
Doc.Math. J.DMV 255

Dynamis, Topology, and Holomorphi Curves

Helmut H. W. Hofer

Abstract. In this paper we describe the intimate interplay between cer-
tain classes of dynamical systems and a holomorphic curve theory. There
are many aspects touching areas like Gromov-Witten invariants, quantum
cohomology, symplectic homology, Seiberg-Witten invariants, Hamilto-
nian dynamics and more. Emphasized is this interplay in real dimension
three. In this case the methods give a tool to construct global surfaces
of section and generalizations thereof for the large class of Reeb vector
fields. This class of vector fields, includes, in particular, all geodesic flows
on surfaces.
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1 Periodic orbits of dynamical systems

Symplectic and contact geometry as well as Hamiltonian dynamics experienced in
the last decade a tremendous growth. In order to cover some aspects in a certain
depth one faces the serious dilemma of making a selection. Rather than touching
many areas, it seems more appropriate to focus only on a few aspects. The choice
made here was to describe the subtle relationship between Hamiltonian dynamics,
topology and a theory of holomorphic curves. So many aspects are only briefly
mentioned or even ignored. However, they are being dealt with in other papers
contained in the proceedings of the ICM Berlin. In particular the contributions by
S. Donaldson, Y. Eliashberg, K. Kuperberg, D. McDuff, J. Moser, L. Polterovich,
Y. Ruan and C. Taubes.

The aim of this paper is to explain some of the recent progress at the interface
of Hamiltonian dynamics and symplectic geometry. In order to appreciate the
special features of (certain) Hamiltonian dynamics versus general dynamics we
begin with the following classical problem.

In 1950 Seifert, [79], raised the question if a given non-singular vector field X
on the three-sphere admits a periodic orbit:

ẋ = X(x) and x(0) = x(T ), T > 0.
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As it turned out this is a subtle problem. In higher dimensions Wilson, [87],
provided in 1966 examples of non-singular vector fields on S2n−1, n ≥ 3, without
periodic orbits. However, dimension three poses more difficulties due to lack of
room in order to make some of the higher dimensional ideas work. After all,
destroying periodic orbits, which are 1-dimensional sets, should be easier in higher
dimensions.

In 1974 Schweizer, [77], showed that there exist non-singular C1-vector fields
on S3 without any periodic orbits. The regularity of the counterexample was
strengthened to C2 in [36]. In 1994 the question was finally settled by K. Kuper-
berg, [59], who constructed a real analytic counterexample.

Theorem 1.1 (K. Kuperberg) There exists a nowhere vanishing real analytic
vector field on S3 without any periodic orbit.

So, asking for periodic orbits, given an arbitrary smooth vector field on S3

(and as the method shows on any three-manifold) is not a good question if we only
know little about the dynamical system. On the other hand, at the end of the
seventies most notably by Rabinowitz, [74, 75], and Weinstein, [85], there were
some positive results concerning special vector fields coming from Hamiltonian
systems. Rabinowitz’s somewhat more general result is the following:

Theorem 1.2 (Rabinowitz) A regular energy surface of an autonomous Hamil-
tonian system in R

2n, which bounds a star-shaped domain, carries a periodic orbit.

Weinstein proved a slightly weaker result assuming that the energy surface bounds
a convex domain.

Figure 1: A starshaped energy surface is diffeomorphic to a sphere centered at
some point via radial transformation.

We note that from a symplectic purist’s point of view the results are not sat-
isfactory, since the assumptions are not invariant under symplectic (or canonical)
transformations.

Abstractly speaking we have here an existence result for certain non-singular
vector fields on spheres S2n−1. What is interesting now, of course, is the cut-off
line between “Guaranteed Existence” and “Possible Non-Existence”.

Based on the above mentioned results by Rabinowitz and his own contribu-
tion, Weinstein made in 1978 a conjecture, [86], which together with the earlier
Arnold conjectures, [2], in symplectic fixed point theory had a tremendous impact.

Rabinowitz’s result were extremely important, in particular psychologically,
since the degenerate and indefinite classical Hamiltonian variational principle was
used for the first time to study existence problem of periodic orbits in Hamiltonian
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dynamics. One should keep in mind that this variational principle was thought to
be only formal and completely useless for existence questions.

There were a certain number of difficulties to overcome. First of all one
had to find a suitable functional analytic set-up, secondly one had to deal with
the problem that apriori the Morse indices of the critical points of the functional
had infinite Morse-index and co-index, so that (Palais-Smale type) Morse-theory
in infinite-dimensional spaces would indicate that there is no relationship between
the critical points and the topology of the underlying space, which in our case is the
free loop space of the underlying symplectic manifold. Shortly afterwards Conley
and Zehnder, [15], showed how the action principle by means of the Conley-index
theory could be used to do symplectic fixed point theory, by proving a symplectic
fixed point theorem for tori. Extensions of the methods for more general manifolds
were however obstructed by immense technical difficulties. In 1985, Gromov, [34],
introduced PDE-methods to symplectic geometry (the theory of pseudoholomor-
phic curves), “ignoring” however the underlying variational structure. (The word
“ignoring” might be somewhat too strong here. The variational structure enters
in the theory in the disguise of area bounds, which are of course extremely (in fact
intrinsically) important in Gromov’s theory.)

Then in 1987, Floer, [25], brought together the Conley-Zehnder variational
point of view and Gromov’s PDE methods and constructed his famous (symplec-
tic) Floer homology theory. After that there were still some serious obstacles to
overcome. For example, that the symplectic fixed point problem is not variational
in general, but rather comparable with doing Morse-theory for a closed 1-form.
(This calls for a Novikov-type Floer-theory, which was carried out in [43].) Besides
that, the notorious difficulty of understanding holomorphic spheres in symplectic
manifolds and in particular multiple covered spheres hindered progress for quite a
while. Recently these difficulties were overcome, see in particular [30, 64, 63].

