
Doc.Math. J.DMV 235

From Classial Numerial Mathematis

to Sientifi Computing

Wolfgang Hackbusch

Abstract. The challenge of Numerical Mathematics by the fast devel-
opment of the computer technology has changed this field continuously.
The need of efficient algorithms is described. Their development is sup-
ported by certain principles as “hierarchical structures”, and “adaptivi-
ty”, “decomposition”. These principles and their interactions are demon-
strated in the lecture.

1991 Mathematics Subject Classification: AMS 65N, 65R, 65Y, 35A40,
45L10
Keywords and Phrases: Scientific Computing, Algorithms, pde, bound-
ary value problems, Adaptivity, Decomposition

1 Introduction

This papers tries to sketch the structural changes in Numerical Mathematics. Due
to the pages restrictions, the illustrating examples must be omitted.

1.1 The Scope of Numerical Mathematics

First, we characterise the typical topics which already appeared in Numerical
Mathematics when this field developed in the mid of this century. Two essential
keywords are the approximation (or discretisation) and the algorithm.

The algorithm1 establishes the constructive part of Numerical Mathematics.
In the following, we will often refer to the solution of the linear system

Ax = b (x, b ∈ R
n) (1)

as a standard example of a problem to be solved. A possible (but slow) algorithm
would be the Gauß elimination performing the mapping b 7→ x.

Since, in general, the mathematical problems are not solvable by finitely many
elementary operations, one needs some kind of approximation. The following
examples are chosen from the field of partial differential equations (pde). Since
the solution is sought in infinitely dimensional spaces, a ‘discretisation’ is needed

1Formally, an algorithm is a function, which maps input data x ∈ X into the desired output
data y ∈ Y and which is explicitly described by a finite product of elementary operations.

Documenta Mathematica · Extra Volume ICM 1998 · I · 235–254

236 W. Hackbusch

before an algorithm can be applied. The usual discretisation of a (linear) partial
differential equation is a linear system (1).2

We obtain the following picture:

original problem, e.g., pde (2a)

↓ discretisation process (2b)

discrete problem, e.g., system of equations (2c)

↓ solution algorithm (2d)

discrete solution (2e)

In the classical form of Numerical Mathematics the processes (2b) and (2d)
are well separated.

Finally, the discretisation process (2b) as well as the solution algorithm (2d)
are subjects of a Mathematical Analysis. The analysis of the discretisation pro-
cess concerns, e.g., the discretisation error. The analysis of an algorithm may
investigate its stability or its convergence speed (for iterative algorithms) etc.

1.2 Challenge by Large Scale Problems

Large scale computations are those which are almost too large to be computed
on present machines.3 Then, improvements are required to make the problem
feasible. In the field of pde’s it is always possible to pose larger and more complex
problems than those treated at present. The increasing demands concern not
only the problem dimension but also the mathematical complexity. One source of
mathematical complexity is the fact that simplified models are replaced by more
and more realistic ones. This may, e.g., lead to

- nonlinear problems (in the simplest case this requires a series of linear aux-
iliary problems to be solved, in more complicated situations the solution structure
may cause further difficulties and needs respective strategies),

- complicated geometries (although the mathematical analysis of a pde for
a simple two-dimensional and a complicated three-dimensional domain may be
similar from a theoretical point of view, the implementation of the algorithm is by
far much more involved).

Often the solution of a (discretised) pde is only a small part of the whole
computation. This happens for inverse problems which may be well-posed or ill-
posed. Examples are

- parameter identification problems,

- optimisation of various parameters (coefficients, shape, etc.).

2Another kind of approximation occurs on a lower level: the exact arithmetical operation
with real number must be replaced by approximate operations in the set of machine numbers.

3Here, ‘large scale’ is to be understood in a relative sense: large compared with the computer
capacity available today. In this sense, all present large scale computations will become small
under future conditions.

Documenta Mathematica · Extra Volume ICM 1998 · I · 235–254

From Classical Numerical Mathematics . . . 237

1.3 Scientific Computing

It is the challenge by large scale problems which have changed Numerical Mathe-
matics continuously into its present form. The changes cannot be described only
by great strides made in the algorithms and in the discretisation techniques. The
modern approach is characterised by a combined design of both, discretisations
and algorithms. Even the modelling is more and more involved in the whole pro-
cess. Computer Science is involved, e.g., by the modern computer architecture but
also by the implementation process, which more and more becomes the bottleneck.

This paper tries to show the main strategies which have been developed and
led to the present structure. In particular, we name the

- hierarchical structures,
- adaptive approaches,
- (de)composition techniques.
Hierarchies are very successful for algorithms (see §2.3), but also important for

the discretisation and modelling process. Adaptive techniques are indispensable
for large scale problems (see §3.2). The composition and decomposition techniques
have theoretical aspects in mathematics as well as quite practical aspects as the
use of parallel computers (see §4.1).

2 Efficient Algorithms

It may be self-evident that we would like the algorithms to be as efficient as
possible, i.e., they should yield the desired results for lowest computational costs.
This vague request can be made more precise. Below, we explain why in the case
of large scale computations, the development of the computer technology leads
to the need of algorithms with linear complexity. The notation of complexity is
recalled below.

2.1 Algorithms and Their Complexity

In the following, we fix the discretisation (2b) and discuss the algorithm (2d).
While the structural properties of algorithms are quite similar to those of

proofs in mathematics, two algorithms α, β : X → Y mapping the input x into
the same output α(x) = β(x) are not considered to be equal but are valuated
according to their costs. Typical cost criteria are the required computer time
and storage. Since the time needed for the computation depends on the speed
of the computer, we may take the number of elementary arithmetical operations
as a measure.4 Since, by definition, each algorithm α : X → Y is a well-defined
product α = αk ◦ . . . ◦α1 of elementary operations αi, the arithmetical costs C(α)
of an algorithm is well-defined, too.

Usually, the data sets X,Y are not fixed but can be parametrised (e.g., X =
Rn). Let n be the maximum of the number of input and output data. The
complexity of an algorithm α is O(ϕ(n)), if C(α) = O(ϕ(n)) as n→∞.

4This is a simplifying assumption. In fact, on modern computers the relation between the
number of arithmetical operations and the computer time is no more linear, e.g., because of
pipelining effects.

