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Stéphane Mallat

1991 Mathematics Subject Classification: Primary 11E16; Secondary
11D09, 11E04, 15A63.

Keywords and Phrases: Image compression, Markov random fields, noise
removal, non linear approximations, sparse representations, wavelets.

1 Beyond Fourier

The Fourier transform has long ruled over signal processing, leaving little space
for new challenging mathematics. Until the 70’s, signals were mostly speech and
other sounds, which were modeled as realizations of Gaussian processes. As a
result, linear algorithms were considered optimal over all procedures. With a
hypothesis of stationarity, we end-up restricting ourselves to the exclusive class of
convolution operators that are diagonalized by the Fourier transform.

The situation has completely changed with the development of image process-
ing in the 1980’s. Images are poorly modeled by Gaussian processes, and transient
structures such as edges are often more important than stationary properties. Non-
linear algorithms were suddenly unavoidable, opening signal processing to modern
mathematics. Beyond classical applications to transmission, coding and restora-
tion, signal processing also entered the field of information analysis, whose main
branches are speech understanding and computer vision. This interface with per-
ception raised a rich body of new mathematical problems.

The construction of sparse representations for signals (functions), processes,
and operators is at the root of many signal and information processing problems.
A sparse representation characterizes an approximation with few parameters, that
may be obtained from an expansion in a basis or in a more redundant “dictio-
nary”. Complex non-linear processings can often be reduced to simpler and faster
algorithms over such representations. Sparse representations are also powerful
tools which radiate in many branches of mathematics. At ICM’90, Coifman and
Meyer gave a harmonic analysis point view, followed at ICM’94 by Daubechies
and Donoho who explained the impact of wavelet bases in numerical analysis and
statistics. Signal processing is now a driving force that has regrouped a community
of mathematicians and engineers sharing representation techniques. Applications
to signal compression, noise removal, and stochastic modeling lead us through re-
cent developments in approximation theory, harmonic analysis, operator theory,
probability, and statistics.
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2 Sparse Representations

Sparse representations have direct applications to data compression, but are also
necessary to reduce the complexity of classification and identification problems for
large size signals. This section begins with an approximation theory point of view,
and progresses towards signal compression.

2.1 Image Models

A Bayesian view of the world interprets a signal f(x) as a realization of a process
F (x) and the error of a processing is measured in expected value with respect to
the probability distribution of F . Natural images are realizations of non-Gaussian
processes, and there is yet no stochastic model that incorporates the diversity of
complex scenes with edges and textures, such as the Image 1(a). This motivates
the use of poorer but more realistic deterministic models that consider signals
as functions f(x) in a subset S of L2[0, 1]d, with no prior information on their
probability distribution in this set. For a particular processing, one then tries to
minimize the maximum error for signals in S, which is the minimax framework.
The discretization of a signal f with N samples raises no difficulty since it is
equivalent to a projection in a subspace of dimension N .

Large class of images, including Image 1(a), have bounded total variation.
Over [0, 1] the total variation of f(x) measures the sum of the amplitudes of its
oscillations

‖f‖TV =

∫

|f ′(x)| dx < +∞ .

The total variation of an image over [0, 1]2 is defined by

‖f‖TV =

∫ ∫

|~∇f(x)| dx ≤ C .

This norm has a simple geometrical interpretation based on the level-sets

Ωt = {(x, y) ∈ R
2 : f(x, y) > t} .

If H1(∂Ωt) is the one-dimensional Hausdorff measure of the boundary of Ωt then

‖f‖TV =

∫ +∞

−∞

H1(∂Ωt) dt. (1)

A bounded variation model for images also incorporates a bounded amplitude

SBV = {f : ‖f‖TV =

∫ ∫

|~∇f(x)| dx ≤ C , ‖f‖∞ = sup
x∈[0,1]2

|f(x)| ≤ C} . (2)

Such images typically have level sets and thus “contours” of finite length. Al-
though simple, this model is sufficient to illustrate the central ideas and difficulties
of signal representations. More restricted classes of images, such as homogeneous
textures, are better represented by Markov random fields over sparse representa-
tions, introduced in Section 4.
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2.2 Representations are Approximations

A sparse representation of f ∈ L
2[0, 1]d can be obtained by truncating its decom-

position in an orthonormal basis B = {gm}m∈N

f =
+∞
∑

m=0

〈f, gm〉 gm .

Understanding the performance of sparse representations in a basis is a central
topic of approximation theory. A quick overview motivates the use of non-linear
representations, but a more complete tutorial is found in [13].

A linear approximation of f from M inner products 〈f, gm〉 is an orthogonal
projection on a space VM generated from M vectors of B, say the first M

fM = PVM
f =

M−1
∑

m=0

〈f, gm〉 gm .

The maximum approximation error over a signal set S is

ǫl(S,M) = sup
f∈S

‖f − fM‖2 = sup
f∈S

+∞
∑

m=M

|〈f, gm〉|2.

Such a representation is efficient if ǫl(S,M) has fast decay as M decreases, and
hence if |〈f, gm〉| has fast decay as m increases. This depends upon the choice of
B relative to S. For example, uniformly regular functions are well approximated
by M low-frequency vectors of a Fourier basis {ei2πmx}m∈Z of L2[0, 1]. If S is
included in a ball of a Sobolev space W

s[0, 1] of functions of period 1 then the
decay of Fourier coefficients at high frequencies implies that ǫl(S,M) = O(M−2s)
[13]. Bounded variation functions may have discontinuities, and are thus not well
approximated in a Fourier basis. Using the concept of M-width introduced by
Kolmogorov, one can prove that for a ball SBV of bounded variation functions,
the most rapid error decay in a basis B is ǫl(SBV,M) ∼M−1 [13].