After this historical excursion let us state the Weinstein conjecture.

Conjecture 1.3 (Weinstein) LetM2n−1 be a (2n−1)-dimensional closed man-
ifold and X a non-singular smooth vector field. Assume there exists a 1-form λ
having the following properties:

λ ∧ dλn−1 is a volume form,

dλ(X, ·) = 0,

λ(X) > 0.

Then X has a periodic orbit.

We call a 1-form λ a contact form if λ∧ dλn−1 is a volume form. We observe
that a contact form defines a non-singular vector field X by

iXdλ = 0 and iXλ = 1. (1)

This uniquely determined vector field X is called the Reeb vector field associated
with the contact form λ. Clearly, if f :M → (0,∞) is a smooth function, then the
vector field X admits a periodic orbit if and only if fX admits a periodic orbit.
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Therefore there is no loss of generality assuming in the Weinstein conjecture that
X is a Reeb vector field. Note that λ defines a hyperplane distribution ξ →M by

ξ = kern(λ).

This plane field distribution is completely non-integrable. It is called a contact
structure. We refer the reader to Arnold’s book, [3], appendix 4, for more basic
information about contact structures.

For our purposes we note here, that given a contact form on a three-
dimensional manifold, there can always be introduced local coordinates (x, y, z) in
which the contact form λ is given by λ = dz + xdy.

Figure 2: The local model for a contact structure in dimension three

At first glance the hypothesis in the Weinstein conjecture seems mysterious.
However, some work reveals that it is has a geometrically compelling meaning.
Namely M may be viewed as an element of a smooth 1-parameter family of mu-
tually different Hamiltonian energy surfaces Mδ, δ ∈ [−δ0, δ0] (with M0 = M) in
[−δ0, δ0]×M equipped with a suitable symplectic structure, so that flows on two
different energy surfaces are conformally symplectically the same. In particular
the flows on any two such energy surfaces are conjugated.

So, for example, if one of these energy surfaces contains a periodic orbit, so
do the others. One can reformulate the Weinstein conjecture as follows.

Conjecture 1.4 (Weinstein) Assume (W,ω) is a symplectic manifold and H :
W → R a smooth Hamiltonian, so that M := H−1(E) is a compact regular
energy surface (for some energy E). If there exists a 1-form λ on M such that
λ(XH(x)) 6= 0 for x ∈M and dλ = ω|M , then there exists a periodic orbit on M .

Here XH is the Hamiltonian vector field defined by

iXH
ω = −dH.

Both formulations of the Weinstein conjecture are equivalent.
Having this in mind one can appreciate the following result. Consider the

symplectic vector space (R2n, ω). The symplectic form is defined by

ω =

n∑
j=1

dqj ∧ dpj .
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Recall, that given an autonomous Hamiltonian H : R2n → R we have the associ-
ated Hamiltonian system

ż = XH(z). (2)

Denote by ΣH the set of all E ∈ image(H) such that there exists no periodic
solution (z, T ) of (2) with H(z) = E. Now the following almost existence result
holds, which tells us that periodic orbits are a common phenomenon and that
there are usually many of them.

Theorem 1.5 Let H : R2n → R be a smooth Hamiltonian satisfying H(z) → ∞
if |z| → ∞. Then measure(ΣH) = 0.

This theorem was essentially proved by Hofer and Zehnder, [54], where it was
shown that the complement of ΣH is dense. The same approach was then pushed
to its limits by Struwe, [81], showing that measure(ΣH) = 0.

This almost existence phenomenon can be understood best within the sym-
plectic capacity theory, see [56]. It holds for more general symplectic manifolds.
However, not for all manifolds, see [37] for some very interesting phenomena.

Nevertheless one might ask if a regular compact energy surface necessarily
carries a periodic orbit. We begin with a positive application. Using Theorem
1.5 we can recover Viterbo’s landmark result, namely the proof of the Weinstein
conjecture in R

2n, [84]:

Corollary 1.6 (Viterbo) Given a closed, connected hypersurface M in
(R2n, ω), admitting a contact form λ such that dλ = ω|M , any Hamiltonian
system having M as a regular energy surface admits a periodic orbit on M .

The proof, based on Theorem 1.5 is obvious. Foliate the neighborhood of M
by conformally symplectic images Mδ, δ ∈ [−1, 1] by using the contact hypothesis.
Assume that M−1 is contained in the bounded component B of R2n \M .

Now define a Hamiltonian H having the property that H−1(δ) = Mδ for
δ ∈ [− 1

2 ,
1
2 ], so that these Mδ are regular energy surfaces. In addition H(z) → ∞

for |z| → ∞.

Figure 3: The level sets for the constructed Hamiltonian H. The Hamiltonian is
constant between a big sphere S and M1.
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An application of Theorem 1.5 shows that for some δ ∈ [− 1
2 ,

1
2 ] there exists a

periodic orbit. Since all these hypersurfaces are conformally symplectically equiv-
alent there is also one on M0 =M . So the theorem can be used to prove existence
results. But is the theorem optimal?

By results of Ginzburg, [31, 32], and Herman, [38, 39] the following holds.

Theorem 1.7 For n ≥ 3 there exists a smooth embedding Φ of [−1, 1]×S2n−1 into
(R2n, ω), such that M0 = Φ({0} × S2n−1) does not contain any periodic solution.

By the almost existence theorem, of course,

measure{δ ∈ [−1, 1] | Mδ contains a periodic orbit} = 2.

So, in some sense, inR
2n, for n ≥ 3, the almost existence result is the best possible.

