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Constant Term Identities,

Orthogonal Polynomials,

and Affine He
ke Algebras

I. G. Macdonald

The main aim of this lecture is to survey a theory of orthogonal polynomials in
several variables which has developed over the last ten years or so. We shall
concentrate on the purely algebraic aspects of the theory, and for lack of time
and competence we shall say nothing about its physical applications (completely
integrable systems, KZ equations, etc.)

These polynomials include as special cases, on the one hand all the classical
orthogonal polynomials in one variable (Legendre, Jacobi, Hermite, · · · ), and on
the other hand polynomials that arise in the representation theory of Lie groups
(characters of compact Lie groups, spherical functions on real and p-adic symmetric
spaces and their quantum analogues). The underlying notion is that of a root

system, to which I shall turn first.

1 Root systems

Root systems and their Weyl groups constitute the combinatorial infrastructure
of much of the theory of Lie groups and Lie algebras. Thus a complex semisimple
Lie algebra or a compact connected Lie group with trivial centre, is determined
up to isomorphism by its root system. Moreover, and quite apart from their Lie-
theoretic origin, the geometry and algebra of root systems presents an apparently
inexhaustible source of beautiful combinatorics.

It is time for definitions and examples. Let V be a real vector space of finite
dimension, endowed with a positive definite scalar product 〈u, v〉. For each non-
zero α ∈ V let sα denote the orthogonal reflection in the hyperplane Hα through
the origin perpendicular to α. Explicitly,

(1.1) sα(v) = v − 〈v, α∨〉α

for v ∈ V , where α∨ = 2α/〈α, α〉.

A root system R in V is a finite non-empty set of non-zero vectors (called
roots) that span V and are such that for each pair α, β ∈ R we have

(1.2) 〈α∨, β〉 ∈ Z,
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(1.3) sα(β) ∈ R.

Thus each reflection sα(α ∈ R) permutes R, and the group of orthogonal trans-
formations of V generated by the sα is a finite group W0, called the Weyl group

of R.

We may remark straightaway that the integrality condition (1.2) by itself is
extremely restrictive. Let α, β ∈ R and let Θ be the angle between the vectors α
and β. Then

4 cos2 Θ =
4〈α, β〉2

〈α, α〉〈β, β〉
= 〈α∨, β〉〈α, β∨〉

is an integer, hence can only take the values 0, 1, 2, 3, 4. It follows that the only
possibilities for Θ are π/m or π − (π/m), where m = 1, 2, 3, 4 or 6.

The vectors α∨ for α ∈ R form a root system R∨, the dual of R. If α ∈ R, then
also −α ∈ R (because −α = sα(α)). The root system R is said to be reduced if the
only scalar multiples of α in R are ±α. Furthermore, R is said to be irreducible

if it is not possible to partition R into two non-empty subsets R1 and R2 such
that each root in R1 is orthogonal to each root in R2 (which would imply that R1

and R2 are themselves root systems). We shall assume throughout that R is both
reduced and irreducible.

For those to whom these notions are unfamiliar, some examples to bear in
mind are the following. Let ε1, · · · , εn be the standard basis of Rn(n ≥ 2), with
the usual scalar product, for which 〈εi, εj〉 = δij . Then the vectors

(An−1) ± εi − εj

where i 6= j, form a root system (and V is the hyperplane in Rn orthogonal
to ε1 + · · · + εn). The Weyl group is the symmetric group Sn, acting on V by
permuting the εi.

Moreover, each of the sets of vectors

(Bn) ± εi (1 ≤ i ≤ n), ±εi ± εj (1 ≤ i < j ≤ n),

(Cn) ±2εi (1 ≤ i ≤ n), ±εi ± εj (1 ≤ i < j ≤ n),

(Dn) εi ± εj (1 ≤ i < j ≤ n)

is a root system. For Bn and Cn, the Weyl group is the group of all signed
permutations of the εi, of order 2

nn! (the hyperoctahedral group). For Dn, it is a
subgroup of index 2 in this group. The root systems Bn and Cn are duals of each
other, and An−1, Dn are each self-dual.

In fact, the root systems An(n ≥ 1), Bn(n ≥ 2), Cn(n ≥ 3) and Dn(n ≥ 4)
almost exhaust the catalogue of reduced irreducible root systems (up to isomor-
phism). Apart from these, there are just five others, the “exceptional” root sys-
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tems, denoted by E6, E7, E8, F4 and G2. (In each case the numerical suffix is the
dimension of the space V spanned by R, which is also called the rank of R.)

