistable “reduction” at infinity. In accordance
with this idea Consani [Cons] has refined the theory Hi

ar to a cohomology theory
with a linear flow and a monodromy operator N which contains Hi

ar as the kernel
of N .
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We now turn our attention to motivic L-series. The first task is to express the
local Euler factors Lp(M, s) in terms of regularized determinants on some spaces
functorially attached to M .

Theorem 3.4 For every p ≤ ∞, there is a left exact additive functor Fp from

motives over Q to the category of C-vector spaces with a linear flow such that

Lp(M, s) = det∞

(
1

2π
(s−Θ) | Fp(M)

)−1
.

The functor Fp commutes with Tate twists, and there are natural flow equivariant

maps

Fp(M)⊗Fp(M ′) −→ Fp(M ⊗M ′) (11)

turning Fp(M) into an Fp(Q(0)) = Cp-module of rank equal to dimM
Ip
l for finite

p and equal to rkM for p = ∞. On the category of motives integral at p the functor

Fp is exact. On motives with good reduction at p the map (11) is an isomorphism

and Fp commutes with duals. For p = ∞ it has a real structure FR
∞ and there is

a natural perfect pairing:

FR
∞(M)Θ=0 × Ext1MHR

(R(0),M∗B(1)) −→ R ,

where MHR is the category of real mixed Hodge structures over R. For varieties

X/R we have

Hw
ar(X) = FR

∞(Hw(X)) .

The proofs – which are quite formal – can be found in [D3]. The functor F∞ is
constructed fromMB by a construction á la Fontaine using a simple Barsotti–Tate
ring. For finite p, the construction applies an elementary case of the Riemann–

Hilbert correspondence to M
Ip
l ⊗Ql

C with the Frobenius action. It can also be
viewed as an association of Fontaine’s type.

By the theorem

L̂(M, s) =
∏

p≤∞

det∞

(
1

2π
(s−Θ) | Fp(M)

)−1
,

and this suggests that

L̂(M, s) =

2∏

i=0

det∞

(
1

2π
(s−Θ) |Hi(“SpecZ”,F(M))

)(−1)i+1

(12)

for some sheaf with action of the flow F(M) on “SpecZ” whose stalks “at the
points p” should be isomorphic to Fp(M). It should be thought of as an analogue
of the sheaf F(M) = j∗M for a Ql-sheaf M on the generic point η of a curve Y
over a finite field, where j : η →֒ Y is the inclusion.
Formula (12) would represent L̂(M, s) as a quotient of entire functions – at least
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if the regularized determinants are of the Cartier–Voros type [CV].
This together with Poincaré duality for the sheaf cohomologies
Hi(“SpecZ”,F(M)) would explain the first part of conjecture 2.1 c.f. [D3]
7.19.
The assertion about L̂02(M, s) in the second part of 2.1 means that
H0(“SpecZ”,F(M)) and H2(“SpecZ”,F(M)) should be finite dimensional
with Θ having only integer eigenvalues.
The Riemann conjecture would follow from purity: For a pure motiveM of weight
w the eigenvalues of Θ on Hi(“SpecZ”,F(M)) should have real part w+i

2 . As
before there is a Hodge ∗-argument for this c.f. [D3] 7.11.
For L(M, s) we expect the formula

L(M, s) =
2∏

i=0

det∞

(
1

2π
(s−Θ) |Hi

c(“SpecZ”,F(M))

)(−1)i+1

(13)

and by Poincaré duality

L(M, s) =

2∏

i=0

det∞

(
1

2π
(s+Θ) |Hi(“SpecZ”,F(M∗(1)))

)(−1)i+1

. (14)

See [D3] (7.19.1). This implies that

ords=0L(M, s) =

2∑

i=0

(−1)i+1 dimHi(“SpecZ”,F(M∗(1)))Θ∼0 .

On the category MZ all functors Fp are exact by the theorem. Hence F should
be exact and therefore induce maps for all N in MZ

(15)

F : ExtiMZ
(Q(0), N)⊗ C −→ Exti“Spec Z”(C(0),F(N))Θ∼0 = H

i(“SpecZ”,F(N))Θ∼0
.