Nevertheless it is still an open question if Theorem 1.7 holds for n = 2.
At this point we have almost existence results and non-existence results and

an existence result for closed contact type hypersurfaces in R
2n.

Are there manifolds for which one can say that every Reeb vector field on
them has a periodic orbit?

Theorem 1.8 (Hofer) Assume that X is a Reeb vector field on a closed three-
manifold M . Then X admits a periodic orbit if either M is finitely covered by S3,
or if π2(M) 6= {0}, or if the underlying contact structure is overtwisted.

The notion of an overtwisted contact structure is important in three-dimensional
contact geometry.

Definition 1.9 Let λ be a contact structure on the three-manifold M with un-
derlying contact structure ξ = kern(λ). The contact structure ξ is said to be
overtwisted if there exists an embedded disk D ⊂M , such that

T (∂D) ⊂ ξ|(∂D) (3)

TzD 6⊂ ξz for all z ∈ ∂D.

(4)

We call a contact structure tight if it is not overtwisted. (Figure 4 gives an example
of an overtwisted disk).

It is a fundamental result by Bennequin, [6], that the so-called standard con-
tact structure on S3

λ0 =
1

2
[q · dp− p · dq]|S3

is tight.1

In a deep paper (which stunned many of the experts), [20], Eliashberg classi-
fied all overtwisted contact structures for a closed three-manifold M . This classi-
fication can be done in purely homotopy theoretic terms.2 In addition he showed

1Here S3 is viewed as the unit sphere in C2, where the latter is equipped with the coordinates
z = q + ip, q, p ∈ R2.

2There is an “h-principle” in the background.
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Figure 4: An overtwisted contact structure on R
3.

that up to diffeomorphism there is only one (positive) tight contact structure on
S3 but a countable number of overtwisted contact structures and also classified
the contact structures on R

3, see [22, 23]. One should also mention the work by
Giroux, most notably [33], which had a great impact on contact geometry.

2 Periodic orbits in Hamiltonian dynamics and rigidity

As the preceding discussion shows, finding periodic orbits is an “ill-posed” problem
in general, but well-posed” for a certain class of dynamical systems.

From a dynamical systems point of view periodic orbits allow to study the flow
in a neighborhood by means of a return map. In the case of a Hamiltonian system
one can expect already very striking phenomena as Figure 5 shows. The fixed
point 0 in the middle is surrounded by smooth curves, which are invariant under
the return map. These curves where discovered by Moser, [71]. Between these
curves there are orbits of elliptic and hyperbolic periodic points. The stable and
unstable manifolds starting from these hyperbolic points intersect transversally
in so-called homoclinic points. Due to these homoclinic points we have invariant
hyperbolic sets on which the iterates of the return map behave like a Bernoulli
shift. The dotted lines represent the recently discovered Mather-sets, [66]. The
generic existence of the homoclinic orbits was rigorously established by Zehnder,
[90].

Particularly interesting are hyperbolic periodic orbits if they come together
with a (global) homoclinic orbit. Then, if the stable and unstable manifold inter-
sect transversally, a very rich dynamics unfolds near the union of the periodic and
the homoclinic orbit.

Surprisingly, there is an additional dimension to the periodic orbits, which
only in the last ten years has become apparent . Namely the importance of periodic
orbits in a symplectic rigidity theory. They are the objects which carry important
symplectic information. Let us mention two of these constructions. The first is a
symplectic capacity introduced by Hofer and Zehnder, [55]. Consider the category
S2n consisting of all of all 2n-dimensional symplectic manifolds (with or without
boundary) as objects and the symplectic embeddings as morphisms.

For every symplectic manifold (W,ω) in S2n we consider the collection
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Figure 5: The dynamical complexity near a generic elliptic periodic orbit, as seen
for the return map of a transversal section.

H(W,ω) of all smooth maps H : W → (−∞, 0] with compact support supp(H)
such that:

• supp(H) ∩ ∂W = ∅.

• There exists a nonempty open set U with H|U ≡ const. = infx∈W H(x).

• Every periodic orbit of the Hamiltonian system ẋ = XH(x) with period
T ∈ (0, 1] is constant.

Then define a number c(W,ω) ∈ [0,∞) ∪ {∞} by

c(W,ω) := supH∈H(W,ω) ‖ H ‖C0 .

These numbers are new symplectic invariants called symplectic capacities and are
by their very nature 2-dimensional invariants of the symplectic manifold (W,ω).
Of course the volume vol(W,ω) =

∫
W
ωn is a 2n-dimensional invariant. The formal

properties of c are:

• If (W,ω) → (V, τ) then c(W,ω) ≤ c(V, τ).

• c(W,αω) = |α| · c(W,ω) for α ∈ R \ {0}.

• c(B2n) = c(Z2n) = π.

Here B2n is the Euclidean unit ball in R
2n and Z2n the unit-cylinder B2×R

2n−2,
both equipped with the induced symplectic structure. 3

If (φt) is a Hamiltonian flow on some symplectic manifold and U is an open
subset then not only the volume of vol(φt(U)) is independent of t but also the
symplectic capacity c(φt(U)).

3The definition of a symplectic capacity is motivated by Gromov’s celebrated (non-)squeezing
theorem, [34, 35]. His theorem leads to a capacity called “Gromov’s width”.
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As it turns out there are many different constructions for symplectic capac-
ities. Some involve the theory of pseudoholomorphic curves, [34], some the least
action principle in Hamiltonian dynamics, [18], and there is even one using a sym-
plectic homology theory, [27]. In reference [18] symplectic rigidity phenomena were
shown for the first time to be related to periodic orbit problems.