To improve this result, a more adaptive representation is constructed by pro-
jecting f over M basis vectors selected depending upon f

fM =
∑

m∈IM

〈f, gm〉 gm . (3)

Since ‖f−fM‖2 =
∑

m∈/IM
|〈f, gm〉|2, the best approximation is obtained by select-

ing in IM the M vectors which yield coefficients |〈f, gm〉| of maximum amplitude.
This approximation depends upon 2M parameters, the M indexes in IM and the
values {〈f, gm〉}m∈IM . Let us sort the inner products of f in decreasing order. We
denote ck = 〈f, gmk

〉 such that |ck| ≥ |ck+1| for k ≥ 1. The non-linear approxima-
tion error is

‖f − fM‖2 =
+∞
∑

k=M+1

|ck|2 and ǫn(S,M) = sup
f∈S

‖f − fM‖2 .

Documenta Mathematica · Extra Volume ICM 1998 · I · 319–338
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It depends upon the decay rate of the sorted amplitudes |ck|. In the basis B, a
wlp ball of radius C is defined by

Swlp = {f : |ck| = |〈f, gmk
〉| ≤ C k−1/p} . (4)

We easily verify that S ⊂ Swlp for some C > 0 and p < 2 if and only if

ǫn(S,M) = O(M1− 2

p ). The main difficulty of non-linear approximations is to
find the minimum p and a corresponding basis B such that S ⊂ Swlp . Such a basis
is said to be optimal for the non-linear approximation of S. Unconditional bases
are examples of optimal bases.

An orthonormal basis B is an unconditional basis of a Banach subspace B ⊂
L
2[0, 1]d if there exists A such that for any sign sequence sm ∈ {−1, 1} and f ∈ B

∥

∥

∥

∥

∥

+∞
∑

m=0

sm 〈f, gm〉 gm
∥

∥

∥

∥

∥

B

≤ A

∥

∥

∥

∥

∥

+∞
∑

m=0

〈f, gm〉 gm
∥

∥

∥

∥

∥

B

.

The fact that ‖f‖B < +∞ can thus be characterized from the amplitudes |〈f, gm〉|,
and related to a decay condition of the sorted coefficients. One can prove [13] that
if B is an unconditional basis of B then it is an optimal basis for the non-linear
approximation of a ball S = {f : ‖f‖B ≤ C} of B.

2.3 Wavelet Adaptive Grid

Wavelet bases have important applications in mathematics and signal processing
because of their ability to build sparse representations for large classes of functions.
The first orthonormal wavelet bases of L2(R) were introduced by Strömberg and
Meyer [25]. A multiresolution interpretation of wavelet bases gives a general frame-
work for constructing nearly all wavelets that generate a wavelet basis of L2(R)
[19]. It also leads to a fast discrete algorithm that requires O(N) calculations
to compute N wavelet coefficients [22]. Daubechies [9] discovered wavelets with
compact support, and the resulting bases have been adapted to L

2[0, 1]d. Her pre-
sentation at ICM’94 [10] introduces the main results, that we quickly summarize.

An orthonormal wavelet basis of L2[0, 1] is a family of functions

B =
(

{φl,n}0≤n<2l ∪ {ψj,n}j≥l,0≤n<2j

)

.

At resolution 2l, the scaling functions {φl,n}0≤n<2l generate a space Vl which
includes all polynomials of degree q, for some q ≥ 0. The wavelets ψj,n at higher
resolutions 2j > 2l are thus orthogonal to all polynomials of degree q. Wavelets
ψj,n whose support lie inside (0, 1) are obtained by dilating and translating a single
“mother” wavelet ψ

ψj,n(t) =
√
2j ψ(2jt− n) .

Boundary wavelets are modified to keep the support inside [0, 1].
A linear approximation of f fromM = 2J > 2l wavelets and scaling functions

is calculated by keeping all coefficients at resolutions 2j < 2J :

fM =

2l
∑

n=0

〈f, φl,n〉φl,n +

J−1
∑

j=l

2j
∑

n=0

〈f, ψj,n〉ψj,n.
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The first sum provides a coarse approximation of f at resolution 2l, and each par-

tial sum
∑2j

n=0 〈f, ψj,n〉ψj,n brings “details” that improve this approximation from
resolution 2j to resolution 2j+1. If f is continuous, this linear approximation at
resolution 2J is essentially equivalent to a uniform grid approximation calculated
by interpolating the samples {f(2−Jn)}0≤n<2J . Like a linear Fourier approxima-
tion, this uniform grid approximation is efficient only if f is uniformly regular.
It provides poor approximations of functions with singularities, such as bounded
variation functions.

A non-linear wavelet approximation keeps theM wavelet coefficients of largest
amplitude. The amplitude of |〈f, ψj,n〉| depends upon the local regularity of f .
Suppose that the mother wavelet ψ is C

q+1 and orthogonal to polynomials of
degree q. One can prove [25] that f is uniformly Lipschitz α < q + 1 over an
interval [a, b] if and only if there exists A > 0 such that for all ψj,n whose support
are included in [a, b] (modulo boundary issues)

|〈f, ψj,n〉| ≤ A 2−(α+1/2)j .