Let R be any (reduced, irreducible) root system in V and consider the com-
plement

X = V −
⋃

α∈R

Hα

of the union of the reflecting hyperplanes Hα, α ∈ R. The connected components
of X are open simplicial cones which are permuted simply transitively by the Weyl
group W0. Let Γ be one of these components, chosen once and for all; it is bounded
by n = dimV hyperplanes Hαi

(1 ≤ i ≤ n), and

Γ = {x ∈ V : 〈αi, x〉 > 0 (1 ≤ i ≤ n)}.

The αi are the simple roots determined by Γ, and each root α ∈ R is of the
form

(1.4) α =
r
∑

1
riαi

with integral coefficients ri all of the same sign. A root α ∈ R is positive (resp.
negative) relative to Γ if 〈α, x〉 > 0(resp. < 0) for all x ∈ Γ. Equivalently, α ∈ R
is positive (resp. negative) if the coefficients ri in (1.4) are all ≥ 0(resp. ≤ 0). Let
R+ (resp. R−) denote the set of positive (resp. negative) roots. Then R− = −R+,
and R = R+ ∪ R−. Moreover, there is a unique root ϕ ∈ R+, called the highest

root, for which the sum of the coefficients
∑

ri in (1.4) is maximal. In An−1, for
example, we may take the simple roots to be αi = εi − εi+1(1 ≤ i ≤ n − 1); the
positive roots are then εi − εj with i < j, and the highest root is ε1 − εn.

The abelian group Q generated by R, whose elements are the integral linear
combinations of the roots, is a lattice in V (i. e. a free abelian group of rank
n = dimV ) called the root lattice. Clearly the simple roots α1, · · ·αn form a basis
of Q. We denote by Q+ the subsemigroup of Q consisting of all sums

∑

riαi where
the coefficients are non negative integers.

Next, the set P of all λ ∈ V such that 〈λ, α∨〉 ∈ Z for all α ∈ R is another
lattice, called the weight lattice. It has a basis consisting of the fundamental weights

π1, · · · , πn, defined by the equations 〈πi, α
∨
j 〉 = δij . We denote by P+ the set of

dominant weights (i. e. λ ∈ P such that 〈λ, α∨〉 ≥ 0 for all α ∈ R+). We have
P ⊃ Q (by (1.2)) but P+ 6⊃ Q+ (unless n = 1, i. e. R = A1). The quotient P/Q is
a finite group, since both P and G are lattices of the same rank n. Clearly, both
P and Q are stable under the action of the Weyl group W0. Each W0-orbit in P
contains exactly one dominant weight, i. e. P+ is a fundamental region for the
action of W0 on P .

Finally, the Weyl group W0 acts on V and therefore also on the algebra
S(V ) of polynomial functions on V . It can be shown that the subring S(V )W0

of W0-invariant polynomial functions in generated by n = dimV algebraically
independent homogeneous polynomial functions, of degrees say d1, · · · , dn. The

Documenta Mathematica · Extra Volume ICM 1998 · I · 303–317



306 I. G. Macdonald

functions themselves are not uniquely determined, but their degrees are: they are
called the degrees of W0. For example, if R is An−1, so that W0 is the symmetric
group Sn, we may take as generators of S(V )W0 the power sums

xr
1 + · · ·+ xr

n (2 ≤ r ≤ n)

where x1, · · · , xn are coordinates in Rn. Thus in this case the degrees are
2, 3, · · · , n.

2 Constant term identities

Let F be a field of characteristic zero and let A = F [P ] be the group algebra over
F of the weight lattice P . Since the group operation in P is addition, we shall use
an exponential notation in A, and denote by eλ the element of A corresponding to
λ ∈ P . These “formal exponentials” eλ form an F -basis of A, such that eλ · eµ =
eλ+µ and (eλ)−1 = e−λ. In particular, e0 = 1 is the identity element of A. The
ring A is an algebra of Laurent polynomials, namely A = F

[

u±1
1 , · · ·u±1

n

]

where
ui = eπi (πi the fundamental weights).