Documenta Mathematica · Extra Volume ICM 1998 · I · 235–254

238 W. Hackbusch

There are difficult problems, for which it is considered as a success if the
complexity is polynomial (i.e., ϕ(n) = np for some p). To this respect, problems
from Linear Algebra are simple. For instance, the n× n system (1) can be solved
by Gauß elimination with complexity O(n3). But as we will see below, the O(n3)
complexity is quite unsatisfactory.

Since, except trivial counter-examples, n data require at least one operation
per datum, the linear complexity O(n) is the best possible (as a lower bound).
Whether linear complexity can be achieved is often an open problem.

Instead of the polynomial complexity behaviour O(np), one often finds the
asymptotic behaviour5 O(np logq n). Because of the slow increase6 of the loga-
rithm, the logarithmic factor is considered as less important. We say that the
complexity is almost linear if p = 1, while q > 0 is allowed.

To simplify the discussion, we have concentrated on the number of arithmeti-
cal operations (computer time) and have not mentioned the storage requirements.
If nothing else is said, we suppose that the storage requirement is (almost) linear
in n.

2.2 Why Linear Complexity is Necessary

The asymptotic description of the algorithmic complexity is uninteresting as long
as we are not forced to increase n. This need is caused by the computer technology.
In the former times of hand calculations or mechanical calculators, there were
obvious reasons why n was rather small. This is why Numerical Mathematics did
not appear as a discipline of its own before the help of electronic computers was
available.

As pointed out in §1.2, we would like to compute problems as large as the
computer resources allow. Assuming a storage requirement of O(n), we conclude
that the dimension n of the largest problem we can handle increases directly with
the storage of the computer.

The steady improvement of the computer technology can be described quan-
titatively. In spite of the technological jumps, the improvement of the storage size
is rather uniform over the past decades. One observes an improvement by a factor
about 100 over 10 years. A similar factor can be found for the increase in speed.
The only interesting fact from these data is that storage and speed increase by

almost the same factor per time. This has an immediate impact on the computer
time for the problems to be solved.

Suppose an algorithm with complexity O(np) ≈ Cnp. Replacing the old
computer by a new one with storage and speed improved by the factor c > 1, we
want to solve problems of dimension cn instead of n (due to the increased storage).
This requires C(cn)p operations. Because of the improved speed, the computer
time is now C(cn)p/c = Ccp−1np instead of Cnp previously. We conclude that an
improvement of the computer facilities by c increases the computer time by cp−1.
Hence, only if the algorithm has (almost) linear complexity, the run time does not
deteriorate.

5Or more general O(nq+ε) for any ε > 0.
6In fact, the constants in two O(np logq n) terms can be more important than the logarithm.

Documenta Mathematica · Extra Volume ICM 1998 · I · 235–254

From Classical Numerical Mathematics . . . 239

The conclusion for algorithms with complexities worse than the linear one is
that either the algorithm can only be used for small size problems or one has to
tolerate larger and larger computational times.

2.3 Hierarchical Structures

One basic principle that may lead to efficient algorithms it the use of hierarchies.
A typical advantage of a hierarchical structure is the possibility of recursive algo-
rithms. Below, we give a well-known example.

2.3.1 Example: FFT

Consider Eq. (1) with matrix entries ajk = ωjk (0 ≤ j, k ≤ n − 1), where ω =
exp(±2πi/n). Then the matrix-vector multiplication x 7−→ b = Ax describes the
mapping from the vector coefficients x into the Fourier coefficients of b = Fn(x)
(or vice versa, depending on the ± sign).

The standard matrix-vector multiplication algorithm has O(n2) complexity.
Let n = 2q. The idea of the Fast Fourier Transform (FFT), which can be traced
back to Gauß, is to split the unknown Fourier coefficients b = (b0, b1, . . . , bn−1)
into bodd = (b1, b3, . . . , bn−1) and beven = (b0, b2, . . . , bn−2) and to construct the
related xodd, xeven with bodd = Fn/2(xodd), beven = Fn/2(xeven). This allows a
recursive application: One problem of dimension n = 2q (level q) is transferred
into 2 problems of dimension n/2 = 2q−1 (level q − 1), etc. until it is reduced to
n = 2q problems of the trivial dimension 1 (level 0). The costs per step are O(n).
Since q = log2 n is the number of levels, we result in the almost linear complexity
O(n log n).

Here, the vector spaces Xℓ = R
nℓ of dimension nℓ = 2ℓ (ℓ = 0, 1, . . .) form the

hierarchy. The typical characteristics of the FFT algorithm are: (i) The problem
is trivial at level 0, while (ii) it is easy (and cheap) to reformulate the problem of
level ℓ by those of level ℓ − 1. In more general cases, (ii) takes the form that an
essential part of the algorithm is the solution of problems on the lower level.

2.3.2 Example: Wavelets

The fact that the number of involved hierarchy levels grows like log2 n does not
necessarily imply that this logarithmical factor must appear in the complexity.
The wavelet transformation, which is quite close to the Fourier Transform, relies
much stronger on the hierarchical structure (functions f of level7 ℓ define functions
f(2·) of level ℓ + 1 and vice versa). Supposing a finite filter length, the wavelet
transform and its back transform have exactly linear complexity.

The hierarchy for wavelets defined on R is the family {Gℓ = {x = k2−ℓ :
k ∈ Z} : ℓ ∈ Z} of uniform grids. Since the wavelets are a part of Mathematical
Analysis and a tool for the approximation, we see that the concept of hierarchies
is also essential for the discretisation process.

7In wavelet terminology ‘level’ is called ‘scale’.

Documenta Mathematica · Extra Volume ICM 1998 · I · 235–254

240 W. Hackbusch

2.3.3 Example: Solution of Sparse Systems by Multi-Grid

Most of the discretisation methods for pde produce a so-called sparse matrix A in
(1), i.e., the number of non-zero entries is much smaller than n2; in the following,
we assume that there are O(n) non-zero entries. A trivial consequence is that the
matrix-vector multiplication x 7→ Ax is cheap (linear complexity). Therefore, the
hope is to approximate8 the solution by an iterative process using only a fixed
(n-independent) number of such matrix-vector multiplications.

Although A is sparse, the inverse A−1 is, in general, a full matrix. This
allows the following illustration of the difficulty about linear complexity. Even if
we would be able to get the inverse matrix A−1 for free, the computation of x by
x := A−1b involves the multiplication of a full matrix by a vector and is therefore
of complexity O(n2).