If these are isomorphisms (2.1) part 5. follows. Note that because SpecZ is
an affine curve it is reasonable to expect Hi(“SpecZ”,F(N)) to vanish for i ≥ 2.
Similarly (15) with Z replaced by ZS ought to be an isomorphism. The eigenvalues
of Θ on

H0(“SpecZ”,F(N)) = H0(“SpecZ”,F(N)) (c.f. [D4] § 4)

being integers, we have

H0(“SpecZ”,F(N)) =
⊕

n∈Z

Hom(Q(0), N(n))⊗ C

by (15) applied to all twists N(n). Together with (14) we would get the Artin
conjecture (2.1) part 3. Further conjectures on L-functions and extensions of
motives by Deligne, Scholl and Selberg are related to the cohomological formalism
in [D4] §§ 4, 9.
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Let us now turn to certain consequences of the formalism that have been
proved. As for the Riemann zeta function we must have

ξ(M, s) := L̂(M, s)
∏

τ

1

2π
(s− τ) =

∏

ρ

1

2π
(s− ρ) (16)

where ρ runs over the zeroes of L̂(M, s) and τ over its finitely many poles. This
follows from the theory of [JL] or [I] assuming standard conjectures on the analytic
behaviour of L-series. For example for L(E, s), where E is a modular elliptic curve,
formula (16) is a theorem.

As explained above there should be a trace isomorphism

tr : H2(“SpecZ”,R(1)) = H2(“SpecZ”,R(1))Θ=0 ∼−→ R .

Comparing this with (15) we are led to search for a category of (mixed) motives
MZ over SpecZ equipped with a non-trivial map

Ext2M
Z
(Q(0),Q(1)) −→ R .

Integrality at a finite prime p can be expressed in terms of the functor Fp, c.f.
[DN] appendix. For F∞ this condition means that the real Hodge structure MB

be split. Taking this as our definition of integrality at p = ∞ we define MZ to be
the subcategory of motives in MQ which are integral at all primes p ≤ ∞. Under
the natural injection [Sch] 2.7

Q∗ →֒ Ext1MQ
(Q(0),Q(1)) , (17)

the motive corresponding to α is integral at p ≤ ∞ iff |α|p = 1. In [DN]
it was shown that if (17) is an isomorphism rationally then Ext2M

Z
(Q(0),Q(1))

is non-zero. If MZ is replaced by the category (1-motives /SpecZ) ⊗ Q then
Ext2(Q(0),Q(1)) is non-zero unconditionally, [J] Cor. 5.5. Furthermore it was
shown that the motivic height pairing of [Sch] could be interpreted as a Yoneda
pairing followed by the degree map

Ext1M
Z
(Q(0),M)× Ext1M

Z
(Q(0),M∗(1)) −→ Ext2M

Z
(Q(0),Q(1)) −→ R .

This is in accordance with the idea that under a suitable extension of the isomor-
phism (15) to SpecZ, (c.f. [D4] (2.4)), the motivic height pairing will correspond
to Poincaré duality

H1(“SpecZ”,F(M))×H1(“SpecZ”,F(M∗(1))) −→ H2(“SpecZ”, C)
tr∼= C

restricted to the Θ ∼ 0 parts.
Apart from local L-factors there are also local ε-factors attached to motives.

In [D6] the functors Fp and a notion of regularized super-dimension were used
among other things to give a comparatively uniform description of these factors
at all places.
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A motive M of weight w with coefficients in a number field T is called or-
thogonal if there is a symmetric morphism M ⊗M → T (−w) which induces an
isomorphism M∗ ∼=M(w). For example the Artin motive attached to a represen-
tation ρ : Gal(Q/Q) → GLN (T ) is orthogonal if and only if ρ is orthogonal. Our
formalism implies that for orthogonal M the cup product induces a symplectic

form on H1(“SpecZ”,F(M))Θ∼
w+1

2 which must therefore be of even dimension.
Hence the order of vanishing of L(M, s) at the central point w+1

2 must be even
and the sign in the functional equation therefore be +1 c.f. [D4] § 6. For Artin
motives this is a theorem of Fröhlich and Queyrut which was extended to more
general motives by T. Saito in [S] using crystalline methods.