In the domains where the Lipschitz regularity α is large, |〈f, ψj,n〉| decays quickly
as the resolution 2j increases. At high resolution 2j , large coefficients appear in
the neighborhood of singularities, where 0 ≤ α < 1. More wavelet coefficients are
kept in the neighborhood of singularities, so a non-linear wavelet approximation
is equivalent to an adaptive grid whose resolution is refined in the neighborhood
of singularities.

The impact of wavelet bases in functional analysis comes from the fact that
they are unconditional bases of a large family of smoothness spaces (Besov spaces)
[25], and are thus optimal for non-linear approximations in balls of these spaces.
Although the space BV of bounded variation functions admits no unconditional
basis, it can be embedded in two Besov spaces. This allows one to prove that
wavelet bases are optimal to approximate a ball SBV of bounded variation func-
tions. A ball SBV is included in a wlp ball (4) for p = 2/3 but not for p < 2/3 [12].
Hence ǫn(SBV,M) = O(M1−2/p) = O(M−2). When M increases, the asymptotic
decay of ǫn(SBV,M) is thus faster than any linear approximation using M pa-
rameters, which decays at most like M−1.

In two dimensions, wavelet bases are constructed with three “mother”
wavelets ψk for 1 ≤ k ≤ 3, which are dilated and translated

ψk
j,n(x1, x2) = ψk

j,n(x) = 2j ψk(2jx1 − n1, 2
jx2 − n2) .

Appropriate modifications are made at the boundary so that supports stay in
[0, 1]2. A wavelet ψk

j,n has a square support of size proportional to 2−j , and

centered near 2−jn = (2−jn1, 2
−jn2). An orthonormal wavelet basis of L2[0, 1]2

is obtained by adding orthonormal scaling functions that define a lower resolution
space

B =
(

{φl,n}2−ln∈[0,1)2 ∪ {ψk
j,n}j≥l , 2−jn∈[0,1)2 , 1≤k≤3

)

. (5)

A discrete image is a square array of N2 points (pixels), with N = 512 in
Image 1(a). The wavelet basis (5) can be discretized to define an orthonormal basis
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of images ofN2 pixels. The wavelet coefficients of the image 1(a) are shown in 1(b).
Each sub-image gives the values of {|〈f, ψk

j,n〉|}2−jn∈[0,1)2 for a fixed j and a fixed

k. The number of wavelet coefficients in each sub-image is 22j . White and black
points correspond respectively to nearly zero or large coefficients |〈f, ψk

j,n〉|. These
sub-images go by triplets corresponding to the index 1 ≤ k ≤ 3. The wavelets
for k = 1, 2, 3 are sensitive to image variations along different orientations. Most
points are white, meaning that the majority of wavelet coefficients are nearly zero.
The few large ones are located in the domains where the image intensity has a
sharp variation due to an “edge” or a “texture”.

(a) (b)

Figure 1: (a): Original image f . (b): Amplitude of coefficients |〈f, ψk
j,n〉| in a

wavelet orthonormal basis. Each sub-image corresponds to a different resolution
2j and different orientation k (see text).

A linear approximation from M = 22J wavelets is calculated by keeping all
coefficients at resolutions 2j < 2J . This uniform grid approximation is particularly
ineffective for images including discontinuities. For a ball of bounded variation
images (2), one can prove that ǫl(SBV,M) = A > 0. The maximum approximation
error does not decay to zero as M increases.

Non-linear approximations are much more effective because they keep wavelet
coefficients near the singularities and (1) indicates that the lengths of “edges”
remains finite. More formally, one can prove that SBV is included in a wl1 ball
[4] and as a consequence ǫn(SBV,M) = O(M−1). The wavelet adaptive grid gives
much better image approximation than a uniform grid, and no other orthonormal
basis can improve the approximation rate of an orthonormal wavelet basis.

2.4 Signal Compression

Economic storage and fast transmission of large signals through channels of limited
bandwidth (such as Internet) are major applications of signal compression. Coding
efficiently a signal with as few bits as possible requires to build a sparse represen-
tation. Signal processing engineers did not wait for a mathematical analysis of
non-linear approximations in order to develop compressed audio or image codes in
orthonormal bases. The first wavelet image coder was implemented in 1986 [34],
before wavelet orthonormal bases had truly been studied in mathematics. The fast
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orthogonal wavelet transform is indeed computed with a “filter bank” algorithm,
which was initially introduced in signal processing to multiplex signals (aggregate
several signals into one) [7]. A discrete filter bank theory has been developed
in signal processing [33], but only later the connection with wavelet orthonormal
bases was established [19]. Although the mathematics came late, analyzing the
performance of image coders requires use of recent approximation theory results,
and these open directions for potential improvements.

The signals in S are now discretized and approximated at resolution N , which
means that they belong to a space of dimension N . A transform code decomposes
f in an orthonormal basis B = {gm}0≤m<N

f =

N−1
∑

m=0

〈f, gm〉 gm ,

and approximates each coefficient 〈f, gm〉 with a quantized value, which is coded
with as few bits as possible. A uniform quantizer with bin size ∆ approximates
x ∈ R by Q(x) = k∆ with k ∈ Z and |x−Q(x)| ≤ ∆/2. The resulting quantized
signal is

f̃ =
N−1
∑

m=0

Q(〈f, gm〉) gm .