Linear iterations for solving Ax = b are of the form9

xm+1 = Φ(xm, b) :=Mxm +Nb = xm −N(Axm − b)

with the iteration matrix M = I − NA (N arbitrary). The iteration converges,
xm → x = A−1b, if the convergence speed which equals the spectral radius ρ(M)
of the matrix M is < 1. In order to get the best results for minimal costs, one has
to minimise the effective work

Eff(Φ) :=
cost per iteration step

− log ρ(M)
= min

over all linear iterations Φ. It turns out that Φ leads to an almost O(np) complexity
for the solution of (1) if Eff(Φ) = O(np). Due to the sparsity, we may assume
‘cost per iteration step’= O(n); hence, Eff(Φ) = O(np) is equivalent to ρ(M) =
1−O(n1−p). In particular, linear complexity requires ρ(M) ≤ ρ̄ < 1 for all n.

Unfortunately, there is no iteration known so far which ensures linear com-
plexity for all sparse matrices A. Instead one looks for fast iterations that work
for certain classes of matrices.

Such a class are the sparse matrices resulting from the discretisation of el-
liptic partial differential equations, where the multi-grid iteration leads to linear
complexity. The characteristic structure of the multi-grid method is the use of
a hierarchy of discrete problems. The standard hierarchy parameter is the grid
size h. Denote the discrete problem on hierarchy level ℓ by Aℓxℓ = bℓ for decreas-
ing mesh sizes h0 > h1 > . . . > hℓ > The iteration for solving a discrete
problem of level ℓ involves the lower levels 0, 1, . . . , ℓ − 1 as auxiliary problems.
A brief explanation of the fast convergence is as follows: Standard classical it-
erations have a local range and reduce very well the oscillatory iteration errors.
Long range errors need long range corrections which can be performed efficiently

8There is no need to compute the discrete solution too accurate, since we are interested in
the solution of the problem (2a). The discrete solution is affected with the discretisation error
in any way. Hence, an additional approximation error of the size of the discretisation error is
acceptable.

9For details see Hackbusch: Iterative solution of large sparse systems of equations. Springer,
New York 1994.

Documenta Mathematica · Extra Volume ICM 1998 · I · 235–254

From Classical Numerical Mathematics . . . 241

only by coarser grids corresponding to lower levels. Algebraic properties of A like
positive definiteness, symmetry, etc. are less important10. The main properties
needed in the convergence proof is the fact that the family of matrices Aℓ stems
from a discretisation of an elliptic pde.

2.3.4 Difficulties due to Complicated Geometries

Large scale problems involve possibly an increasingly detailed geometry, since now
more and more data are available for the geometric description. While technical
objects have a comparably simple shape, problems from medicine or geography
etc. may be rather complicated.

We recall that the multi-grid method requires a hierarchy of grids of size hℓ
starting with a quite coarse grid size h0. Although these grids can be constructed by
the very flexible finite elements, the existence of such a grid hierarchy seems to be
in conflict with a detailed geometry, since a complicated geometry requires that all
describing grids are small enough. Here, a progress can be reported. Independent
of the smallness of the geometrical details, one can construct a hierarchy of nested
(conforming) finite element spaces

V0 ⊂ V1 ⊂ . . . ⊂ Vℓ−1 ⊂ Vℓ ⊂ . . . ⊂ H
1(Ω)

(so-called composite finite elements11) so that dimV0 can be a small number
(equivalently, the corresponding mesh size h0 can be rather larger, e.g., h0 can
be of the diameter of the domain). Although the size hℓ may be much larger
than the size of the geometrical details, one can prove the standard approxima-
tion inf{‖u− uℓ‖H1(Ω) : uℓ ∈ Vℓ} ≤ Chℓ ‖u‖H2(Ω) for all u ∈ H2(Ω), which is
fundamental for the error estimation and multi-grid convergence.

2.4 Robustness versus Efficiency

The example of the multi-grid method has shown that, in order to obtain efficiency,
one has to make use of the special properties of the considered subclass of problems.
In the case of multi-grid, the strength of ellipticity is one of these properties. In
singular perturbation problems, ellipticity is fading out. Furthermore, there are
other problem parameters which can have a negative influence on the convergence
speed of the iteration. As soon as convergence can turn into divergence, the
method becomes unreliable.

We call an algorithm robust (with respect to a certain set and range of param-
eters) if its performance does not fail when the problem parameters vary. Often,

10This is underlined by the fact that even nonlinear systems can be solved by (nonlinear)
multi-grid iterations with asymptotically the same speed.

11Details in a) Hackbusch, Sauter: Composite finite elements for the approximation of PDEs on
domains with complicated mirco-structures. Numer. Math. 75 (1997) 447-472; b) Hackbusch,
Sauter: Composite finite elements for problems containing small geometrical details. Part II:
Implementation and numerical results. Computing and Vizualization in Science 1 (1997) 15-25;
c) Sauter: Composite finite elements for problems with complicated boundary. Part III: Essential
boundary conditions. Report 97-16, Universität zu Kiel.

Documenta Mathematica · Extra Volume ICM 1998 · I · 235–254

242 W. Hackbusch

one has to find a compromise between quite efficient but non-robust and very ro-
bust but inefficient methods. There are various approaches to robust multi-grid
variants, e.g., the ‘algebraic multi-grid method’. The term ‘algebraic’ indicates
that the method uses only the information of the algebraic data in (1) and does
not require details about the underlying pde and the discretisation process. Such
a method comes closer to a ‘black-box method’, but is has to be emphasised that
the algebraic multi-grid methods are still restricted to a subclass of systems.12

The preference for robust or for very efficient but more specialised methods
also depends on the kind of user. While the numerical mathematician likes highly
efficient algorithms for a special application, other users prefer robust methods
since either the mathematical background is not well-understood or not available.

3 Efficient Discretisation Methods

It is not enough that the solution method is efficient. Also the discretisation of the
partial differential equation must be considered. In academic situations, the order
of the discretisation is essential and new kinds of approximations can be proposed
(see next Subsection). Nevertheless, in general, one needs adaptive methods. The
reasons for adaptivity and the tools for its implementation are considered in §3.2.