We close this section with some remarks on trace formulas. If the L-functions
of motives satisfy the expected analytic properties, one can easily extend the ex-
plicit formulas of analytic number theory for the L̂S-function to this context, see
for example [DSch] or [JL]. In terms of our conjectural cohomology theory these
can be reformulated – as for the Riemann zeta function – as the following equalities
of distributions on R+:

∑

i

(−1)iTr(ψ∗ |Hi
c(“SpecZ \ S”,F(M)))dis =

∑

p/∈S

log p

∞
∑

k=1

Tr(Frkp |M
Ip
l )δk log p

+α(S)

〈

Tr(e•t |Gr •

VMB)

1− e−2t

〉

(18)

and

∑

i

(−1)iTr(ψ∗ |Hi
c(“SpecZ \ S”,F(M)))dis =

∑

p≤∞,p/∈S

Tr(ψ∗ | Fp)dis .

Here “SpecZ \ S” is the dynamical system corresponding to SpecZ \ S and we
have written ψt∗ for the induced flow on cohomology with sheaf coefficients in
accordance with notations in the next section. Moreover e•t is the map ent on
Gr nVMB and α(S) is zero or one according to whether S contains p = ∞ or not.

In the next section we consider trace formulas for dynamical systems on foli-
ated spaces which bear striking formal similarities with (5) and its generalization
(18).

4 Dynamical systems on foliated spaces

We begin by recalling a formula due to Guillemin and Sternberg [GS] VI § 2.
Consider a smooth compact manifold X with a flow φt, i.e. a smooth action

φ : X × R → X , φt(x) = φ(x, t) .

The compact orbits are assumed to be non-degenerate in the following sense. If
x is a fixed point of the flow, i.e. φt(x) = x for all t, then the tangent map
Txφ

t : TxX → TxX should not have 1 as an eigenvalue for any t > 0. The vector
field Yφ generated by the flow is φ-invariant in the sense that Txφ

t(Yφ,x) = Yφ,φt(x)

for all points x in X. Thus for any point x on a periodic orbit γ of length l(γ)
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and any positive integer k the endomorphism Txφ
k·l(γ) of TxX has Yφ,x as an

eigenvector of eigenvalue 1. Non-degeneracy of γ means that the eigenvalue 1 does
not occur on TxX/T

0
x where T 0

x = R · Yφ,x.
Let E be a smooth vector bundle on X with an action opposite to φ, i.e. a family
of maps

ψt : φt∗E −→ E

satisfying an obvious cocycle condition. Note that for any x ∈ γ we get maps

ψkl(γ)x : Eφkl(γ)(x) = Ex −→ Ex ,

and that the traces Tr(ψ
kl(γ)
x |Ex) are independent of the choice of x on γ. For a

fixed point x the traces Tr(ψtx |Ex) are defined for all t.
Consider the endomorphisms

ψt∗ : Γ(X,E)
φt∗

−→ Γ(X,φt∗E)
ψt

−→ Γ(X,E)

of the Fréchet space Γ(X,E). In order to define a distributional trace

Tr(ψ∗ |Γ(X,E)) in D′(R+) ,

Guillemin and Sternberg proceed as follows. Consider the restriction φ : X×R+ →
X, the diagonal map ∆ : X × R+ → X × X × R+,∆(x, t) = (x, x, t) and the
projections p : X ×R+ → X,π : X ×R+ → R+. View ψ as a map ψ : φ∗E → p∗E
and let Kψ∗ be the Schwartz kernel of the composite map:

ψ∗ : Γ(X,E)
φ∗

−→ Γ(X × R+, φ∗E)
ψ−→ Γ(X × R+, p∗E) .

ThusKψ∗ is a generalized density onX×X×R+. The non-degeneracy assumptions
above are equivalent to the image of ∆ and the graph of φ intersecting transversally.
Thus by the theory of the wave front set one can pull back Kψ∗ via ∆ and define

Tr(ψ∗ |Γ(X,E)) = π∗∆
∗Kψ∗ in D′(R+) .