Symplectic homology is a realization of the following idea. Assume that we
consider the usual homology theory, but restricted to the category S2n. Since the
spaces have an additional symplectic structure and the morphisms are symplectic
embeddings it seems plausible that the restricted standard (topological) homol-
ogy functor is obtained by composing a forgetful functor with some (much more
complex) symplectic homology functor. Indeed, along these lines a symplectic
homology functor can be constructed depending on three parameters, namely an
integer k and a pair of real numbers a ≤ b. As it turns out the symplectic homol-
ogy for sufficiently nice symplectic manifolds W with boundary is constructed out
of the topology ofM and the periodic orbits for the Hamiltonian flow on ∂W . The
action of the periodic orbits gives a real filtration (leading to the a, b-dependence)
and the Conley-Zehnder indices of the periodic orbits (a substitute for the Morse
index, when seeing periodic orbits as critical points of some Morse function on a
suitable loop space) lead to the integer grading. For more details the reader is
referred to [27], or to [56] for a short overview.

3 Holomorphic curves and the Weinstein conjecture

As it turns out there is a subtle relationship between the dynamics of Reeb vector
fields and an holomorphic curve theory. In order to explain this “holomorphic
connection” we start with a specific example. View S2n−1 as the unit sphere in
C

n. We write the coordinates in C
n as

z = (z1, ..., zn) = (q1 + ip1, ..., qn + ipn)

with zj ∈ C and qj , pj ∈ R. The standard contact form λ0 on S2n−1 is defined
by:

λ0 =
1

2

n∑
j=1

[qjdpj − pjdqj ]|S
3.

The Reeb vector field is given by X0(z) = 2iz, which generates the Hopf fibration
and the contact structure ξ0 is the bundle of complex (n− 1)-planes in TS2n−1.

The idea, which is difficult to motivate apriori, is now the following. Introduce
on R× S2n−1 the complex structure J̃ by requiring that the diffeomorphism

Φ : Cn \ {0} → R× S2n−1, z → (
1

2
ℓn|z|,

z

|z|
)

is biholomorphic, i.e.
TΦ ◦ i = J̃ ◦ TΦ.

Then, one easily verifies that J̃ is given by

J̃(a, u)(h, k) = (−λ0(u)(k), iπ0k + hX0(u)), (5)
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where π0 : TS2n−1 → ξ0 is the projection along X0. Of course under Φ the study
of holomorphic curves in C

n, which avoid the origin is equivalent to studying
holomorphic curves in R× S2n−1. In C

n there is a very nice class of holomorphic
curves, namely the affine algebraic curves. In which way are they distinguished
from an arbitrary holomorphic curve? Denote by Σ the collection of all smooth
maps R → [0, 1] having non-negative derivative and associate to ϕ ∈ Σ the 2-form
on R× S2n−1 defined by

ωϕ = d(ϕλ0),

where (ϕλ0)(a, u)(h, k) = ϕ(a)λ0(u)(k).
The interesting observation is now, [42]:

Proposition 3.1 Assume that A is a connected closed subset of Cn \ {0}. Then
the following statements are equivalent:

1. The closure of A in C
n is an irreducible 1-dimensional affine algebraic curve.

2. There exists a connected closed Riemann surface (S, j), and a finite subset
Γ ⊂ S, and a smooth map ũ : S \ Γ → R× S2n−1 such that

J̃ ◦ T ũ = T ũ ◦ j, (6)

0 < E(ũ) := supϕ∈Σ

∫
S\Γ

ũ∗ωϕ <∞,

ũ cannot be smoothly extended over any point in Γ,

Φ(S) = ũ(S \ Γ).

Clearly T ũ ◦ j = J̃ ◦ T ũ is a non-linear Cauchy-Riemann type equation. If ũ is a
solution, then necessarily ũ∗ωϕ is a non-negative integrand, so that the definition of
E(ũ) makes sense. The estimate E(ũ) > 0 implies that ũ 6≡ const.. The finiteness
of the energy means analytically that given a solution ũ of the Cauchy-Riemann
equation and an R-invariant metric on R × S2n−1, the area of the image of ũ in
any set [c, c + 1] × S2n−1 is uniformly bounded independent of c ∈ R. This, of
course, corresponds to polynomial growth if we view the corresponding curve in
C

n. What is the behavior near the points in Γ (the punctures)?
Near a (non-removable) puncture z0 the image of a tiny punctured disk around

z0 is approximately a half-cylinder [R,∞) × P , where P is a Hopf circle. There
is a suggestive way to generalize the above situation. Namely, consider a closed
manifoldM of dimension 2n−1, equipped with a contact form λ. Make one choice,
by taking a complex multiplication J : ξ → ξ, where ξ = kern(λ), so that

gJ (u)(k, k
′) = dλ(u)(k, J(u)k′)

defines fibre-wise a positive inner product for the bundle ξ →M . Then define an
R-invariant almost complex structure on R×M by

J̃(a, u)(h, k) = (−λ(u)(k), J(u)πk + hX(u)),

where X is the Reeb vector field associated to λ and π : TM → ξ the projection
along X. The definition of E generalizes by replacing ϕλ0 by ϕλ. So our new
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equation becomes

ũ : S \ Γ → R×M (7)

T ũ ◦ j = J̃ ◦ T ũ

0 < E(ũ) <∞.

What is the behavior near a puncture z0 ∈ Γ? There are three mutually exclusive
possibilities.

1. Positive puncture: limz→z0 a(z) = ∞

2. Negative puncture: limz→z0 a(z) = −∞

3. Removable puncture: limz→z0 a(z) =: a0 ∈ R

In the last case the map ũ can be smoothly extended over z0. Let us assume
that for the following ũ has been extended over all removable punctures. We note
that for a solution of (7) the set Γ cannot be empty. Indeed, otherwise by Stokes’
theorem E(ũ) = 0.