3.1 Comparison of Different Discretisation Methods

So far, we have taken the discrete problem as given and were looking for an effi-
cient solution algorithm. Hence, the discretisation process in (2b) was considered
to be fixed. Instead, one should also compare different discretisation methods.
The success of an discretisation can be judged by the discretisation error, the dif-
ference13 between the exact and approximate solution, or a suitable norm of the
discretisation error. Here, it is to be emphasised that the discretisation method
does not produce only one particular discrete problem, but at least a sequence (or
as we shall see later, even a larger set) of discrete problems. Using the dimension n
as an index, we may write the discretisation method D as the sequence (Pn)n∈N′⊂N

of discrete problems Pn with solution xn and discretisation error εn.

Usually, the aim is to reach the best accuracy for minimal costs. To be more
precise, two particular strategies are of interest:

• Accuracy oriented choice: Let an accuracy ε > 0 be given. For a fixed dis-
cretisation choose the minimal dimension n = nε such that the discretisation
error is - ε. The arithmetical costs are denoted by Costs(Pnε

). Choose that
discretisation method for which Costs(Pnε

) is minimal.14

12The scope of the method is not easy to describe, since one observes that it performs well
even for situations where convergence proofs are still missing.

13The definition of this ‘difference’ is not quite unique since the discrete and the continuous
solution are elements from different sets.

14If the discrete problems of the different discretisations are of the same kind (hence, the costs
depend only on n), the discretisation with minimal nε is sought.

Documenta Mathematica · Extra Volume ICM 1998 · I · 235–254

From Classical Numerical Mathematics . . . 243

• Memory oriented choice: Let a maximal data size N be given (e.g., the whole
memory of the computer). Choose that discretisation method which yields
a discrete solution xN (for the particular N) with best accuracy εN .

The accuracy oriented choice is the more advanced one. The difficulty in
practice is twofold. The first difficulty concerns the prediction of ε. Often it is
not easy to tell how accurate (with respect to what – global or weighted – norm)
the solution should be. Second, it is not trivial to judge the error of the discrete
solution, i.e., to check whether error - ε.

The memory oriented choice is a lazy choice. The whole computer capacity
may be used although the result will be much too accurate for the purpose in
mind.

These alternatives can be illustrated for two discretisation methods of different
order. Let DI be a first discretisation of order α, i.e., the discretisation error εI,N
behaves like15 O(n−α), when the dimension n varies. Similarly, let DII be a second
discretisation method of order β. For the accuracy oriented choice, ε = O(n−α

I) =

O(n−β
II) yields nI = O(ε−1/α) and nII = O(ε−1/β). Hence, α < β implies that

(at least asymptotically) nII < nI and therefore the higher order discretisation is
more efficient. For the memory oriented choice, n = N is fixed. Again, the higher
order β > α is preferred, since the accuracy εI = O(N−β) is (asymptotically)
smaller than εII = O(N−α).

Attempts have be made to improve the polynomial behaviour ε = O(n−p).
One approach is the p-finite element method, where the step size h remains fixed,
while the order p = p(n) is increasing. Under perfect conditions, an exponential
behaviour ε = O(exp(−cnα) (c, α > 0) is obtained.16

Another approach are the sparse grids, where the discretisation error is almost
of the order εh = O(hp), whereas the grid has only n = O(h−1) grid points even
if the domain is a subset of Rd. Then, the discretisation error equals εh = O(n−p)
instead of O(n−p/d). Since d = 3 is the standard spatial dimension, this approach
promises a much better accuracy for the same dimension n.

In practice, both of the methods mentioned above cannot be applied to general
boundary value problems, but only to local parts. In the case of the p-method, the
solution must be very smooth, which may happen in the interior of the domain with
a fixed distance from the boundary but is in general not true at the boundary. This
gives rise to the hp-method which combines the standard finite element method
with the p-method in an adaptive manner. In the case of sparse grids, these grids
correspond to a special domain (square, cube etc. or their smooth image), which
is usually only a part of the whole domain. Therefore, in general, the use of p- and
sparse-grid methods require in addition adaptive techniques as they are explained
below.

15This definition is simplified. Usually the order is defined by O(h−α), where h is the mesh
size. h and n are connected by n = O(h−d), where d is the dimension of the domain Ω ⊂ R

d.
16To be precise, one has also to take into account that the p-method requires much more

accurate quadratures for the system matrix entries and that the resulting linear system is harder
to solve than standard finite element systems.

Documenta Mathematica · Extra Volume ICM 1998 · I · 235–254

244 W. Hackbusch

3.2 Adaptivity

3.2.1 Abstract Setting

To be precise, the result of a discretisation is a family of discrete problems P =
{Pi : i ∈ I}, where the index set I usually coincides with N or an infinite subset
of N. If xi is the solution of Pi, we expect a certain of convergence of xi to the
solution x of the continuous problem, i.e., the discretisation error εi should tend
to 0. In the case of the ‘accuracy oriented choice’ from §3.1, we want to find
the minimiser Piopt of min{costs(Pi) : i ∈ I and εi ≤ ε}. The trivial strategy for
finding iopt is to test the solution xi and to proceed to index i+ 1 (this can, e.g.,
mean a halving of the mesh size) if εi > ε.

In the adaptive case, the index set I has a much more general structure, e.g.,
it may be a graph. Then, given a discrete problem Pi, there are several next
finer discrete problems {pj : j successors of i}. The solution of the minimisation
problem min{Costs(Pi) : i ∈ I and εi ≤ ε} must be avoided.17 Instead, one needs
a heuristic H selecting a convergent subsequence {Pik : k ∈ N}, ik = H(xik−1

).

If, in the Galerkin case, adaptation is understood more generally as the op-
timal approximation by any kind of function spaces, the theoretical background
traces back to the n-widths introduced by Kolmogorov.

3.2.2 What Parameters can be Adapted?

The finite element discretisation decomposes the whole domain into triangles
(tetrahedra) or other geometric elements. Starting with a given (coarse) finite
element triangulation of a domain with step size h0, we can consider a uniform
refinement (e.g., each triangle is regularly divided into four smaller ones). This
yields a sequence of discrete problems with the uniform step size hℓ = 2−ℓh0.
On the other hand, the finite element discretisation allows to choose different el-
ement sizes at different locations, i.e., the mesh size may become a function h(x).
Among all finite element discretisations one has to select a sequence satisfying
lim maxx h(x) = 0. Usually, the triangulations τi of this sequence are not chosen
independently, but given a triangulation τi the next one, τi+1, is obtained by local

refinement. The question arises where to refine the grid.