The problem is to minimize the maximum distortion d(S, R) = supf∈S ‖f − f̃‖2
for a maximum number of bits R allocated to code f̃ .

(a) (b)

Figure 2: (a): Image coded with 0.25 bits/pixel, by quantizing the wavelet coef-
ficients of the original image displayed in Figure 1. (b): Image coded with 0.125
bits/pixel.

The distortion of a transform code is first related to a non-linear approxi-
mation. Let M be the number of coefficients above ∆/2 and fM the non-linear
approximation of f from these M largest coefficients

fM =
∑

|〈f,gm〉|>∆/2

〈f, gm〉 gm .
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Since Q(x) = 0 when |x| < ∆/2, and |x−Q(x)| ≤ ∆/2, the distortion is

d(f,R) = ‖f − f̃‖2 ≤ ‖f − fM‖2 +M
∆2

4
. (6)

This connects us with non-linear approximations. Suppose that S is in a wlp

ball Swlp (4) of radius C, with p < 2. Denote by M0 = Cp(∆/2)−p. Since
|ck| = |〈f, gmk

〉| ≤ C k−1/p, necessarily M ≤M0. We also verify that

d(S, R) = sup
f∈S

d(f,R) ≤ sup
f∈S

‖f − fM0
‖2 +M0

∆2

4
= O(M

−2/p+1
0 ) . (7)

The total distortion is thus driven by the non-linear approximation error.
To optimize the transform code, we must minimize the maximum number

of bits R required to code the N values {Q(〈f, gm〉)}0≤m<N for f ∈ S. For
high compression rates N ≫ M0 ≥ M , in which case a large proportion N−M

N
of coefficients quantized to zero. An entropy code takes advantage of this, by
allocating fewer bits to code coefficients that occur more frequently than others.
Knowing that S ⊂ Swlp , one can construct an arithmetic code which requires a
maximum number of bits R ∼ M0 log2

M0

N [22]. We thus derive from (7) that

d(S, R) = O(R1−2/q) for any q > p.
The decay rate of d(S, R) is maximized in a basis B which is optimal for

non-linear approximations in S, because it minimizes the exponent p such that
S ⊂ Swlp In particular, wavelet bases are optimal for bounded variation images
and the minimum is p = 1. The Figures 2(a,b) are compressed images f̃ calculated
by quantizing the wavelet coefficients in Figure 1(b). They are coded respectively
with R

N = 0.25 bits/pixel and 0.125 bits/pixel, with an optimized coder for zero
coefficients [30]. The original image 1(a) is coded with 8 bits/pixel, so this cor-
responds to compression factors of 32 and 64. For 0.25 bits/pixel, the distortions
are hardly visible but become apparent for 0.125 bits/pixel.

Let us emphasize that the choice of basis depends entirely on the nature of
the signals in S. For sounds, totally different bases must be chosen in order to
approximate efficiently complex oscillatory waveforms of varying durations. Figure
3 shows the recording of the word “greasy”. Current compression audio standard
for Compact Disk quality, such as the AC-system of Dolby, are calculated in bases
that are similar to a local cosine basis. Such a basis is constructed with an even
function w(t), called a window, which has a support [−2l, 2l] and is translated to
cover the real axis uniformly:

+∞
∑

p=−∞

|w(t− p l)|2 = 1.

Malvar [23], Coifman and Meyer [5] proved that if further symmetry properties
are imposed on w(t) then multiplications by cosine functions yield an orthonormal
basis of L2(R)

{

gp,k(t) =
1√
l
w(t− p l) cos

(

πk (l−1t− p)
)

}

k∈N,p∈Z

. (8)
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As in the image case, the performance of an audio code in this basis depends
on being able to approximate the recorded sound with few local cosine vectors.
However, the most relevant audio distortions measures are not L2 norms. Sophis-
ticated masking techniques are used by engineers to introduce quantization errors
which are below our hearing sensitivity threshold [22], and above our mathematical
understanding.

Figure 3: Speech recording of the word “greasy” sampled at 16kHz.

2.5 Geometry and More Adaptivity

Wavelet bases are optimal for representing general bounded variation images, but
better approximations can be obtained by taking advantage of the geometrical
regularity of most images. The total variation formula (1) shows that the level
sets of bounded variation images typically have a finite length. However, this
imposes no condition on the regularity of these level sets. In the Image 1(a), the
“contours” are mostly piecewise regular geometrical curves in the image plane,
with small curvature at most locations. Understanding how to take advantage of
this regularity is fundamental for image processing. This has motivated the use
of non-linear partial differential equations to modify the curvature of level sets in
images [1, 28, 31]. This important new branch of mathematical image processing
leads to interesting applications for noise removal and image segmentation. Yet,
we shall not follow this line of thought, which is not based on explicit sparse
representations.

To understand the importance of geometrical regularity, let us consider a
simple “image” f = 1Ω, which is the indicator function of a set Ω. The boundary
∂Ω of Ω is a differentiable curve of finite length with bounded curvature. If the
square support of ψk

j,n does not intersect ∂Ω then 〈f, ψk
j,n〉 = 0. The wavelets

ψk
j,n are translated on a square grid with step sizes 2−j and have square support

proportional to 2−j , as illustrated in Figure 4(a). At resolution 2j , there are
O(2j) wavelets ψk

j,n whose supports intersect ∂Ω. TheM larger amplitude wavelet

coefficients selected by a non-linear approximation are at resolutions 2j ≤ 2J ∼M
and the non-selected wavelets produce an error ‖f − fM‖2 ∼ M−2, like for any
bounded variation image.