Intuitively,

Tr(ψ∗ |Γ(X,E)) =

∫

X

Kψ∗(x, x, t) dx

as a distribution in t.
With this definition of a trace the following result becomes almost a tautology:

Proposition 4.1 (Guillemin, Sternberg) Under the assumptions above, the

following formula holds in D′(R+):

Tr(ψ∗ |Γ(X,E)) =
∑

γ

l(γ)
∞∑

k=1

Tr(ψ
kl(γ)
x |Ex)

| det(1− Txφkl(γ) |TxX/T 0
x )|

δkl(γ)

+
∑

x

〈
Tr(ψtx |Ex)

| det(1− Txφt |TxX)|

〉
.
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Here γ runs over the periodic orbits and in the first sum x denotes any point on

γ. In the second sum x runs over the stationary points of the flow.

In order to get a formula that is closer in appearance to (5) and (18) we now
apply a basic idea which Guillemin [G] and independently Patterson [P] used in the
context of Selberg and Ruelle zeta functions. It involves the theory of foliations
for which we refer e.g. to [Go]. Assume that X carries a smooth foliation of
codimension one such that φt maps leaves to leaves. By a theorem of Frobenius
this is equivalent to specifying an integrable codimension one subbundle T0 ⊂ TX
with Tφt(T0) = T0 for all t, the bundle of tangents to the leaves. Let U ⊂ X be
the open φt-invariant subset of points x where the flow line through x intersects
the leaf through x transversally, i.e. where

T0x ⊕ T 0
x = TxX .

We assume that U contains all periodic orbits.
If x is a fixed point of φ there exists some real constant κx such that Txφ

t acts on
the one dimensional space TxX/T0x by multiplication with eκxt. We set

εγ(k) = sgn det(1− Txφ
kl(γ) |T0x) and εx = sgn det(1− Txφ

t |TxX)

the latter being independent of t > 0. From the proposition applied to ΛiT ∗0 ⊗ E
we get the following formula in D′(R+):

∑

i

(−1)iTr(ψ∗ |Γ(X,ΛiT ∗0 ⊗ E)) (19)

=
∑

γ

l(γ)

∞∑

k=1

εγ(k)Tr(ψ
kl(γ)
x |Ex)δkl(γ) +

∑

x

εx

〈
Tr(ψtx |Ex)
1− eκxt

〉
.

Here an action ψt : φt∗T ∗0 → T ∗0 is given by ψtx = (Txφ
t)∗ : T ∗0φt(x) → T ∗0x.

Together with the action on E we get an action opposite to φ on every ΛiT ∗0 ⊗E.
In order to proceed we next assume that E carries a flat connection along the
leaves

δ0 : E −→ T ∗0 ⊗ E ,

where E and T0 are the sheaves of smooth sections of E and T0. It gives rise to a
fine resolution

E δ0−→ T ∗0 ⊗ E δ0−→ Λ2T ∗0 ⊗ E −→ . . .

of the sheaf

F = Ker (δ0 : E −→ T ∗0 ⊗ E)

of smooth sections of E which are constant along the leaves of the foliation. For
the trivial bundle E = X×R with its canonical T0-connection we obtain the sheaf
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R of smooth real valued functions on X which are constant along the leaves.
Note that F carries a canonical action

ψt : (φt)−1F −→ F

opposite to φt which is used to define a map on cohomology by composition:

ψt∗ : Hi(X,F)
(φt)−1

−→ Hi(X, (φt)−1F)
ψt

−→ Hi(X,F) .

Then the canonical isomorphism:

Hi(X,F) = Hi((Γ(X,Λ•T ∗0 ⊗ E), δ0))

becomes equivariant under the induced action of the flow and one might hope to
replace the alternating sum in (19) by an alternating sum over traces on cohomol-
ogy.
On the other hand the differential δ0 will not have closed image in general, so

that the cohomology spaces will not even be Hausdorff [H] 2.1. Let H
i
(X,F) be

the maximal Hausdorff quotient of Hi(X,F), the reduced leafwise cohomology. It
seems reasonable to expect a dynamical trace formula of the form

∑

i

(−1)iTr(ψ∗ |Hi
(X,F)) (20)

=
∑

γ

l(γ)

∞∑

k=1

εγ(k)Tr(ψ
kl(γ)
x |Ex)δkl(γ) +

∑

x

εx

〈
Tr(ψtx |Ex)
1− eκxt

〉
.