The adaptation by local grid refinement is the most important example which
we shall discuss below. For completeness, also other subjects of adaptation are
mentioned. (i) Another possibility is to adapt the order of the finite element
functions (hp-method). (ii) Usually, one avoids flat (almost degenerated) triangles.
However, under certain circumstances, flat triangles with a prescribed direction of
the longest side are desired. Therefore, the orientation and degree of degeneration
is a possible subject of adaptation. (iii) The kind of discretisation technique may
change in different subregions of the boundary value problem.

17The minimisation over certain discretisation parameters is a problem of a much higher com-
plexity than the original task. Hence, the final costs is not Costs(pi) for a suitable i, but Costs(pi)
plus a large overhead for the minimisation.

Documenta Mathematica · Extra Volume ICM 1998 · I · 235–254

From Classical Numerical Mathematics . . . 245

3.2.3 Why should be Adapted?

A uniform step size is (almost) optimal, if the function to be approximated is
uniformly smooth. In practice, one has to approximate functions with different
smoothness in different parts, e.g., (i) very smooth in one part Ω(i) of the domain
and (ii) less smooth in another part Ω(ii). Then the mesh size might be constant
(= h∗(i)) in Ω(i) and constant (= h∗(ii)) in Ω(ii) but with h

∗

(i) ≫ h∗(ii). Choosing the
uniform but coarse mesh size h = h∗(i) everywhere, we result in a large discretisation
error because of the bad approximation in Ω(ii). On the other hand, the uniform
choice h = h∗(ii) gives (by definition) a satisfactory discretisation error, but because
of h∗(ii) ≪ h∗(i), this grid is much too fine in Ω(i) and leads to a total dimension
much larger than necessary.

Often, a further situation arises: (iii) The function has singular derivatives at
a certain point x0. Then, one needs a mesh with h∗(x) decaying in a certain way
as x approaches x0. Note that h∗(x) takes very small values only in very smalls
parts of the domain. Choosing such a fine grid everywhere would be a huge waste
of computer time.

Altogether, one has to construct a mesh with local mesh width h(x) ≤
h∗(i), h

∗

(ii), h
∗(x) in the respective parts.

3.2.4 What makes Adaptation Difficult?

The reason for the different choices of h(x) is the smoothness of the function u(x)
to be approximated. In simple cases like quadrature, the function u and possibly
its derivatives are explicitly available. A different situation occurs in the case of
differential equations. Here, the function u is the quantity we are looking for. The
question arises whether we can get the information about the smoothness of u
before we have computed the approximation of u.

The answer to the latter question is that an iterative approach is used. Start-
ing with a rough approximation of u0, one tries to find informations for adapting
the mesh from which the next approximation u1 is computed, etc.

This iteration combines the discretisation process and the solution process,
since they are performed in a cyclic manner.

3.2.5 How to Control the Adaptation?

There are cases, where the adaptation to the problem can be designed a priori,
but, usually, the adaptation process is done a posteriori, more precisely, during
the computational process. For the a posteriori adaptation, we have to describe
the control mechanism steering the details of the adaptation.

A general strategy to this respect consists of two fundamental considerations:

• The discretisation error is to be described as a sum of local errors. Usually,
the local residuum is such a tool.

• The desired situation is the equidistribution of the local errors. That means,
one tries to adapt the mesh so that all local errors are equally sized. The

Documenta Mathematica · Extra Volume ICM 1998 · I · 235–254

246 W. Hackbusch

argument is that a locally small error is a waste of computation without
improving the global error essentially.

The control mechanism is first explained for the ‘memory oriented choice’ ex-
plained in §3.1. In this case, one refines as long as further storage is available. The
only critical decision is where to refine the finite element grid. For this purpose, a
lot of ‘error indicators’ exist which indicate where (possibly) the error is dominat-
ing. Many of these criteria are heuristic. The theory-based error estimators are
explained below.

The ‘accuracy oriented choice’ from §3.1 requires two decisions. First, we need
an indication that the discretisation error is below the required accuracy ε. In the
negative case, we have to decide where to refine locally (as discussed above). Both
decisions are supported by the error estimators explained in the next Subsection.

In particular in time dependent problems, not only an adaptive refinement
but also a coarsening may be necessary.

3.3 Error Indicators and Estimators

The a posteriori error estimators, first introduced by Babuška and Rheinboldt18,
are a fundamental tool for the adaptive refinement. Let τ be a triangulation of the
domain Ω, i.e., Ω is the disjoint union of the elements ∆ ∈ τ. The finite element
solution for the triangulation τ is denoted by uτ . Then, the error estimator has
the form

Φ(uτ) =
√

∑

∆∈τϕ∆(uτ),

where ϕ∆ is a computable19 function depending only on the data restricted to ∆
(or its neighbourhood). Denoting the error of uτ by e(uτ) (e.g., e(uτ) = ‖u− uτ‖
for a suitable norm ‖·‖), we would like to have constants A,B such that

AΦ(uτ) ≤ e(uτ) ≤ BΦ(uτ).

If e(uτ) ≤ BΦ(uτ) holds, Φ is called reliable since knowing its value we can
guarantee an error estimate. If AΦ(uτ) ≤ e(uτ), Φ is called efficient since we
avoid overestimation.

3.4 Combination of the Discretisation and Solution Process

In the beginning, we said that in the classical form of Numerical Mathematics
the discretisation of the continuous problem and the algorithm for the discrete

18See Babuška-Rheinboldt: A posteriori error estimates for the finite element method. Int. J.

Numer. Meth. Engrg. 12 (1978) 1597-1615. For a recent survey see Verfürth: A review of a
posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner 1996.

19To be quite precise, there are two alternatives to be considered. 1) If ϕ∆ is a mathematical
expression including integration, we can obtain reliable error estimates. 2) For computational
purposes, such a ϕ∆ (e.g., the integration contained in ϕ∆) must be discretised and yields an
algorithm ϕ̃∆. Then, Φ cannot be reliable in general without (a priori) assumptions on the
smoothness of the integrands.