The relationship between the solutions of (7) and the periodic orbits of X is
contained in

Theorem 3.2 (Hofer) Let λ be a contact form on the closed (2n − 1)-dimen-
sional manifold M and J be an admissible complex multiplication for the under-
lying contact structure ξ. If (7) has a solution, then there exists a periodic orbit
for the Reeb vector field with period T ≤ E(ũ).

For generic λ the finite energy surface approximates near a puncture a cylinder
over a periodic orbit. Figure 6 on the next page shows a finite energy surface with
two positive punctures and one negative puncture.

In order to use that theorem, one needs to develop methods to find holomor-
phic curves solving (7). Whereas the first existence results were based on adhoc
methods it meanwhile became clear for specialists that there is a (Floer-type)
homology theory in the background. It has already been christened “Contact Ho-
mology”, but doesn’t yet exist as “hard copy”. This theory was envisioned by
Eliashberg and the author in 1993 after the paper [40], and some talks about
special cases were given at various places, in particular at the IAS/Park City sum-
mer institute on symplectic geometry, [24]. To create such a homology theory for
general closed contact manifolds, one encounters certain analytical problems in
counting holomorphic curves, quite familiar from the Arnold conjectures. How-
ever, since the recent solution of the Arnold conjectures overcomes these difficulties
one should be able deal with these problems.

By the previous discussion the Weinstein conjecture has been reduced to find-
ing nontrivial holomorphic curves. The following theorem is the first, dealing with
the solvability of (7). The method used is an Eliashberg-type disk-filling, [21],
based on Gromov’s pseudoholomorphic curve theory. These type of methods are
familiar in the theory of several complex variables, where they are used to study
envelopes of holomorphy, see [5]. The main point here is, however, that it is apriori
known that the analysis involved in the disk-filling has to fail.
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Figure 6: A finite energy surface with 2 positive punctures and one negative punc-
ture

Theorem 3.3 (Hofer) Assume M is a closed three-manifold and λ a contact
form. Let J : ξ → ξ be an admissible complex multiplication for the underlying
contact structure and denote by J̃ the associated almost complex structure on R×
M . If either M = S3, or π2(M) 6= 0, or ξ is overtwisted there exists a solution
ũ of (7) with S = S2 and Γ = {∞}. In other words there exists a finite energy
plane.

We note that Theorem 3.3 implies Theorem 1.8. The proof is based on a care-
ful analysis of certain nonlinear boundary value problems involving a non-linear
Cauchy-Riemann type operator on the disk. One knows for topological reasons
that there cannot be apriori estimates and studies carefully how the estimates fail.
A bubbling-off analysis making extensive use of the R-invariance of J̃ then allows
via reparametrizations to construct these solutions. We refer the reader to the up-
coming book [1] for a very detailed description of the methods, and to [40, 41, 42]
for the original proof and some discussion of the underlying ideas.

In dimension three we can sometimes say more about the nature of the pe-
riodic orbits to which the holomorphic curves are asymptotic. For example, for
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every Reeb vector field on S3 there exists an unknotted periodic orbit, see [52].
Many interesting and surprising examples illustrating how bad arbitrary

Hamiltonian flows can behave in contrast to Reeb flows can be found in [11].

4 Global systems of surfaces of section

On might wonder, if one can say more about the dynamics. Here we restrict our-
selves to the three-dimensional cases for the sole reason that the methods cannot
be employed in higher dimensions.

Assume we are given a closed three-manifold M and a nowhere vanishing
vector field X. We would like to understand the dynamics. A successful idea
going back to Poincaré and Birkhoff, [7], is to find a global surface of section,
reducing the understanding of the dynamics to the problem of understanding a
self-map of a surface. Of course there are topological and dynamical obstructions
in finding such a surface.

Definition 4.1 A global surface of section for (M,X) is a compact surface
(perhaps with boundary) Σ ⊂ M , such that ∂Σ consists of periodic orbits and
Σ̇ = Σ \ ∂Σ is transversal to X, so that in addition every orbit other than those
in ∂Σ hit Σ̇ in forward and backward time.

The surface of section allows to define a return map ψ : Σ̇ → Σ̇. Then the
dynamics is encoded in ψ. Of course, having in mind how complicated flows are,
one really doesn’t expect the existence of such a surface of section. For example,
any surface of section for (S3, X) must necessarily have a boundary. Indeed, if
there is no boundary component, S3 would necessarily fiber over S1, which by the
exact homotopy sequence for a fibration would imply that π1(S

3) 6= {1}. On the
other hand if there is a boundary component there has to be a periodic orbit, which
however need not to exist by Kuperberg’s result. Also, in the volume-preserving
case it is doubtful if something sensible can be said. However, as it turns out, for
Reeb flows on three-dimensional manifolds, a whole theory of surfaces of section
almost intrinsically exists. This theory, which will be discussed now, should be
possible for every (or at least many) three-manifold. However, details have only
been carried out so far for S3.

Let us begin with S3 equipped with the standard structure λ0. Again we let
ourselves be inspired by the model problem. Denote by

Φ : C2 \ {0} → R× S3

the diffeomorphism

z → (
1

2
ℓn|z|,

z

|z|
)

previously defined.
Consider the sets Φ(C×{c}), where c ∈ C\{0}, and Φ((C\{0})×{0}). The

union of these sets is a smooth foliation F of R × S3 consisting of finite energy
surfaces. Observe that we have a natural R-action:

R×F → F , (a, F ) → a+ F,
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Figure 7: The collection of projected surfaces establishes an open book decomposi-
tion of S3

where
a+ F := {(a+ b,m) | (b,m) ∈ F}.

There is one fixed point F0 of this action corresponding to a cylinder over the
periodic orbit P = S1 × {0}:

F0 = R× P.

If the surfaces are projected into S3 the fixed point F0 projects onto the Hopf
circle P and all other surfaces onto open disks bounded by P . The collection
of projected surfaces in fact establishes an open book decomposition of S3 with
disk-like pages, see Figure 7.