Note that for the trivial bundle E = X × R we would get
(21)

∑

i

(−1)iTr(ψ∗ |Hi
(X,R)) =

∑

γ

l(γ)
∞∑

k=1

εγ(k)δkl(γ) +
∑

x

εx〈(1− eκxt)−1〉 .

For the geodesic flow on the sphere bundle of cocompact quotients of rank one
symmetric spaces and the stable foliation, analogous formulas are consistent with
the Selberg trace formula, as has been shown by Guillemin [G], Patterson [P] and
later workers, e.g. Juhl, Schubert, Bunke, Olbrich and Deitmar. Strictly speaking

in these investigations H
i
(X,F) is replaced by a sum of representations suggested

by this cohomology.
If X is the suspension of a diffeomorphism on a compact manifold M , the leafwise
cohomologies turn out to be Hausdorff and hence Fréchet spaces, and (20) holds
with the straightforward definition of a distributional trace given in (4). This
consequence of the ordinary Lefschetz trace formula seems to be well known. A
proof is written up in [D7] § 3.
Apart from these cases which do not involve stationary points the formula (20) does
not seem to be established. One of the main problems is of course the definition of

a good trace on the cohomology spaces H
i
(X,F) these being infinite dimensional
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in general [AH]. Even if all of the H
i
(X,F) are finite dimensional, (20) does not

seem to be known. However it appears that at least for Riemannian foliations
something can be done using the recent Hodge theorem of Alvarez-Gomez and
Kordyukov for leafwise cohomology. In this case there is also a Hodge ∗-operator
on cohomology which is induced by the metrics on the leaves.

Let U be the dynamical system obtained by removing all the leaves containing
stationary points. Then a trace formula of the form

∑

i

(−1)iTr(ψ∗ |Hi

c(U,F)) =
∑

γ

l(γ)
∞∑

k=1

εγ(k)Tr(ψ
kl(γ)
x |Ex)δkl(γ)

is expected. For E = U × R in particular we should have

∑

i

(−1)iTr(ψ∗ |Hi

c(U,R)) =
∑

γ

l(γ)
∞∑

k=1

εγ(k)δkl(γ) . (22)

It seems to be quite a challenge to establish such dynamical trace formulas in
any generality and also for more general foliations. This would also be a major
contribution to the theory of periodic solutions of ordinary differential equations.

Given a closed orbit γ and a point x on γ consider the isomorphism

γ = (γ, x) : R/l(γ)Z
∼−→ γ , t 7−→ φt(x) .

The functor

F 7→ Fγ = Γ(R/l(γ)Z, γ −1F)

from R-modules to C∞(R/l(γ)Z)-modules is exact [D7] 3.22. We view Fγ as the
stalk of F in the “geometric point” x of γ. The Poisson summation formula implies
that

Tr(ψ∗ | Fγ)dis = l(γ)
∞∑

k=1

Tr(ψkl(γ)x |Ex)δkl(γ) .

For a stationary point x a suitable interpretation of the trace on Fx gives:

Tr(ψ∗ | Fx)dis =
〈
Tr(ψtx |Ex)
1− eκxt

〉
c.f. [D8].

Thus the right hand side of the trace formulas can be rewritten in more sheaf
theoretical terms as the sum of distributional traces of the flow on the stalks of F
in the compact orbits of the flow. Incidentially, note that our former ring Rp is
just the dense subalgebra of finite Fourier series in C∞(R/(log p)Z).