If
f =

∑

λ∈P

fλe
λ

is an element of A, with coefficients fλ ∈ F , the constant term of f is f0, the
coefficient of e0 = 1 in f . We can now state two constant term identities that
generalize those of Dyson and Andrews described in the abstract to this lecture.
As before, R is a reduced irreducible root system and k a non negative integer.

(2.1) The constant term in
∏

α∈R

(1− eα)k

is equal to
n
∏

i=1

(

kdi
k

)

where d1, · · · dn are the degrees of the Weyl group of R.

When R is An−1, the roots are α = εi − εj where i 6= j, so that eα = xix
−1
j

where xi = eεi . Moreover, as we have seen, the degrees of the Weyl group in this
case are 2, 3, · · · , n; and

(

2k

k

)(

3k

k

)

· · ·

(

nk

k

)

=
(nk)!

k!n

Thus we recover Dyson’s original conjecture [5].

Next, in order to state the generalization of Andrew’s conjecture we introduce

the q-analogue of the binomial coefficient

(

r

s

)

, namely the Gaussian polynomial

[

r
s

]

=
(1− qr)(1− qr−1) · · · (1− qr−s+1)

(1− q)(1− q2) · · · (1− qs)
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which tends to

(

r

s

)

as q → 1.

(2.2) The constant term in

∏

α∈R+

k−1
∏

i=0

(

1− qieα
) (

1− qi+1e−α
)

is equal to
n
∏

i=1

[

kdi
k

]

.

When R is An−1, the positive roots are α = εi − εj with i < j, so that
we recover Andrews’ conjecture. Clearly, also, (2.2) reduces to (2.1) when we let
q → 1.

When these conjectures and others like them were first put forward ([12],
[18]), they appeared as isolated curiosities, and it was not clear what, if anything,
lay behind them. Later [13] it became clear that they could be considered as a
special case of a conjectured norm fomula for orthogonal polynomials, as we shall
explain in the next section.

The identity (2.1) was first proved uniformly for all R by Opdam [20], using
the technique of shift operators developed by Heckman and Opdam in the context
of their theory of hypergeometric functions and Jacobi polynomials [8]. The q-
version (2.2) took longer to resolve, and was finally proved in full generality by
Cherednik [3], although by that time all the root systems with the exception of
E6, E7 and E8 has been dealt with one by one ([2], [9], [6], [7]).

3 Orthogonal polynomials

As in §2, let A be the group algebra F [P ] where F is a field of characteristic 0. The
Weyl group W0 acts on P and therefore also on A : w(eλ) = ewλ(λ ∈ P,w ∈ W0).
Let A0 denote the subalgebra of W0-invariants.

Since eachW0-orbit in P meets P+ exactly once, it follows that the orbit-sums

(3.1) mλ =
∑

µ∈W0λ

eµ

where λ ∈ P+ and W0λ is the W0-orbit of λ, form an F -basis of A. Another basis
of A0 is obtained as follows. Let

(3.2 p =
1

2

∑

α∈R+

α

and let

(3.3) δ =
∏

α∈R+

(eα/2 − e−α/2).
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In fact, p ∈ P+ and δ ∈ A : we have

(3.4) δ =
∑

w∈W0

ε(w)ewp

where ε(w) = det(w) = ±1. Thus δ is skew-symmetric for W0, i. e. we have
wδ = ε(w)δ for each w ∈ W0. For each λ ∈ P+, the sum

∑

w∈W0

ε(w)ew(λ+p)

is likewise skew-symmetric, and is divisible by δ in A. The quotient

(3.5) Xλ = δ−1
∑

w∈W0

ε(w)ew(λ+p)

is an element of A0 called the Weyl character corresponding to λ. In terms of the
orbit-sums we have

(3.6) Xλ = mλ +
∑

µ<λ

Kλµmµ

where the coefficients Kλµ are integers (indeed positive integers) and µ < λ means
that λ− µ ∈ Q+ and λ 6= µ.

From (3.6) it follows that the χλ form another F -basis of A0. From now on
we shall take F to be the field Q(q, t) of rational functions in two indeterminates
q, t. Let

(3.7) ∆ = ∆(q, t) =
∏

α∈R+

∞
∏

r=0

(1− qreα)(1− qr+1e−α)

(1− qrteα)(1− qr+1te−α)
.