What happens if we modify the contact form, but keep the contact structure,
i.e. replace λ0 by λ = fλ0?

In order to study this question it is useful to make the following definition.

Definition 4.2 Let M be a closed three-manifold, λ a contact form on M and
J a complex multiplication for the associated contact structure. A finite energy
foliation F for (M,λ, J) is a 2-dimensional smooth foliation for R×M such that
the following holds:

• There exists a universal constant C > 0 such that for every leaf F ∈ F there
exists an embedded finite energy curve (S,Γ, ũ) for (M,λ, J) satisfying

F = ũ(S \ Γ)

and E(ũ) ≤ C. All punctures Γ are assumed to be non-removable.

• For every a ∈ R and F ∈ F also a + F belongs to F . In particular either
F = Fa or F ∩ (a+ F ) = ∅.

Let us call a contact form λ non-degenerate if all the periodic orbits (x, T ) for
Xλ are non-degenerate in the following sense. Denote by ηt the flow associated to
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X and observe that it preserves λ, so that the tangent map Tηt(x(0)) induces a
map

L(x,t) := Tηt(x(0))|ξx(0) : ξx(0) → ξx(T ).

For every period T > 0 we therefore obtain a self map of xξ(0), which is symplectic
with respect to the structure dλ(x(0)). We say (x, T ) is non-degenerate if 1 does
not belong to the spectrum of L(x,T ).

We assume that we are given a closed three-manifold M and a contact form
λ with associated Reeb vector field X and contact structure ξ. Assuming that
the contact form λ is non-degenerate is a generic condition. Indeed, the following
holds.

Proposition 4.3 Fix a contact form τ on the closed three manifold M . Consider
the subset Ξ1 ⊂ C∞(M, (0,∞)) consisting of all those f such that λ = fτ is non-
degenerate. Let Ξ2 consist of all those f ∈ Ξ1 such in addition the stable and
unstable manifold of hyperbolic orbits intersect transversally. Then Ξ1 and Ξ2 are
Baire subsets of C∞(M, (0,∞)).

The question is now if finite energy foliations exist for given data (M,λ, J). The
answer to this question in general is not known. However, as we will see, we have
existence forM = S3 and generic contact forms λ = fλ0, where λ0 is the standard
contact form and f ∈ Ξ1, provided J is generic as well. In the S3-case it makes
sense to impose more conditions on the finite energy foliation.

First of all one needs to define some index µ(x, T ) for a non-degenerate pe-
riodic solutions (x, T ). This index, the so-called Conley-Zehnder index, [14], is
some kind of Morse index for a periodic orbit of a Hamiltonian system. In our
low-dimensional case the Conley-Zehnder index can be interpreted as an integer-
measure of how orbits infinitesimally close to a periodic orbit twist around it with
respect to some natural framing, see [42] for a detailed discussion.

Next one defines another index for a finite energy surface by

ind(ũ) = µ(ũ)− χ(S) + ♯Γ,

where χ(S) is the Euler characteristic of the underlying closed Riemann surface, ♯Γ
is the number of punctures, and µ(ũ) = µ+−µ− is the total Conley-Zehnder index,
which is computed as follows. The number µ± is the sum of the Conley-Zehnder
indices of the periodic orbits associated to the positive and negative punctures,
respectively.

The index ind(ũ) has an interpretation as a Fredholm index, describing the
dimension of the moduli space of nearby finite energy surfaces, having the same
topological type and number of punctures, which are allowed to move as well as
the complex structure on S in Teichmüller space, see [49]. In the following we
shall call a solution

ũ : S2 \ Γ → R×M

of the non-linear Cauchy-Riemann equation with finite (but nontrivial) energy
having only non-removable punctures a finite energy sphere. If Γ = {∞} we call
it a finite energy plane.
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Definition 4.4 Let λ = fλ0 be a non-degenerate contact form on S3 and J a
complex multiplication for ξ0. A stable finite energy foliation for (S3, λ, J) is a
finite energy foliation with the following properties:

1. Every leaf of the foliation is the image of an embedded finite energy sphere.

2. For every leaf the asymptotic limits are simply covered, their Conley-Zehnder
indices are contained in {1, 2, 3} and they have self-linking number −1. 4

3. Every leaf has precisely one positive puncture, but an arbitrary number of
negative punctures.

4. For every leaf F , parametrized by a finite energy sphere ũ, which is not a
fixed point for the R-action, we have ind(ũ) ∈ {1, 2}.

Figure 8 on the next page shows an example.
The following result gives the existence of finite energy foliations.

Theorem 4.5 For every choice of f ∈ Ξ1 there exists a Baire set of admis-
sible complex multiplications J admitting a stable finite energy foliation F of
(S3, fλ0, J).

We shall not give a proof of the results concerning finite energy foliations in
this overview, but refer the reader to the forthcoming paper [53].

Given a stable finite energy foliation of S3, one can show that the projected
surfaces establish a singular foliation of S3 which gives a smooth foliation trans-
verse to the flow in the complement of a finite number of distinguished periodic
orbits.

Using this system of surfaces one can prove, [53]:

Theorem 4.6 Let f ∈ Ξ2. Then the Reeb flow of Xλ on S3 associated to λ = fλ0
has the following properties.

• Either Xλ has precisely two geometrically distinct periodic orbits or infinitely
many.

• If Xλ does not admit a disk-like global surface of section there exists a hy-
perbolic periodic orbit with orientable stable manifold and a homoclinic orbit
converging in forward and backward time to the hyperbolic orbit. In partic-
ular there are infinitely many geometrically distinct periodic orbits and the
topological entropy of the flow is positive.

This gives the following corollary.