Documenta Mathematica · Extra Volume ICM 1998 · I · 235–254

From Classical Numerical Mathematics . . . 247

problem were well separated. With the adaptive approach we have reached a new
level, where a new kind of algorithm is directly applied to the continuous problem,
i.e., the design of the discretisation has become a part of the solution algorithm
itself.

The reason for this development is not only the efficacy we want to obtain, but
also the huge amount of data. As long as we compute only few numbers, we may
be able to judge their quality and possibly improve the discretisation. However,
when we compute a massive set of data corresponding, e.g., to a relative dense
three-dimensional grid, we have already problems to perceive the data. We need
special visualisation tools to interpret the computed results. The judgement of
their accuracy is even more difficult. Therefore, it is an obvious consequence that
the control over the discretisation process is given to the algorithm itself.

The new kind of algorithm can be considered as a triple (D,A,H), where
D is the discretisation method (offering a large variety of discrete problems, e.g.,
all finite element triangulations), A are the algorithms for solving the discrete
problems produced by D, while the heuristic H is the adaptive strategy controlling
the discretisation process.

3.5 Hierarchy plus Adaptivity

In the following, we discuss the hierarchy of grids used by the multi-grid method.
Then adaptive approaches can be realised in two ways.

1) Global grids. Let {Gℓ : ℓ = 0, 1, . . . } be the sequence of grids (finite element
meshes etc.), where Gℓ+1 is constructed adaptively from the solution xℓ in grid
Gℓ.

2) Local grids. Let G′

0 = G0 be a starting grid and denote by G′

ℓ the regular
refinement (ℓ partitioning steps in all elements). An adaptive (local) refinement
G1 of G0 can be considered as a union of G10 := G′

0 and of a subset G11 ⊂ G
′

1. In
general, a local refinement Gℓ is a union of subsets Gℓ,k ⊂ G

′

k (0 ≤ k ≤ ℓ).
The second approach works also for the wavelet hierarchy: There the local

refinement is replaced by adding the wavelet functions ψ(2ℓx − k) of level ℓ for
only few shifts k.

So far, the hierarchical structure does allow adaptivity. Of course, extra
overhead occurs to administrate the additional description of the local grid details.

4 Parallelism

The costs of an algorithm are not determined by mathematics but by kind of
computing tools. If the technology is changing also the valuation of algorithms
might change. For instance, on a vector computers Costs(AI)<Costs(AII) may
hold, although algorithm AI requires more scalar operations than AII , provided
that AI exploits the vector operations.

In the last decade, the parallel computer became available which allows to
perform the computation in parallel on a number of processors, provided the com-
putations are independent. In the optimal case (optimal balance, no overhead) the
computation time decreases by the factor p=number of processors. Another effect

Documenta Mathematica · Extra Volume ICM 1998 · I · 235–254

248 W. Hackbusch

is the enlarged storage (p times the storage of each processor), provided that the
algorithm can use the distributed memory. Since, in the optimal case, speed and
storage increases by the same factor, the considerations of §2.1 show that also the
parallel algorithms must be of linear complexity.

Let a sequential algorithm As be given. One can try to construct a parallel
algorithm Ap which yields identical results. For its construction, one needs at least
a data decomposition.

Usually, one tries to construct a special parallel algorithm. One strategy for
its construction is the problem decomposition of the full problem into subtasks.

4.1 Composition, Decomposition

4.1.1 Composition

Often, large scale problem are obtained by composing subproblems. Difficulties in
the decomposition process may possibly arise from

a) different kinds of differential equations and/or integral equations in the
subproblems,

b) different coordinate systems in the subproblems,
c) different discretisations in the subproblems,
d) non-fitting meshes even when all subproblems are discretised by the same

kind of finite elements.
The coupling conditions, which are similar to the boundary conditions, must

be integrated into the complete problem. If the meshes do not fit, one has to
ensure the connection in a weak sense, e.g., by Lagrange multipliers (so-called
‘mortar element method’).

4.1.2 Decomposition

The decomposition of the whole problem into subproblems can have different rea-
sons:

1) software is available for the specific subproblems,
2) the iterative scheme makes use of the solution of the subproblems,
3) the problem must be decomposed to use a parallel computer.
Another question is how the complete problem can be divided. Two different

approaches are relevant:
a) The given problem is already a composed problem, then the obvious can-

didates for the subproblems are the basic components.
b) If the given problem is uniform, a partitioning must be defined. Differently

from a), the number of subtasks can be chosen according to the number of available
processors.

Reason 1) is, in particular, important for large scale problems which are im-
plemented by a team where each expert is responsible for a particular subtask.

Reason 2): For iterative schemes20, it is a standard approach to correct the

20Details in Chapter 11 of Hackbusch: Iterative solution of large sparse systems of equations.
Springer, New York 1994.

Documenta Mathematica · Extra Volume ICM 1998 · I · 235–254

From Classical Numerical Mathematics . . . 249

actual approximation by a solution of a simpler problem21, where the ‘simpler
problem’ is obtained by neglecting the coupling of subproblems. The simplest
subproblems of a system (1) are the separate n scalar equations. Solving the
ith scalar equations with respect to xi yields the classical Jacobi and Gauß-Seidel
iteration. Since a partitioning according to Approach a) is obvious, we consider the
Approach b). In the context of elliptic pde’s discretised over a mesh in the domain
Ω, one can partition Ω into subdomains Ωi (together with their meshes) such that
∪Ω̄i = Ω̄. This leads to the domain decomposition method. The decomposition
may also use overlapping domains. Since the first domain decomposition method
(with two overlapping domains) was used by H. A. Schwarz (1870) to prove the
existence of a holomorphic function in a composed domain, these iterations are
also called Schwarz iteration.

The use of parallel computers for domain decomposition methods is obvious:
The solution of the ith subproblem on Ωi involves intensive computations on the
ith processor. Afterwards communication is needed to initialise the next iteration
step, but the communication concerns only the overlapping region or in the sim-
plest case only the common interior boundary. Since the communication involves
only a rather small part of all unknowns, there is a hope for a good speed-up
factor.