Suppose first that t = qk where k is a non-negative integer. Then ∆ is a finite
product, namely the polynomial whose constant term was the subject of (2.2). (In
the general case, ∆ can be expanded as a formal power series in the n+1 variables
u0, u1, · · · , un, where ui = eαi(1 ≤ i ≤ n) and u0 = qe−ϕ, ϕ the highest root of
R.

We shall use ∆ to define a scalar product on A, as follows. If f ∈ A, say

f =
∑

λ∈P

fλe
λ,

let

(3.8) f∗ =
∑

λ∈P f∗
λe

−λ

where f∗
λ is the image of fλ under the automorphism (q, t) 7→ (q−1, t−1) of F . We

now define, for f, g ∈ A,

(3.9) (f, g) = constant term in fg∗∆.
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We can now state

(3.10) There is a unique F -basis (Pλ)λ∈P+ of A0 such that

(i) Pλ = mλ +
∑

µ<λ uλµmµ with coefficients uλµ ∈ F ;

(ii) (Pλ, Pµ) = 0 if λ 6= µ.

It is easy to see that the Pλ, if they exist, are uniquely determined by (i) and
(ii). Their existence, however, requires proof. If the partial order λ > µ on P+

were a total ordering, existence would follow directly from the Gram-Schmidt
orthogonalization process. But it is not a total ordering (unless R = A1) and we
should therefore have to extend it to a total ordering before applying the Gram-
Schmidt mechanism. Thus the content of (3.10) is that however we extend the
partial order λ > µ to a total order, we always obtain the same basis.

We shall not reproduce the original proof ([13] [16]) of (3.10) here, since if
will arise more naturally later in the context of affine Hecke algebras. Instead, let
us look at some special cases:

(1) When t = 1, we have ∆ = 1 and Pλ is the orbit-sum mλ (3.1).

(2) When t = q, Pλ is the Weyl character Xλ (3.5).

(3) When q → 0, t being arbitrary, the Pλ (suitably normalized) occur as the
values of spherical functions on a p-adic symmetric space, when t−1 is a
prime power.

(4) Let t = qk and fix k (which need not be an integer) and let q → 1, so that
t → 1 also. In the limit we have ∆ =

∏

α∈R(1 − eα)k. In this limiting case
the polynomials Pλ are the “Jacobi polynomials” of Heckman and Opdam
[8]. For particular values of k these polynomials occur as values of spherical
functions, but this time on a real symmetric space.

(5) Finally, when R is An−1, the Pλ are the symmetric functions of ([15], chapter
VI), restricted to n variables x1, · · · , xn such that x1 · · ·xn = 1.

To conclude this section, we shall record some properties of the polynomials
Pλ. For simplicity of statement, we shall assume that t = qk where k is a positive
integer.

a.) Norms

The squared norm of Pλ is given by the formula

(3.11) (Pλ, Pλ) = W0(t)
∏

α∈R+

k−1
∏

i=0

1− q〈λ+kp,α∨〉+i

1− q〈λ+kp,α∨〉−i

where p is given by (3.2) and W0(t) is the Poincaré polynomial of the Weyl group
W0:

W0(t) =
∑

w∈W0

tℓ(w)

Documenta Mathematica · Extra Volume ICM 1998 · I · 303–317



310 I. G. Macdonald

where l(w) is the length of w, i. e. the number of α ∈ R+ such that wα ∈ R−.

Notice that when λ = 0 we have Pλ = 1, so that in this case (3.11) gives
the constant term of ∆, i. e. it gives the constant term identity (2.2) (though a
little work is required to recast it in that form). The formula (3.11) was originally
conjectured in [13], and verified there in some cases. In the limiting case q → 1, it
was first proved for all root systems R by Opdam [20], and then in full generality
by Cherednik [3]. We shall indicate a proof later, in §5.

b.) Specialization

Let P∨ be the weight lattice of the dual root system R∨: it consists of all λ ∈ V
such that 〈λ, α〉 ∈ Z for all α ∈ R. It will be convenient to regard each f ∈ A as
a function on P∨, as follows: if µ ∈ P∨ and f =

∑

fλe
λ, then

f(µ) =
∑

fλq
〈λ,µ〉.

Then we have

(3.12) Pλ(kp
∨) = q−〈λ,kp∨〉

∏

α∈R+

k−1
∏

i=0

1− q〈λ+kp,α∨〉+i

1− q〈kp,α∨〉+i

where

p∨ =
1

2

∑

α∈R+

α∨

(warning: p∨ 6= 2p/〈p, p〉).