A better piecewise linear approximation is calculated with an adaptive trian-
gulation of [0, 1]2 having M triangles [16]. Since the curvature of ∂Ω is bounded,
this boundary can be covered by M/2 triangles, which have a narrow width pro-
portional to M−2 along the normal to ∂Ω, and which are elongated along the
tangent to ∂Ω. The interior and exterior of Ω are covered by M/2 larger triangles,
as illustrated in Figure 4(b). A function fM which is linear on each triangle can
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(a) (b)

Figure 4: (a): Wavelets ψj,n are translated on a square grid of interval 2−j , and
have a square support proportional to 2−j . For f = 1Ω, the darker points locate
the wavelets ψj,n such that 〈f, ψj,n〉 6= 0. (b): A piecewise linear approximation
of f = 1Ω is optimized by choosing narrow triangles that are elongated along the
boundary where f is discontinuous.

approximate f = 1Ω with ‖f − fM‖2 = O(M−4). The approximation error is con-
centrated on the triangles along the border and the small width of these triangles
yields a smaller error than with wavelets of square support. The error is reduced
because the triangles are adapted to the geometry of ∂Ω.

Building a bridge between geometrical constraints and adaptive approxima-
tions is a fundamental issue for image processing. The human visual system takes
great notice of geometrical “features” such as “corners” or the regularity of “edges”
[24, 26]. The Kanizsa illusion shown in Figure 5 illustrates this fact. We perceive
a triangular “edge” although the image has no grey level variation in the center.
Such illusions are explained by imposing geometrical constraints on the interpre-
tation (models) of images. It is also known [11] that simple cells in the visual
cortex perform an image decomposition over a family of functions that have close
similarities to wavelets, but which is more redundant that a basis and thus of-
fers more flexibility. This indicates that our brain constantly crosses this bridge
between functional analysis and geometry.

(a) (b)

Figure 5: The illusory edges of a straight and of a curved triangle are perceived
in domains where the images are uniformly white.

Adapting to geometry in images can be interpreted as a particular instance of
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a more general adaptive approximation problem. A basis is a complete family in
our functional space, but it is often too small to fully utilize all of the structures
included in complex signals. More precise approximations are obtained with M
vectors selected from a much larger dictionary D = {gγ}γ∈Γ, that may include an
infinite number of bases. This follows the same idea that motivates someone to
enlarge his vocabulary to build more concise and precise sentences. For recognition,
is also often important to construct representations that have invariant properties,
with respect to translation or affine transformations. This imposes some further
conditions on the dictionary [20]. A dictionary for images can be constructed
with wavelets whose supports have a parameterized elongation and an arbitrary
orientation. Like the elongated triangles in Figure 4(b), the chosen wavelets can
be adapted to the geometry of the level sets in the image. Audio signals are also
more efficiently approximated with a dictionary of local cosine vectors such as (8),
but where the window length l may be freely adapted to the duration of waveforms
produced by attacks, harmonics or other transient events.

An adaptive representation is constructed from a dictionary D by selecting
M vectors {gγk

}1≤k≤M to approximate f with a partial sum

fM =

M
∑

k=1

αk gγk
.

In the absence of orthogonality, finding the M vectors that minimize ‖f − fM‖
leads to a combinatorial explosion. Greedy pursuit algorithms have been devel-
oped to avoid this explosion [20], by selecting the vectors gγk

one by one from the
dictionary, but their approximation performance is far from optimal [3, 13]. In
structured dictionaries composed of orthonormal bases embedded in a tree, Coif-
man and Wickerhauser [6] have introduced dynamical programming algorithm
that selects M vectors which define a “reasonable” but non optimal approxima-
tion. There is yet no approximation theory that can analyze the performance of
these highly non-linear approximations and improve their performance.

Let us finally mention that enlarging the dictionary has a cost. In a larger dic-
tionary, more parameters are needed to characterize the index γk of each selected
vector. For a fixed approximation error, making the dictionary too large can in-
crease the total number of parameters that characterize the signal approximation
fM . Finding dictionaries of optimal size is thus another open issue.

3 Noise Removal by Thresholding

The removal of noise, added when measuring the signal or during its transmission,
is an important problem where sparse representations play a crucial role. In a basis
that transforms the signal into few large amplitude values plus a small remainder,
most of the noise is easily suppressed by a thresholding which sets to zero the
smallest coefficients. A similar version of this simple idea has been used to remove
noise from television images since the 1960’s. However, it is only recently that
Donoho and Johnstone [14] were able to develop the mathematics proving that
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thresholding estimators are nearly optimal in sparse representations, which opened
new signal processing applications.

A discrete approximation of f(x) defined over [0, 1]d is characterized by N
coefficients, denoted f [n], for 0 ≤ n < N . The measured noisy data are

D[n] = f [n] +W [n] , (9)

where the noise values W [n] are modeled by independent Gaussian random vari-
ables, and thus define a white noise. Figure 6(a) gives an example. An estimator
F of f is calculated by applying an operator L on the data, F = LD. The risk of
this estimation is

r(L, f) = E{‖f − LD‖2}.
We want to minimize the maximum risk over a signal set S

r(L,S) = sup
f∈S

r(L, f) .