Formula (21) resp. (22) resembles the cohomological version of the explicit
formulas for the Riemann zeta function (5) resp. for the Hasse Weil zeta func-
tion (10). However, as we will see, the setting of this section and in particular
the assumption that we are dealing with compact manifolds is too restrictive for
the goal of realizing (5) and (10) as special cases of (21) and (22). Nonetheless
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we are led to expect the following structures on the searched for dynamical sys-
tems (“SpecZ”, φt) and (“X”, φt) corresponding to SpecZ resp. the algebraic
scheme X/Z. The space “SpecZ”, whatever its nature, infinite dimensional, a
Grothendieck topology, ..., should have some compactness property. The closed
orbits γ should correspond to the prime numbers such that l(γ) = log p if γ =̂ p.
More generally on “X” they should correspond to the closed points of X with
l(γ) = logN(x) if γ =̂ x. On “SpecZ” there should be a stationary point x∞
corresponding to the infinite prime p = ∞. All these compact orbits must appear
with positive sign in the dynamical trace formulas. Of course there could also
be more periodic orbits and stationary points if their contributions in the trace
formula vanish because of opposite signs.
There are to be one-codimensional foliations on “SpecZ” and “X” such that the
open subset of points where the leaf is transversal to the flow contains all periodic
orbits. Moreover κx∞

= −2, i.e. Tx∞
φt operates on Tx∞

/T0x∞
by multiplication

with e−2t.
The cohomologies conjectured in section two should be the dense spaces of smooth
vectors in the corresponding reduced leafwise cohomologies. Here a vector is
smooth if it is contained in the sum of generalized eigenspaces of the induced
flow on cohomology.
The leaves on “SpecZ” (resp. “X”) should be two (resp. 2 dimX ) dimensional in
a suitable sense since for foliated manifolds Hi(X,R) = 0 for i > d where d is the

dimension of the leaves, and H
d
(X,R) 6= 0 if there exists a non trivial holonomy

invariant current on X. Thus “SpecZ” (resp. “X”) should have dimension three
(resp. 2 dimX + 1) in that sense. These dimensions agree with the étale cohomo-
logical dimensions of SpecZ (resp. X ).
As for the structure of “X” \ “X” possibly the set of stationary points of the flow
on “X” is X∞(C)/〈F∞〉, where F∞ is complex conjugation. This would generalize
what we expect for X = SpecZ and more generally for X = Spec ok. Note also
that the set of closed points of X over p can be identified with the set Xp(Fp)/〈Frp〉
of Frobenius orbits on Xp(Fp), where Xp = X ⊗ Fp.

We now discuss the basic theory of flows with an integrable invariant comple-
ment. This is relevant for us since they appear as subsystems in the above. Let us
define an F -flow φt to consist of a (Banach-)manifold U with a flow generated by
a smooth vector field which exists for all positive but possibly not for all negative
times. By definition an F -system is an F -flow with a one-codimensional foliation
T0 which is everywhere transversal to the flow. In particular there are no fixed
points. These systems form a category in an obvious way. Their theory is essen-
tially well known and recalled for example in [D7] § 3. The foliation corresponds
uniquely to a closed flow-invariant one form ωφ with 〈ωφ, Yφ〉 = 1, via kerωφ = T0.
The period group Λ ⊂ R is defined as the image of the length homomorphism

l : πab
1 (U) −→ R , l(c) =

∫

c

ωφ .

If there is a morphism U → U ′ of F -systems then ΛU ⊂ ΛU ′ . Periodic orbits γ
give well defined elements [γ] of πab

1 (U) and one has l([γ]) = l(γ), the length of γ.
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For a variety V/Fq there is an analogous map

l : π̂ab
1 (V ) −→ π̂1(SpecFq) = Ẑ

induced by the projection V → SpecFq. Closed points x of V give Frobenius
conjugacy classes and hence well defined elements [Fx] of π̂

ab
1 (V ). They satisfy

the equation l([Fx]) = deg x = logq N(x).
On an F -system the following three categories are equivalent:

• vector bundles E with a flat T0-connection δ0 and a compatible action ψ
which is opposite to φ;

• locally free R-modules F with an action ψ opposite to φ;

• local systems F of R-vector spaces.