When k = 1 and q → 1, this reduces to Weyl’s formula for the dimension
of an irreducible representation of a compact Lie group. The formula (3.12) was
originally conjectured in [13]. As with (3.11), it was first proved for all R in the
limiting case q → 1 by Opdam [20], and then in full generality by Cherednik [4].

c.) Symmetry

For λ ∈ P let
P̃λ = Pλ/Pλ(kp

∨).

Then we have

(3.13) P̃λ(µ+ kp∨) = P̃µ(λ+ kp)

for all λ ∈ P+ and µ ∈ (P∨)+, and on the right-hand side of (3.13), Pµ is an

orthogonal polynomial for R∨, so that P̃µ = Pµ/Pµ(kp). When R is of type An−1,
(3.13) is due to Koornwinder ([15], chapter VI, §6). The general case is due to
Cherednik [4].

4 The affine root system and the extended affine Weyl group

The root systems and Weyl groups of §1 have affine counterparts, to which we now
turn. As before, R is a reduced, irreducible root system spanning a real vector
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space V of dimension n ≥ 1. Let Q∨, P∨ respectively denote the root lattice and
the weight lattice of the dual root system R∨.

We shall regard each α ∈ R as a linear function on V : α(x) = 〈α, x〉 for
x ∈ V . Let c denote the constant function 1 on V . Then

(4.1) S = S(R) = {α+ nc : α ∈ R,n ∈ Z}

is the affine root system associated with R. The elements of S are affine-linear
functions on V , called affine roots, and we shall denote them by italic letters,
a, b, . . . .

For each a ∈ S, let Ha denote the affine hyperplane in V on which a vanishes,
and let sa denote the orthogonal reflection in this hyperplane. The affine Weyl
group WS is the group of affine isometries of V generated by these reflections. For
each α ∈ R, the mapping sα ◦ sα+c takes x ∈ V to x+ α∨, so that

τ(α∨) = sα ◦ sα+c

is translation by α∨. It follows that WS contains a subgroup of translations iso-
morphic to Q∨, and we have

(4.2) WS = W0 ⋉ τ(Q∨)

(semidirect product).

The extended affine Weyl group is

(4.3) W = W0 ⋉ τ(P∨).

It acts on V as a discrete group of isometries, and hence by transposition on
functions on V . As such, it permutes the affine roots a ∈ S.

As in §1, let R+ be a system of positive roots in R and α1, · · · , αn the simple
roots, ϕ the highest root. Correspondingly, the affine roots a0, a1, · · · , an, where
a0 = −ϕ+ c and αi = αi (1 ≤ i ≤ n) form a set of simple roots for S : each a ∈ S
is of the form

(4.4) a =
n
∑

i=0

riai

where the ri are integers, all of the same sign. Let

C = {x ∈ V : ai(x) > 0 (0 ≤ i ≤ n)}

so that C is an open n-simplex bounded by the hyperplanes Hai
(0 ≤ i ≤ n).

The group WS is generated by the reflections si = sai
(0 ≤ i ≤ n), subject to the

relations

(4.5) s2i = 1,
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(4.6) sisjsi · · · = sjsisj · · ·

whenever i 6= j and sisj has finite order mij in WS , there being mij terms on
either side of (4.6). In other words, WS is a Coxeter group on the generators
s0.s1, · · · , sn.

The connected components of V −
⋃

a∈S

Ha are open simplexes, each congruent

to C, and each component is of the form wC for a unique element w ∈ WS .
Thus, for example, when R is of type A2 we obtain the familiar tessellation of the
Euclidean plane by congruent equilateral triangles.

An affine root a ∈ S is positive (resp. negative) relative to C if a(x) > 0 (resp.
a(x) < 0) for x ∈ C. Equivalently, a ∈ S is positive or negative according as the
coefficients ri in (4.4) are all ≥ 0 or all ≤ 0. Let S+ (resp. S−) denote the set of
positive (resp. negative) affine roots. Then S− = −S+, and S = S+ ∪ S−.

Explicitly, the positive affine roots are α + rc where r ≥ 0 if α ∈ R+, and
r ≥ 1 if α ∈ R−. It follows that the product ∆ (3.7) may be written in the form

(4.7) ∆ =
∏

a∈S+

1− ea

1− tea

where for a = α+ rc ∈ S, ea = eα+rc = qreα (i. e. we define ec = q).