The goal is to find an operator L which approaches the optimal minimax risk

ro(S) = inf
All L

r(L,S).

There is a considerable body of literature in mathematical statistics for evaluation
of minimax risk [15].

A new approach to minimax estimation is to separate the representation from
the estimation problem. The first step is to construct an appropriate representa-
tion by decomposing D = f +W in an orthogonal basis B = {gm}0≤m<N :

〈D, gm〉 = 〈f, gm〉+ 〈W, gm〉.

A thresholding estimator is then simply defined by

F = LtD =

N−1
∑

m=0

θT (〈D, gm〉) gm, (10)

where θT (x) = x1|x|>T . It sets to zero all coefficients below T and keeps the
others. The threshold T is chosen to be just above max0≤m<N |〈W, gm〉|, with a
high probability, so that θT (〈D, gm〉) = 0 if 〈f, gm〉 ≈ 0.

Since W is a Gaussian white noise of variance σ2, in any basis B, the noise
coefficients 〈W, gm〉 are independent Gaussian random variables of same variance
σ2. Let M be the number of coefficients such that |〈f, gm〉| ≥ σ, and fM be the
non-linear approximation (3) of f from theseM largest vectors. If T = σ

√

2 logeN
then Donoho and Johnstone proved [14] that

r(Lt, f) ≤ (2 logeN + 1)
(

‖f − fM‖2 + (M + 1)σ2
)

.

The right part of the upper bound is similar to the distortion (6) of a transform
code. The risk is thus reduced by choosing a basis where there is a small number
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(a) (b)

Figure 6: (a): Image contaminated by an additive Gaussian white noise. (b):
Thresholding estimation calculated in a wavelet basis.

M of large amplitude coefficients above σ, which yield a small approximation
error ‖f − fM‖. Once more we face the problem of finding a sparse but precise
representation. Figure 6(b) is an estimation calculated by thresholding the wavelet
coefficients of the noisy image shown in (a).

The asymptotic performance of tresholding estimators is calculated as the
resolution N of the measurements increases to +∞. For a given set S0 of signals
f(x), we look for an orthonormal basis B0 which is optimal for non-linear approx-
imations. Suppose that S0 is a ball of a space B, then we can choose B0 to be
an unconditional basis of B. The set S of discretized signals is obtained with a
projection in dimension N . These signals are decomposed in the basis B derived
from B0 through the same projection. As N increases, one can prove [15] that the
thresholding estimator is nearly optimal in the sense that

r(Lt,S) ≤ O(logN) ro(S) . (11)

This result applies to discretized signals from Besov spaces, decomposed in a dis-
crete wavelet basis. It is also valid for a set SBV of bounded variation signals
decomposed in a wavelet basis, because BV is embedded in two Besov spaces
which are close enough. In this case, the tresholding risk has faster asymptotic
decay than the risk of any linear estimator as N increases.

The efficiency of thresholding estimators depends crucially on the approxi-
mation performance of the representation. To take advantage of complex signal
structures, such as the geometrical regularity of some images, the thresholding
must be calculated in more adaptive representations, as explained in Section 2.5.
However, the minimax optimality of these highly adaptive estimators remains to
be understood.

4 Sparse Interaction Processes

In many classification problems, including speech recognition and visual texture
discrimination, the observed signal is modeled as the realization of a process that
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we need to characterize. This is difficult because the underlying process is often
non Gaussian or non-stationary, and a single realization provides little data to
identify it. It is therefore necessary to characterize these processes with few pa-
rameters in an appropriate representation, that can be estimated and used for the
classification. After studying non stationary Gaussian processes, we consider more
general Markov random field models.

4.1 Non Stationary Gaussian Processes

Gaussians processes provide resonable models for large class of signals, includ-
ing speech recordings. A zero-mean Gaussian process X(t) for t ∈ R is entirely
characterized by its covariance k(t, s) = E{X(t)X(s)}, which is the kernel of the
covariance operator K:

Kf(t) =

∫ +∞

−∞

k(t, s) f(s) ds. (12)

To estimate this covariance from few realizations, it is necessary to reduce the
number of coefficients describing the kernel. This can be done by finding an
orthonormal basis B = {gm}m∈Z in which the matrix coefficients

〈Kgm, gn〉 =
∫ +∞

−∞

∫ +∞

−∞

k(t, s) gm(s) gn(t) ds dt (13)

have fast off-diagonal decay. These matrix values are the decomposition coeffi-
cients of the kernel k(t, s) in a separable orthonormal basis {gn(t) gm(s)}(n,m)∈Z2

of L2(R2). Finding a sparse matrix represention is thus equivalent to approxi-
mating k(t, s) with few non-zero coefficients in a separable basis. If the matrix
coefficients have a sufficiently fast off-diagonal decay, then K is closely approxi-
mated (with a sup or a Hilbert Schmidt norm) by a narrow band matrix K̃ in B,
which is the covariance of a Gaussian process X̃ that approximates X [21]. Since
K̃ has a band-matrix representation, for each m ∈ N there exists a neighborhood
Nm which is a finite set of integers such that if n∈/ Nm then

〈K̃gm, gn〉 = E{〈X̃, gm〉 〈X̃, gn〉} = 0.