Here E ↔ F = Ker (δ0 : E → T ∗0 ⊗ E) ↔ F = Ker (ΘF : F → F),
where ΘF : F → F is the derivative of ψ at t = 0. Let α be a real number. To the
twist F(α), defined as F with action ψtF(α) = e−tαψtF , there corresponds a local

system F (α). For F = R it is denoted R(α). Its monodromy representation is
exp(αl). Hence Λ ⊂ logQ∗+ if and only if there is a local system Q(1) of Q-vector
spaces such that R(1) = Q(1)⊗ R.
If we complexify we get analogous equivalences of categories.
There is an exact sequence

0 −→ Hi−1(U,F)/ImΘ −→ Hi(U,F ) −→ Hi(U,F)Θ=0 −→ 0

where Θ = (ΘF )∗. This is analogous to the exact sequence

0 −→ Hi−1(V , F )Frq −→ Hi(V, F ) −→ Hi(V , F )Frq −→ 0

for a Ql-sheaf F on V where V = V ⊗Fq. In the language of arithmetic geometry,
H∗(U,F ) is the arithmetic cohomology and H∗(U,F) with its action of the flow
the geometric cohomology. As usual the latter commutes with twists but not the
former.

There is a classification theorem: Every F -system is canonically contained as
an open subsystem in a complete such system, i.e. one where the flow exists for all
times in R; c.f. [D8]. All complete connected F -systems are obtained as follows:
Let M be any leaf of U . Then M is connected and Λ = {t ∈ R |φt(M) = M}
so that Λ operates on M . The system U is then isomorphic to the suspension
M ×Λ R where Λ acts on R by translation and the foliation is by the images of
M × {t} for t in R.

5 Further comparison

For “SpecZ” the period group Λ must contain the numbers log p as they should
be lengths of closed orbits. Hence Λ ⊃ logQ∗+. On the other hand R(1) will have a
rational structure (see below) and hence Λ ⊂ logQ∗+, so that Λ = logQ∗+. Writing
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the flow multiplicatively we therefore expect “SpecZ”, if its flow is complete, to
have the form M ×Q∗

+
R∗+ for some “space” with Q∗+-action M reminiscent of the

idèlic picture. A similar argument for varieties V/Fq with a rational point suggests
that “V ” ∼= N ×qZ R∗+.
As mentioned above, the leafwise cohomology of “V ” should be isomorphic to a
theory constructed from the Ql-cohomology of V after the choice of an embedding
Ql ⊂ C. Comparing the kernels of Θ, it follows on combining [D3] (2.4) and § 4
with [D7] (3.19) that the singular cohomology of N with C-coefficients, endowed
with the automorphism q∗, must be isomorphic to H∗(V ,Ql)⊗C with Fr∗q-action.

It follows that Hd(N,Z), where d = dimN , must be a Z[q−1]-module, since Fr∗q
acts by multiplication with qd on Hd(V ,Ql).
The natural way to obtain such N is to take a compact manifold Ñ with a finite

map q : Ñ → Ñ of degree q and set N = lim
←

(. . . → Ñ
q→ Ñ → . . . ). Note the

continuity theorems for cohomology in this regard, c.f. [Br] II.14. The most naive
way to obtain (Ñ , q) would be by lifting (V,Frq) to C. For cellular varieties and
ordinary abelian varieties over Fq this is possible but of course not in general.
It seems possible that in the above isomorphism “SpecZ” ∼=M×Q∗

+
R∗+ the leafM

is obtained from a “space” M̃ with commuting operators for every prime number
p, by an analogous projective limit. This puts M ×Q∗

+
R∗+ even closer to the idèlic

view point.
Allowing such more general spaces removes a difference between dynamical

trace formulas and explicit formulas in cohomological form: Both can be extended
to test functions on R∗, but whereas for compact manifolds the former become
symmetric under t↔ −t, the latter exhibit a twisted symmetry. A closely related
point is this: For a finite dimensional F -system the flow acts with weight zero
on the top leafwise reduced cohomology with compact supports. This follows by
looking at the invariant currents and noting that automorphisms act by ±1 on
top compactly supported cohomology with Z-coefficients. Since we want weights
different from zero, e.g. equal to one for SpecZ, we are forced to allow more general
spaces than finite dimensional manifolds as leaves. For ordinary abelian varieties
over Fp the theory of the zeta function can in fact be established dynamically using
pro-manifolds but in general – at least in characteristic p – even pro-manifolds as
leaves are not the right kind of space.