We shall now define a length function on the extended groupW . If w ∈ W , let

ℓ(w) = card(S+ ∩ wS−),

the number of positive affine roots made negative by w. Equivalently, ℓ(w) is the
number of hyperplanes Ha, a ∈ S, that separate C from wC.

Now W , unlike WS , is not in general a Coxeter group (unless P∨ = Q∨) and
may contain elements 6= 1 of length zero. Let

Ω = {w ∈ W : ℓ(w) = 0}

The elements of Ω stabilize the simplex C, and hence permute the simple affine
roots. For each w ∈ W there is a unique w′ ∈ WS such that wC = w′C, and
hence w factorizes uniquely as w = w′v, with w′ ∈ WS and v ∈ Ω. Consequently
we have

(4.8) W = WS ⋊ Ω

(semidirect product). From (4.2), (4.3) and (4.8) it follows that Ω ∼= W/WS
∼=

P∨/Q∨, hence is a finite abelian group.

Next, the braid group B of W is the group with generators T (w), w ∈ W , and
relations

T (v)T (w) = T (vw)

whenever ℓ(vw) = ℓ(v) + ℓ(w). We shall denote T (si) by Ti (0 ≤ i ≤ n) and
T (ω) (ω ∈ Ω) simply by ω. Then B is generated by T0, T1, · · · , Tn and Ω subject
to the following relations:
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(a) the counterparts of (4.6), namely the braid relations

(4.9) TiTjTi · · · = TjTiTj · · ·

where i 6= j and there are mij terms on either side;

(b) the relations

(4.10) ωTiω
−1 = Tj

for ω ∈ Ω, where ω(ai) = aj .

Let λ ∈ (P∨)+ be a dominant weight for R∨, and define

Y λ = T (τ(λ))

where τ(λ) is translation by λ. If λ and µ are both dominant, we have

(4.11) Y λ · Y µ = Y λ+µ

in B. If now λ is any element in P∨, we can write λ = µ− ν where µ, ν are both
dominant, and we define

(4.12) Y λ = Y µ(Y ν)−1.

In view of (4.10), this definition is unambiguous. The elements Y λ, λ ∈ P∨, form
a commutative subgroup of B, isomorphic to P∨.

5 The affine Hecke algebra

The Hecke algebra H of W is the quotient of the group algebra F [B] of the braid
group by the ideal generated by the elements (Ti − t1/2)(Ti + t−1/2) (0 ≤ i ≤ n).
(The field F should now include t1/2 as well as q and t.) For each w ∈ W , we
denote the image of T (w) in H by the same symbol T (w): these elements form an
F -basis of H. Thus H is generated over F by T0, T1, · · · , Tn and Ω subject to the
relations (4.9), (4.10), together with the Hecke relations

(5.1) (Ti − t1/2)(Ti + t−1/2) = 0.

When t = 1, H is the group algebra of W .

The following proposition is due to Cherednik [3].

(5.2) The Hecke algebra H acts on A = F [P ] as follows:

Tie
µ = t1/2esiµ +

(

t1/2 − t−1/2
)

(1− eai)
−1

(eµ − esiµ) ,

ωeµ = eωµ.

where 0 ≤ i ≤ n and ω ∈ Ω. Moreover, this representation is faithful.
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A proof of (5.2) is sketched in [14]. (In the formulas above, recall that ea0 =
e−ϕ+c = qe−ϕ.)

The elements Y λ, λ ∈ P∨, span a commutative subalgebra of H, isomorphic
to A∨ = F [P∨]. If u ∈ A∨, say

u =
∑

uλe
λ

let
u(Y ) =

∑

uλY
λ ∈ H.

(5.3) For each w ∈ W , the adjoint of T (w) for the scalar product (3.9) on A is

T (w)−1, i. e., we have

(T (w)f, g) = (f, T (w)−1g)

for all f, g ∈ A. In particular, the adjoint of Y λ is Y −λ, and the adjoint of u(Y ),
where u ∈ A∨, is u∗(Y ) (3.8).

It is enough to show that the adjoint of Ti (resp. ω ∈ Ω) is T−1
i (resp. ω−1),

and this may be verified directly from the definitions.