However, the use of the domain decomposition principle only cannot be suc-
cessful. If p is the number of subdomains (and parallel processors), the overlapping
Schwarz method does lead to a speed-up by p, but the convergence speed of the
iteration slows down by the same factor. Therefore, in the meantime it is well-
accepted that one has to add a coarse-grid subspace.22 This makes the domain
decomposition approach very similar to the multi-grid method: The coarse-grid
correction has a larger step size ratio hfine/hcoarse, while the subspace solutions
form the smoothing process of the two-grid iteration.

The addition of the coarse-grid subspace leads to a generalisation of the do-
main decomposition principle: The decomposition of the vector space into sub-
spaces. The resulting notation of a subspace iteration is general enough to describe
the domain decomposition methods as well as the multi-grid iterations. The the-
ory developed so far23 is more or less restricted to positive definite system matrices
A. Applied to multi-grid iterations, the results use weaker assumptions but yield
also weaker convergence results.

4.2 Interaction of these Principles

4.2.1 Hierarchy plus Decomposition

The hierarchy can be considered as a vertical structure providing problems of differ-
ent discretisation levels, whereas the decomposition yields an horizontal structure.

21Let W be ‘close’ to A but such that Wy = d is easy to solve. Then the iterative scheme
xnew = xold −W−1(Axold − b) requires the solution of Wy = d with d = Axold − b.

22Divide the domain Ω into pieces Ωi of size H and introduce a global mesh of size h. Then
the coarse-grid mesh has size H.

23Survey in Xu: Iterative methods by space decompositions and subspace correction. SIAM

Review 34 (1992) 581-613.

Documenta Mathematica · Extra Volume ICM 1998 · I · 235–254

250 W. Hackbusch

These structures are essentially orthogonal and do not conflict with each other.

The traditional domain decomposition method has two hierarchy levels, the
global problem and many local subproblems. It is possible to repeat the domain
decomposition principle for each subproblem. Another possibility is to use the
same decomposition structure over all levels on the hierarchy. This is the standard
approach for data decomposition for the purpose of parallel computations.

Hierarchy plus parallelism may create a specific problem. Usually, the algo-
rithm works sequentially over the hierarchy levels. If the lower levels are connected
with coarser grids and therefore less computational work, the communication part
may predominate.

4.2.2 Decomposition plus Adaptivity

When using the decomposition for parallelising, the idea is to associate each sub-
problem with one of the processors. At the starting time of each iteration step,
all processors must get the new (boundary and right-hand side) data for the sub-
problems. Since the iteration cannot proceed before all results are collected, one
should ensure that all subtask computations need almost the same time. This
requirement can be satisfied by creating subdomains with nearly the same number
of unknowns.

In this case, adaptivity leads to a severe conflict. By definition, the adaptive
refinement yields locally different changes. One subdomain may be strongly re-
fined, whereas another one remains unchanged. Obviously, even if the dimensions
of the subtasks are equidistributed initially, the subproblems may lose their bal-
ance. Without a rearrangement of the subdomains, the parallel algorithm becomes
poor.

The rearrangement process is called load balancing. On the one hand side,
the load balancing must be cheap in order not to spoil the overall performance
time. On the other hand, the load balancing is a very delicate task because a) the
optimal decomposition is NP-hard, b) the subdomain data to be rearranged on one
processor are distributed over different processors. It becomes even more difficult
in the multi-grid case where also the vertical level structure is to be considered.24

If the load balancing is successfully implemented, the algorithm decides not
only about the termination (when the accuracy is reached) and local refinement,
but also about the decomposition structure.

5 Modelling and Implementational Aspects

5.1 Modelling

We started with an approximation (discretisation) separated from the algorithm
for the discrete problem. As shown in §3.4, both have become more and more
intertwined. However, the mathematical problem from (2a) is not really fixed.
Usually, it is the result of a modelling process for some problem from outside

24See Bastian: Parallele adaptive Mehrgitterverfahren. Teubner, Stuttgart 1996.

Documenta Mathematica · Extra Volume ICM 1998 · I · 235–254

From Classical Numerical Mathematics . . . 251

mathematics (e.g., mechanics; see (3a)). The modelling process may be an ap-
proximation25 by itself. The model might be more or less involved, certain aspects
may be neglected or simplified or represented in full detail. Often, the details of
the modelling process should be related to the accuracy required for the discrete
problem. This gives rise to a hierarchy of models.

physical (chemical etc.) problem (3a)

↓ modelling process (3b)

mathematical problem, e.g., pde (3c)

↓ discretisation process (3d)

discrete problem, e.g., system of equations (3e)

computer ←→ ↓ solution algorithm (3f)

discrete solution (3g)

From the mathematical point of view it is very interesting when the model
hierarchy leads to different scales in the solution. Such different scales may be time

scales for time-dependent problem: Certain processes are much faster than others
(e.g., mechanical changes faster than thermal ones or chemical reactions faster than
the flow dynamics). This gives rise to interesting discretisation techniques. The
consideration of scales in the discretisation can also be regarded as an adaptation
process (using the smallest time scale for all components would be a waste of
computer time).

Details in a model may also lead to geometric scales. The diameter of the do-
main (of the boundary value problem Lu = f) is the coarsest scale. The coefficient
function of L may be oscillatory giving rise to the wavelength as next geometric
scale. In regular cases, the homogenisation technique offers a tool to split the true
solution into a sum of a homogenised part and the details.

5.2 Implementation

In (3f) the box ‘computer’ should indicate the interaction of the solution algorithm
with the computer. This includes that the algorithm depends on the computer
architecture. Another important software aspect is mentioned next.

The steadily increasing volume of the data and the increasing problem com-
plexity on the one hand and the development in the computer architecture on the
other hand have made the implementation more and more involved. Although al-
gorithms and computers have become faster, the act of implementation consumes
an increasing time of work. Since Scientific Computing needs extensive software,
its production (i.e., the implementation process) must become a scientific topic of
Scientific Computing by its own.26

25This approximation process is meant when engineers speak about a simulation.
26For a positive example see Bastian et al.: UG - A flexible software toolbox for solving partial

differential equations. Computing and Visualization in Science 1 (1997) 27-40.

Documenta Mathematica · Extra Volume ICM 1998 · I · 235–254

252 W. Hackbusch

6 Treatment of Non-Sparse Matrices

The request of linear complexity is very restrictive and seems to exclude, e.g., the
treatment of linear systems with a full matrix, since then even simple operations
like the matrix-vector multiplication are of quadratic complexity. The survey is
concluded by a discussion of this problem.