Since 〈X̃, gm〉 and 〈X̃, gn〉 are jointly Gaussian random variables, they are inde-
pendent because uncorrelated. The model X̃ of X has therefore a representation
in B with coefficients that are dependent only in small neighborhoods, which is a
particular case of Markov random field.

Writing the covariance operator K as a pseudo-differential operators is a pow-
erful approach to find bases where the matrix coefficients have fast off-diagonal
decay [25]. Let f̂(ω) =

∫ +∞

−∞
f(s) e−iωs ds be the Fourier transform of f . The

symbol of the operator K is

β(t, ω) = p.v.

∫ +∞

−∞

k(t, t− s) e−iωs ds .

Documenta Mathematica · Extra Volume ICM 1998 · I · 319–338



Applied Mathematics Meets Signal Processing 333

Applying the Parseval formula to (12) yields

Kf(t) =
1

2π

∫ +∞

−∞

β(t, ω) f̂(ω) eiωt dω.

For example, if β(t, ω) =
∑P

p=0 ap(t) (iω)
p then K =

∑P
p=0 ap(t) (

d
dt )

p is a dif-
ferential operator with time varying coefficients. The process X is stationary if
k(t, s) = k(t− s), in which case β(t, ω) = β(ω) is the spectrum of K. The Fourier
transform is therefore an ideal tool to characterize stationary Gaussian processes.
For non-stationary processes, one needs to relate the properties of X(t) to the
properties of β(t, ω), and derive a basis where K is approximated by a narrow
band matrix.

Locally stationary processes X(t) appear in many physical systems in which
the mechanisms that produce random fluctuations change slowly in time or space
[29]. Over short time intervals l, such processes can be approximated by a station-
ary one. This is the case for many components of speech or audio signals. Over a
sufficiently short time interval, the throat behaves like a steady resonator which is
excited by a stationary noise source. A simple class of locally stationary processes
is obtained by imposing that there exists A > 0 such that for all k, j ≥ 0

|∂kt ∂jωβ(t, ω)| ≤ A lj−k .

We derive [21] the existence of a local cosine basis (8) in which the operator K
is closely approximated by a narrow band matrix. The size l of each window
is adapted to the interval of stationarity. When the length l(t) of the interval of
stationarity varies strongly in time, which is the case of audio signals, the resulting
covariance operator has more complex properties and often does not belong to a
classical family of pseudo-differential operators. Depending upon the regularity
of l(t), adapted local cosine bases can still provide sparse representations of such
operators [21].

Multifractals provide useful models for signals having some self-similarity
properties [27]. Among the many examples, let us mention economic records
like the Dow Jones industrial average, physiological data including heart records,
electromagnetic fluctuations in galactic radiation noise, some image textures, vari-
ations of traffic flow... A fractional Brownian motion X(t) of Hurst exponent H is
a canonical example of fractal Gaussian processes, whose increments are station-
ary and which is self-similar in the sense that s−HX(st) has the same probability
distribution as X(t), for all s > 0. The symbol of the covariance K of X is
β(t, ω) = λ |ω|−2H−1. This corresponds to a Calderón-Zygmund operator of the
first generation [25], which is known to have fast off-diagonal decay in a wavelet
basis. In signal processing, fractional Brownian motions are often approximated
by a process X̃ whose covariance K̃ is diagonal in a wavelet basis, which leads
to fast synthesis algorithms [27]. General conditions on ∂kt ∂

j
ωβ(t, ω) can be es-

tablished to guarantee that K has fast off-diagonal decay in a wavelet basis [2].
Multifractional Brownian motions are examples with Hurst exponents that vary
in time: β(t, ω) = β0(t) |ω|−2H(t)−1. Accurate estimations of β0(t) and H(t) are
obtained in wavelet bases.
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When the process is uniformly locally stationary or multifractal, the basis
which compresses the covariance matrix is known beforehand. For more complex
non-stationary processes, this basis must also be estimated, given some prior infor-
mation. This is an adaptive approximation problem, similar to the ones described
in Section 2.5, although we approximate operators as opposed to functions. Best
basis search algorithms have been introduced to perform such adaptive approxi-
mation of covariance operators [21], but these techniques are still in their infancy,
and more work is needed to understand the properties of the resulting statistical
estimators.

4.2 Markov Random Fields in Sparse Representations

The characterization and synthesis of visual textures is one of the most challenging
low-level vision problem. Homogeneous visual textures such as images of woods,
carpets or marbles, can be considered as stationary, but they are not Gaussian.
Figure 7 gives two examples. It is necessary to model these processes with few
parameters to hope identify them from a single realization. This is feasible since
the human visual system can do it. The importance of this problem goes well
beyond texture discrimination. Indeed, providing a general framework to model
non-Gaussian processes is necessary to analyze the properties of various classes of
signals such as financial time series or the velocity of turbulent fluids.

Markov random field models of textures have been proposed by Cross and
Jain [8], but such models became computationally and mathematically attractive
through the work of Geman and Geman [17], who introduced a stochastic relax-
ation algorithm for sampling Gibbs distributions. To simplify the presentation,
we restrict ourselves to a random vector X(n), where n ∈ Z

d varies over a grid G
of size N . We define a neighborhood system N = {Nn}n∈G such that n∈/ Nn and
m ∈ Nn if and only if n ∈ Nm. For any G0 ⊂ G, let X(G0) denote the set of values
taken by X over G0. We say that p(X) is a Markov random field distribution with
respect to N if

p
(

X(n) | X(G − {n})
)

= p
(

X(n) | X(Nn)
)

.