From (5.2) we have an action of A∨ on A, with u ∈ A acting as u(Y ). One
shows that A0 = AW0 is stable under the action of A∨

0 = (A∨)W0 , so that we have
an action of A∨

0 on A0. It turns out (see, e.g. [16] chapter III) that this action is
diagonalized by the polynomials Pλ(λ ∈ P+), and more precisely that

(5.4) u(Y )Pλ = u(−λ− kp)Pλ

for all u ∈ A∨. The pairwise orthogonality of the Pλ then follows immediately
from (5.3) and (5.4).

Likewise, the action of A∨ on A can be diagonalized, and this gives rise to a
family of non-symmetric orthogonal polynomials:

(5.5) There is a unique F -basis (Eλ)λ∈P of A such that

(i) Eλ = eλ+ lower terms,

(ii) (Eλ, Eµ) = 0 if λ 6= µ.

(By “lower terms” is meant a linear combination of exponentials eµ where µ < λ
in a certain partial ordering on P .)

The polynomials Eλ are simultaneous eigenfunctions of all operators u(Y ),
u ∈ A∨. (See [19] or [16], Ch. III.)

Consider now the operators

U+ =
∑

w∈W0

tℓ(w)/2T (w),

U− =
∑

w∈W0

ε(w)t−ℓ(w)/2T (w),
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on A. The operator U+ maps A onto A0, and in particular if λ ∈ P+ then U+Eλ

is a scalar multiple of Pλ.

Next consider, again for λ ∈ P+,

Qλ = U−Eλ.

If λ is not regular (i. e. if 〈λ, αi〉 = 0 for some i) then Qλ = 0.

Both Pλ and Qλ are linear combinations of the Eµ, µ ∈ W0λ, with coeffi-
cients that can be computed explicitly. Hence both (Pλ, Pλ) and (Qλ, Qλ) can be
expressed in terms of (Eλ, Eλ). In this way we obtain [14]

(5.6)
(Qλ, Qλ)

(Pλ, Pλ)
= q−Nk

∏

α∈R+

1− q〈λ+kp,α∨〉+k

1− q〈λ+kp,α∨〉−k

where as usual t = qk, and N = card(R+).

To conclude, we shall sketch a proof of Cherednik’s norm formula (3.1). The
proof will be by induction on k, the cases k = 0 and k = 1 being trivial. From now
on we shall write Pλ,k and Qλ,k in place of Pλ and Qλ, to stress the dependence
on the parameter k, and likewise for the scalar product: (f, g)k in place of (f, g).
Let

πk =
∏

α∈R+

(eα/2 − q−ke−α/2).

Then the P ’s and Q’s are related as follows:

(5.7) For all λ ∈ P+, we have

Pλ,k+1 = π−1
k Qλ+p,k.

Taking λ = 0, it follows that Qp,k = πk. The formula (5.7) may be regarded
as a generalization of Weyl’s character formula (3.5), which is the case k = 0.

From (5.7) we obtain

(5.8)
(Pλ,k+1, Pλ,k+1)k+1

(Qλ+p,k, Qλ+p,k)k
= qNkW0(q

k+1)

W0(qk)
.

Coupled with (5.6) (with λ replaced by λ+ p) this gives

(Pλ,k+1, Pλ,k+1)k+1

(Pλ+p,k, Pκ+p,k)k
=

W0(q
k+1)

W0(qk)

∏

α∈R+

1− q〈λ+(k+1)p,α∨〉+k

1− q〈λ+(k+1)p,α∨〉−k

and (3.11) follows by induction on k.

For simplicity of exposition we have restricted ourselves in this survey to affine
root systems of the type S(R) (4.1). The general picture is that one can attach
to any irreducible affine root system S, reduced or not, families of orthogonal
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polynomials Pλ, Qλ and Eλ as above. These depend (apart from q) on as many
parameters ti as there are orbits in S under the affine Weyl group WS , and the
whole theory can be developed in this more general context. For an irreducible
S, the maximum number of orbits is 5, and is attained by the (non-reduced)
affine root systems denoted by C∨Cn(n ≥ 2) in the tables at the end of [11].
Correspondingly, we have orthogonal polynomials Pλ, Qλ and Eλ depending on
q and five parameters ti. These Pλ are the orthogonal polynomials defined by
Koornwinder [10], which are therefore amenable to the Hecke algebra techniques
described here. A full account will (eventually) appear in the book [17].
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