6.1 Boundary Integral Equations

A linear and homogeneous boundary value problem Lu = 0 in a domain Ω ⊂ R
d

can be reformulated as an integral equation of the form λu(x) = (Ku)(x) + g(x)
for x ∈ Γ with the boundary integral operator

(Ku)(x) :=

∫

Γ

k(x, y)u(y)dΓy

defined on the boundary Γ = ∂Ω. The kernel k is the fundamental solution of L
or some derivative.

The advantage of the boundary integral representation is due to the fact that
the domain Ω with spatial dimension d is replaced by a manifold of dimension
d− 1. Using elements of size h, the discretisation of Ω requires O(h−d) elements,
whereas Γ leads to only n = O(h1−d) elements. In particular for exterior problems
(where Ω is infinite), the integral equation is much simpler.

The disadvantage of the integral equation is caused by the fact that a dis-
cretisation of an integral operator (the so-called boundary element method) leads
to full matrices (instead of the sparse ones for the local differential operators).
For the interesting case d = 3, one finds that the boundary element method with
dimension n = O(h1−d) is cheaper than the standard finite element method only
if the complexity is better than O(n3/2). In particular, O(n2) complexity cannot
be accepted.

This is a typical situation, where the full matrix A with its n2 entries seems to
prevent any algorithm from better complexity than O(n2). Indeed, yet the compu-
tation of the system matrix A consumes O(n2) operations where the constant may
be rather large. Hence, first of all the use of the full matrix A must be avoided
and replaced by a matrix (linear mapping) which can be described by (almost)
O(n) data. One might ask why this should be possible. The reason is that the
pseudo-differential operator K has quite similar properties as standard differential
operators. The latter ones can be approximated by sparse matrices depending on
only O(n) data.

Essentially, there are two different approaches for a realisation:

• Matrix compression. One can look for a special discretisation of K such that
most of the entries of A are extremely small so that their replacement by zero
yields an (almost) sparse matrix Ã. Such a discretisation can be obtained by
a Galerkin approach based on suitable wavelet functions.27

27The delicate requirement is that the entries which should be suppressed must be known before

Documenta Mathematica · Extra Volume ICM 1998 · I · 235–254

From Classical Numerical Mathematics . . . 253

• Panel clustering. Given any discretisation of K with system matrix A, one
can try to approximate A by another matrix Ã which is easily describable
by almost O(n) data. This ensures that only almost O(n) data are to be
stored. Furthermore, the matrix-vector multiplication x 7→ Ãx must be per-
formable by almost O(n) operations. This is achieved by the panel clustering
method.28 The main idea is the replacement of the (smooth) kernel func-
tion k in the far-field. Different from the wavelet matrix compression, the
panel clustering method is not a discretisation by itself but can be combined
with any collocation or Galerkin method. Further, it is independent of the
smoothness of the boundary Γ.

In both cases, one can prove that the replacement of A by Ã yields an addi-
tional error which is of the same size as the discretisation error or even smaller.

6.2 General Non-Sparse Systems

Recently, L. N. Trefethen (Oxford) posed a number of maxims of which the twenty
first one reads as follows:

• Is there an O(n2+ε) algorithm29 for solving an n×n system Ax = b? This is
the biggest unsolved problem in numerical analysis, but nobody is working
on it.30

Since the multiplication of a full matrix times a vector costs O(n2) opera-
tions, a sufficient condition would be that the inverse A−1 can be computed by an
O(n2+ε) algorithms. Unfortunately, I cannot offer such an algorithm. Instead, I
would like to ask whether for a restricted (but interesting) subclass of problems,
the following related question can be answered:

• Is it possible to compute a good approximate B of the inverse A−1 by almost
O(n) operations such that B requires a storage of almost O(n) and such that
the multiplication of B by an n-vector b costs almost O(n)?

At first sight, this seems impossible, since in general A−1 is a full matrix with
n2 entries. Indeed, for the exact inverse B = A−1 we find only very few positive
examples. However, as in the panel clustering method mentioned above, it may
be possible to find an approximation B ≈ A−1 with this property.

In fact, it is possible to give a positive answer to the latter question if A
is a discretisation of an elliptic operator including pseudo-differential operators.
Because of the hierarchical structure of the applied matrix representation, we call
the set of approximating matrices H-matrices.31 The precise results are as follows:

their computation. For details see, e.g., Schneider: Multiskalen- undWavelet-Matrixkompression.
Teubner, Stuttgart 1998.

28See, e.g., §9.7 in Hackbusch: Integral equations. ISNM 120, Birkhäuser, Basel 1995.
29Obviously, it is meant that ε may be any positive number. For a system with a full matrix

A, which cannot be represented by less than n2 data, N = n2 + n is the data size of the input
data (A, b). Therefore, an O(n2) = O(N) complexity for solving Ax = b is linear complexity!

30SIAM News, vol 31, No 1 (1998) page 4.
31Details will be in a forthcoming paper.

Documenta Mathematica · Extra Volume ICM 1998 · I · 235–254

254 W. Hackbusch

- the storage of the H-matrix data is of the size O(n log n),
- the (approximate) sum of two H-matrices costs O(n log n),
- the (approximate) product of two H-matrices costs O(n log2 n),
- the (approximate) product of an H-matrix with an n-vector costs O(n log n).
Since the inverse can be obtained by multiplications (by suitable transforma-

tion matrices), also the (approximate) inversion of an H-matrix costs O(n log2 n)
operations.

Even if one wants to perform the usual iterative techniques, often a Schur
complement occurs which is of the form S = D − BA−1C. Since the Schur com-
plement contains the inverse matrix A−1, S is usually a full matrix. Therefore,
one can neither represent the matrix S nor its inverse in the standard form. Up to
now, the only remedy is to know a good preconditioner for S. Then it is enough to
have an efficient algorithm for the matrix-vector multiplication x 7→ Sx which can
make use of the representation S = D −BA−1C. The H-matrix algorithm opens
new possibilities, since the explicit approximate computation of S = D −BA−1C
can be performed, provided that A,B,C,D are H-matrices.

Wolfgang Hackbusch
Universität zu Kiel
Olshausenstr. 40
D-24098 Kiel, Germany
wh@numerik.uni-kiel.de

Documenta Mathematica · Extra Volume ICM 1998 · I · 235–254