A subset C of G is called a clique if every pair of elements in C are neighbors of
each other. Let C be the set of all cliques. If X takes its values in a finite alphabet
then the Hammersley-Clifford theorem proves that p(X) is a Markov random field
if and only if it can be written as a Gibbs distribution with respect to N

p(X) =
1

Z
exp
[

−
∑

C∈C

φC(X)
]

,

where Z is a normalization constant and φC is a potential function which depends
only of the values of X in the clique C. Markov random field models have inter-
esting applications to texture discrimination and image restoration, but limited
success due to the difficulty to incorporate the long range interactions of image
pixels. Several approaches have been introduced to circumvent this problem, in-
cluding renormalization techniques [18].

Documenta Mathematica · Extra Volume ICM 1998 · I · 319–338



Applied Mathematics Meets Signal Processing 335

Mumford and Zhu [35] introduced a different point of view by creating Markov
random field models on a sparse representation of X, rather than on the sample
values X(n). Let D = {gγ}γ∈Γ be a dictionary of vectors, which can be an
orthogonal basis or be more redundant. Let Xγ = 〈X, gγ〉. A neighborhood
system N = {Nγ}γ∈Γ is defined over Γ. For example, if D = {ψk

j,n}k,j,n is a
wavelet basis in two dimensions, the index γ = (k, j, n) specifies the orientation k,
the resolution 2j and the position 2−jn of the wavelet. The neighborhood N(k,j,n)

includes wavelets ψk′

j′,n′ with |j − j′| ≤ 1 and a position 2−j′n′ which is close to

2−jn. The multiresolution aspect of wavelet bases allows one to construct Markov
random field models that incorporate short range and long range interactions.

To construct a Markov random field model X from observed signals
{Xobs

p }0≤p<P , we compute average measurements over M cliques {Cm}0≤m<M

with potential functions φCm

µobs
Cm

=
1

P

P
∑

p=1

φCm
(Xobs

p ) .

If X is stationary then a spatial averaging is done over all φCm
that perform

identical calculations but at translated locations. These empirical averages are
estimates of E{φCm

(X)} for the modelX that we construct. Most often, the cliques
have at most two elements C = {γ, γ′}. Covariance measurements correspond to
φC(X) = Xγ Xγ′ . However, different potential functions may be useful such as
pth order moments

φC(X) = |Xγ |p |Xγ′ |p for p > 0 . (14)

(a) (b) (c) (d)

Figure 7: (a): Observation of a uniform texture. (b): Realization of the wavelet
Markov random field model calculated from (a). (c): The center shows an example
of texture. (d): The center is identical to (c) whereas the periphery is a realization
of a wavelet Markov random field model calculated from (c).

The maximum entropy principle suggests choosing p(X) that achieves the
maximum entropy

p(X) = arg max{−
∫

p(X) log p(X) dX} .

under the constraints

E{φCm
(X)} =

∫

φCm
(X) p(X) dX = µobs

Cm
for 1 ≤ m ≤M . (15)
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By maximizing the entropy, the resulting p(X) is the “most uniform” distribution
given the prior knowledge provided by the observation µobs

Cm
. It thus does not

include more “information” than what is available. The solution is calculated
with Lagrange multipliers

p(X,Λ) =
1

Z(Λ)
exp

(

−
M
∑

m=1

λm φCm
(X)

)

. (16)

The parameter vector Λ = {λm}1≤m≤M is uniquely characterized by the con-
straints (15), if the potential functions satisfy a linear independence property.

If φCm
(X) are covariance measurements then (16) is the probability distribu-

tion of a Gaussian process, and if D is an orthonormal basis then Λ is calculated
by inverting a band covariance matrix. The entropy maximization is a convex
problem [17], but for general potential functions φCm

the vector Λ can not be cal-
culated analytically. Numerical procedures compute Λ iteratively by estimating
Ep(X,Λ){φCm

(X)}, while updating Λ with a gradient descent to reach the condi-
tions (15). Let us mention that the estimation of Ep(X,Λ){φCm

(X)} is performed
with a Gibbs sampler or other Markov chain Monte Carlo methods, which are
computationally expensive.

Mumford and Zhu [35], as well as Simoncelli and Portilla [32], use such Markov
random fields to construct a model from a single observation of a texture. The
Markov model of Simoncelli and Portilla is calculated in a wavelet basis, with
constraints on covariance values and on moments (14) with p = 1. The textured
image 7(a) is the only observation used to compute the parameters Λ of the model,
with a stationarity assumption. The Figure 7(b) shows a realization of the resulting
wavelet Markov model. It is remarkably close to the original texture, in the sense
that visually it can not be distinguished preattentively, in less than 10−1 seconds.
A similar wavelet Markov model is calculated from the “text” texture of Figure
7(c). The image 7(d) is obtained by adding a realization of this Markov model at
the periphery, which is preattentively not discriminable from the center.

Markov random fields provide a general framework to construct processes
with sparse interactions over appropriate representations. The validity of such
models depends on the choice of representation and on the potential functions φC .
Understanding how to optimize these two components and analyzing the properties
of such Markov random fields over functional spaces is an open problem.
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