Corollary 4.7 Let f ∈ Ξ2. If the associated Reeb flow admits a periodic orbit
(x, T ), with T the minimal period, so that xT : R/(TZ) → S3 is knotted, then
there exist infinitely many geometrically distinct periodic orbits.

4Presumably one can also require the asymptotic limits to be unknotted. However, our
existence result Theorem 4.5 so far does not give this additional property.
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Figure 8: The figure shows the trace of the projection of a finite energy foliation
on a two-dimensional plane. Here we have two spanning orbits E1 and E2 which
are elliptic and a hyperbolic one denoted by H. Moreover the foliation contains
planes and cylinders. The dashed lines are the traces of the stable and unstable
manifold of the hyperbolic orbit H. We assume the non-generic situation that they
precisely match up creating several invariant sets. The dotted lines are periodic
orbits for the Reeb vector field. The fat lines represent rigid pieces of the finite
energy foliation. Namely two cylinders and two planes. The three-sphere is viewed
as R

3 ∪ {∞}.

It is worthwhile to give some ideas about the proof of Corollary 4.7. Given
λ = fλ0 take a generic J and the associated stable finite energy foliation F for
(S3, λ, J). Assume that the R-action has precisely one fixed point. In this case
we have a disk-like surface of section D and a return map

Ψ : Ḋ → Ḋ,

which preserves the area form dλ|D. This map has a fixed point as a consequence
of Brouwer’s translation theorem. Recall that the translation theorem asserts that
an orientation preserving homeomorphism h of R

2 either has a fixed point or
there exists a non-empty open set U such that U ∩hj(U) = ∅ for all j ∈ {1, 2, . . .}.
Clearly all hj(U) and hk(U) are mutually disjoint for j 6= k. If in our case Ψ does
not have a fixed point we immediately obtain a contradiction to the fact that Ψ
preserves area. Removing this fixed point we obtain an area preserving self-map of
the open annulus, which by a striking result due to Franks, [29], has the following
property:

Theorem 4.8 (Franks) Let Ψ be an area- and orientation-preserving self-map
of the open annulus. If Ψ admits a periodic point, then it admits infinitely many
periodic points.

In order to finish the argument for the corollary we may assume arguing indi-
rectly that there are precisely two periodic orbits. In that case both are unknotted
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Figure 9: The figure shows the situation if there is a disk-like surface of section,
but only two periodic orbits.

and mutually linked, as depicted in Figure 9. However, since we have one knotted
orbit this is impossible.

There are also results without any genericity assumption. If M ⊂ R
4 is a

compact energy surface enclosing a strictly convex domain, then one can show by
methods similar to those outlined above that there exists a global disk-like surface
of section. More precisely, see [48],

Theorem 4.9 The Hamiltonian flow on a a sphere-like energy surface in R
4,

bounding a strictly convex domain admits a global disk-like surface of section. In
particular it has precisely two geometrically distinct periodic orbits or infinitely
many.

5 Topology and Reeb dynamics

After the previous results and discussions one might wonder, if it is possible to use
the theory of finite energy surfaces and some knowlegde of the Reeb dynamics in
order to learn something about the topology of the underlying manifold. There
has been not much research in that direction, but the results so far indicate that
there are some nontrivial connections.

We begin by showing that tight contact forms feel the topology. Let M be a
closed three manifold. For every tight contact form λ denote by [λ] the infimum of
all periods T of contractible periodic orbits (x, T ) for Xλ.

5 For a closed oriented
surface F ⊂M denote by vλ(M) the number

vλ(F ) =
1
2

∫
F

|dλ|

[λ]
.

This is the normalized positive area of F .6 Then define the virtual area of F by

v(F ) = infλ∈T vλ(F ).

5If there are no contractible periodic orbits we take the infimum over the empty set leading
to [λ] = ∞. For simple geometrical reasons we always have [λ] > 0.

6Obviously
∫
F

dλ = 0, so that the positive area and the negative area cancel each other.
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Here T is the collection of all tight contact forms on M .
One has the following result, see [40].

Theorem 5.1 Assume M is a closed orientable three-manifold and F an embed-
ded sphere. If v(F ) < 1 then F is contractible in M .

If the Poincaré conjecture holds one can show that v(F ) < 1 implies v(F ) = 0
and even that v(F ) = 0 if and only if F is contractible. The criterion is extremely
sharp. For F = {point} × S2 in M = S1 × S2 we have v(F ) = 1.7

The next result shows that we are even sometimes able to recover the topology
of the space. For more general results see [46, 47].

Theorem 5.2 Assume that λ is a contact form on the closed three-manifold M ,
so that the periodic orbits of the associated Reeb vector field are all non-degenerate.
Assume that there exists an embedded disk D in M so that the boundary ∂D is
a periodic orbit of minimal period T0, say, and D \ ∂D is transverse to the flow.
Then, if all periodic orbits with periods T ≤ T0 are elliptic or hyperbolic with non-
orientable stable manifold, necessarily M is diffeomorphic to S3 and the contact
form λ is tight.

Now leaving firm grounds one might foresee some of the possible developments
in contact geometry and topology as follows. Assume a contact form λ on a closed
three-manifold M is given. Fixing an admissible complex multiplication for the
underlying contact structure ξ gives an almost complex struxcture J̃ for R×M .
Studying the finite energy surfaces for J̃ will lead8 to some Floer type homology
theory, called contact homology, build on a Z2-graded algebra generated by the
periodic orbits. The analytical difficulties comprise those familiar in the Arnold
conjectures, [30, 63, 64]. The underlying techniques are those from [40, 50, 49,
51, 48, 52]. As it turns out, contact homology only depends on the underlying
co-oriented contact structure ξ. This theory can be carried out in any (odd)
dimension. Symplectic cobordisms compatible with the contact structures induce
morphisms in this theory.