If the association from schemes to foliated dynamical systems is functorial
one has a natural construction of sheaves F(M) for any motive M . For a variety
π : X0 → SpecQ let π = “π” : X = “X0” → “SpecQ” be the associated morphism
of foliated dynamical systems. The functors

X0 7−→ Riπ∗(RX) and X0 7−→ Riπ∗(RX)

define cohomology theories which by universality factor over the category of
motives. They are denoted M 7→ G(M) and M 7→ G(M). The morphism
j0 : SpecQ → SpecZ will induce a morphism j = “j0” of dynamical systems
and we get functors F = j∗ ◦G and F = j∗ ◦G. The two constructions are related
by F = Ker (Θ : F → F). Moreover F has a natural Q-structure FQ obtained by
starting with rational coefficients. In fact over “SpecZS”, where S is a finite or
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cofinite set of prime numbers, we should get a Z[l−1 | l /∈ S]-structure on F by tak-
ing ZX -coefficients2 above. For n ∈ Z, we get F(Q(n)) = R(n), F (Q(n)) = R(n)
and FQ(Q(1)) provides the rational structure on R(1) alluded to above.

Comparing formulas (18) and (20) over “SpecZS”, we see that the semisim-

plifications of (M
Ip
l ,Frp) and (Ex, ψ

log p
x ) for x ∈ γ =̂ p /∈ S should be isomorphic.

Since E is a vector bundle the dimensions of M
Ip
l must be constant, i.e. M must

have good reduction at the finite primes p /∈ S. Note that via the equivalence of
categories above, (Ex, ψ

log p
x ) is isomorphic to Fx with its monodromy representa-

tion along γ. The rational structure FQ,x on Fx thus implies that the characteristic
polynomial of the monodromy representation has rational coefficients. The same
must therefore hold for the Frobenius action on Ml if our picture is correct. This
is well known for many motives by the work of Deligne and conjectured in general.

We now reinterpret part of (2.1) 5. as a fully faithfulness assertion. For finite S
consider a motive M over Q with good reduction outside of S. Using the expected
isomorphism (15) over SpecZS we get a commutative diagram

H0(“SpecZS”, F (M))
∼−→ H0(“SpecZS”,F(M))Θ=0,

Hom(Q(0),M)⊗ R

F
∼−→ H0(“SpecZS”,F(M))Θ∼0

F
y

✂ ✁

x

noting that H0 is Hausdorff. Hence all arrows must be isomorphisms. Replacing
M by M∗1 ⊗M2, it follows that the exact tensor functor FQ from motives with
good reduction on SpecZS to Q-local systems on “SpecZS”, must be fully faithful.
The map induced by Tannakian duality fits very nicely into a diagram comparing
topological fundamental groups and Galois groups of number fields, see [D7] (42).

The constructions in the real manifold setting of section three, even if we allow
infinite-dimensional or pro-manifolds, always lead to sheaves of real vector spaces
F . On the other hand the spaces Fp(M) are by construction ([D3] § 3) complex
vector spaces with no evident real structure. For motives over Q this is not a
contradiction, but the analogue for motives over finite fields is impossible. This is
so because the functors Fx would give exact faithful tensor functors into R-vector
spaces which are known not to exist. On the other hand on the subcategory of
ordinary motives over finite fields the predictions of the dynamical formalism work
out correctly by a result of Deligne, see [D7] 4.7.

Conclusion

Apart from stating his famous conjectures on zeta functions, A. Weil also explained
how they could be attacked given a cohomology theory for varieties in characteristic
p with properties similar to those of singular cohomology. For varieties over number
fields the analogues of the Weil conjectures and further conjectures have by now
been checked in numerous cases except for the Riemann conjecture 2.1 part 4
of course. In this article we have outlined a strategy to approach them. This
program requires a cohomology theory for algebraic schemes over the integers

2This is not a misprint.
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with properties similar to those of the reduced leafwise cohomology of a class of
dynamical systems with one-codimensional foliations by pro-manifolds.
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ICM, Warsaw, 1983, pp. 437–445

Christopher Deninger
Mathematisches Institut
Westf. Wilhelms-Universität
Einsteinstr. 62
48149 Münster
deninge@math.uni-muenster.de

Documenta Mathematica · Extra Volume ICM 1998 · I · 163–186