Focusing now on dimension three the following can be said. The contact
homology for overtwisted contact structures is presumably trivial, and, if ξ is
tight, an interesting invariant for (M, ξ). Given a Legendrian knot, i.e. a knot
with tangent space contained in ξ, certain surgeries are possible to lead to new
tight contact manifolds. It is important to understand how the contact groups
change. Of course, it is necessary to introduce a contact homology group for

7As a parenthetical remark we observe that for every tight contact form

v(F ) · [λ] ≤
1

2

∫
F

|dλ|.

In case, there exists an embedded non-contractible sphere, which always holds if π2(M) 6= {0}
by the sphere theorem, we have that v(F ) ≥ 1. Therefore the inequality implies the existence of
a contractible periodic orbit.

8The details for such a theory are formidable and are just being carried out by Y. Eliashberg
and H. Hofer.
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Legendrian knots, [24], which would be based on Arnold’s chord problem, [4] and
would have to generalize [13].

Since the contact homology for (M, ξ) should be computable for every generic
contact form inducing ξ it will be important to develop methods to simplify the
contact form by eliminating short periodic orbits for the Reeb vector field, which
algebraically should not be there.

Thirdly, some of the finite energy surfaces occurring for a given contact form,
might be used for finite energy foliations, which lead to generalizations of open
book decompositions, but indeed carrying more structure.

It is feasible that some program as out-lined above will be useful for studying
the topology of three-dimensional manifolds. There is, of course, no doubt that
this program leads in any case to a deeper understanding of the dynamics of Reeb
vector fields. This is particularly interesting, since we also obtain new tools for
studying geodesic flows on surfaces.

6 Relationship to other areas

In a nutshell one can say that study of the Reeb dynamics or certain aspects
of it is closely related to be able to count and handle holomorphic curves. How
to use holomorphic spheres in order to prove cases of the Weinstein conjecture
was shown by Hofer and Viterbo, [45]. Of course meanwhile there are very well-
developed methods for counting holomorphic curves in a systematic way, leading to
the Gromov-Witten invariants, see [30, 63]. That these invariants can be effectively
used for proving certain cases of the Weinstein conjecture has been shown recently
in [65].

Theorem 6.1 Let (V, ω) be any compact symplectic manifold. Then the Wein-
stein conjecture holds for every hypersurface of contact type in (C× V, ωC ⊕ ω).

In dimension four Gromov-Witten invariants are closely related to Seiberg-Witten
theory by the important results of Taubes, see [82, 83]. These results guarantee
that in a four-dimensional symplectic manifold certain two-dimensional cohomol-
ogy classes can be represented by a holomorphic curve.

How one can bring all these theories nicely together has been demonstrated
by Weimin Chen, [10].

Theorem 6.2 (Weimin Chen) Let M ⊂ (V, ω) be a compact hypersurface of
contact type in a closed symplectic four-manifold with b+2 (V ) ≥ 2. Let λ be a
contact form on M , so that dλ = ω|M . Assume M carries the orientation induced
by λ∧ dλ. Then the first Chern class of the induced contact structure ξ = kern(λ)
equipped with a complex structure compatible with dλ is Poincaré dual to a finite
union of periodic orbits on M oriented by −λ. In particular if c1(ξ) 6= 0 there has
to be a periodic orbit.

The key ingredient is a the following theorem of Taubes.

Theorem 6.3 (Taubes) Let (V, ω) be a closed symplectic four-manifold with
b+2 (V ) ≥ 2 and a nontrivial canonical bundle K. Then for a generic ω-compatible
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almost complex structure J , the Poincaré dual to c1(K) is represented by the fun-
damental class of an embedded J-holomorphic curve Σ in V (not necessarily con-
nected).

This result follows from the relationship between Seiberg-Witten and Gromov-
Witten invariants and the nontriviality of the Seiberg-Witten invariants for closed
symplectic manifolds, see [82, 83].

The proof of Theorem 6.2 has a certain number of technical ingredients. Nev-
ertheless a proof by pictures gives an idea.

Figure 10: Stretching of a holomorphic curve

The compact hypersurface M sits inside V and has an open neigborhood
[−ε, ε] ×M with symplectic structure d(etλ). We take an almost complex struc-
ture ĴN compatible with ω, which behaves on [−ε, ε] ×M in such a way that in
suitable coordinates the neigbhorhhood looks like [−N,N ]×M equipped with J̃9

Taubes’ result guarantees for every N a holomorphic curve CN . The additional
information guarantees certain bounds on the area as well as on the genus. In the
limit N → ∞ the curve converges near {0} ×M to some cylinders over periodic
orbits.
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13(3):337–379, 1996.

[51] H. Hofer, K. Wysocki, and E. Zehnder. Properties of pseudoholomorphic
curves in symplectisations IV: Asymptotics with degeneracies, pages 78–117.
Cambridge University Press, 1996.

[52] H. Hofer, K. Wysocki, and E. Zehnder. Unknotted periodic orbits for reeb
flows on the three-sphere. Topological Methods in Nonlinear Analysis, 7(2):219–
244, 1996.

[53] H. Hofer, K. Wysocki, and E. Zehnder. Finite energy foliations of tight three-
spheres. In preparation.

[54] H. Hofer and E. Zehnder Periodic solutions on hypersurfaces and a result by
C. Viterbo. Inv. Math. 90 (Fasc 1):1–9, 1987.

[55] H. Hofer and E. Zehnder. A new capacity for symplectic manifolds, pages
405–428. Analysis et cetera. Academic press, 1990. Edit: P. Rabinowitz and
E. Zehnder.

[56] H. Hofer and E. Zehnder. Symplectic invariants and Hamiltonian dynamics.
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