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Fibrations in Sympleti Topology

Dusa McDuff1

Abstract. Every symplectic form on a 2n-dimensional manifold is lo-
cally the Cartesian product of n area forms. This local product structure
has global implications in symplectic topology. After briefly reviewing the
most important achievements in symplectic topology of the past 4 years,
the talk will discuss several different situations in which one can see this
influence: for example, the use of fibered mappings in the construction
of efficient symplectic embeddings of fat ellipsoids into small balls, and
the theory of Hamiltonian fibrations (work of Lalonde, Polterovich, Sala-
mon and the speaker). The most spectacular example is Donaldson’s
recent work, showing that every compact symplectic manifold admits a
symplectic Lefschetz pencil.
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1 Introduction

In this talk I will give an overview of what has been achieved in symplectic topology
in the past 4 years and then will discuss the relevance of symplectic fibrations.
First, I will review some basic facts.

A symplectic manifold (M,ω) is a pair consisting of a smooth 2n-dimensional
manifold M together with a closed 2-form ω that is nondegenerate, i.e. the top
power ωn never vanishes. By Darboux’s theorem such a form ω can always be
expressed locally as the sum

ω =
n∑

i=1

dxi ∧ dyi.

Thus the only invariants of a symplectic manifold are global. The other essential
feature of symplectic geometry is its connection with dynamics. Every function
H :M → R has a symplectic gradient XH , which is the vector field defined by the
equation ω(XH , · ) = dH. Because ω is closed, the flow of XH is a family φHt of

1Partially supported by NSF grant DMS 9704825.
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symplectomorphisms, i.e. diffeomorphisms that preserve the symplectic structure.
Thus (φHt )∗(ω) = ω for all t.

One can think that these flows are built into the local structure of a symplectic
manifold. Any (local) hypersurface Q in (M,ω) is a regular level set H = const of
some functionH. Since dH(XH) = ω(XH , XH) = 0, the vector fieldXH is tangent
to Q and so induces a flow on it. The corresponding flow lines are independent
of the choice of H and so give rise to a 1-dimensional foliation on Q called the
characteristic foliation. As we shall see in §4.1, these foliations give rise to a good
theory of symplectic connections on symplectic fibrations.

Another more global consequence is that each symplectic manifold gives rise
to an interesting infinite-dimensional group, namely the group of symplectomor-
phisms Symp(M,ω). Its identity component contains a connected subgroup of
finite codimension, called the Hamiltonian subgroup Ham(M,ω). This consists of
all symplectomorphisms that are the time-1 map of some Hamiltonian flow φHt ,
where here one allows the Hamiltonian Ht : M → R to depend on time t ∈ [0, 1].
I shall say more about these groups in §2.6 and §4.2 below.

A basic theme in symplectic topology is that properties that hold locally are
often valid more globally. One example is Darboux’s theorem. Here the local state-
ment is that there is a unique symplectic structure at a point (i.e. on the tangent
space), and this extends to the fact that there is a unique structure in a neighbor-
hood of each point. Another example is Arnold’s conjecture. The local statement
here is that when M is compact every Hamiltonian symplectomorphism that is
sufficiently close to the identity in the C1-topology has at least

∑
i dimHi(M,R)

distinct fixed points, provided that these are all nondegenerate.2 The global state-
ment is that this remains true for all elements of Ham(M,ω). This has now been
proved: see §2.2.

One further example of this phenomenon that I want to mention here concerns
the fact that a symplectic form ω is a local product: by Darboux’s theorem ω can
always be expressed locally as the Cartesian product of n area forms dx∧dy on R2.
Observe that a general symplectomorphism does not preserve this local product
structure. For example, the linear map

L : (x1, y1, x2, y2) 7→ (x1 + x2, y1, x2, y2 − y1)

preserves ω but neither preserves nor interchanges its individual summands dxi ∧
dyi, i = 1, 2. Nevertheless, I hope to show in this talk that the existence of this
local product structure is reflected globally in various important ways, both in the
“semi-local” properties that are discussed in §3 and in the theory of symplectic
fibrations that is presented in §4. The best evidence is, of course, Donaldson’s
theorem on the existence of symplectic Lefschetz pencils that is discussed in §2.3
below.

2A fixed point x of φ is said to be nondegenerate if the graph of φ in M × M intersects the
diagonal transversally at the point (x, x). There are other versions of Arnold’s conjecture that
allow degenerate fixed points and/or make homotopy theoretic rather than homological estimates
of the number of fixed points, but these have not yet been established in full generality.
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1.1 Analytic techniques in symplectic topology

Until Donaldson’s recent work, there were two main sources of analytic techniques
in symplectic geometry, variational methods (that relate to the above mentioned
flows) and elliptic methods. These have been combined to create powerful tools
such as Floer theory. Since Hofer who is one of the main exponents of the vari-
ational method is also talking at this I.C.M. I will not say anything more about
this here, and will concentrate on more purely elliptic methods that exploit the
close relation of symplectic geometry with complex geometry.

One important kind of symplectic manifold is a Kähler manifold. This is a
complex manifold M that admits a Riemannian metric g that is well adapted to
the induced almost complex structure J on the tangent bundle TM .3 One way of
expressing the Kähler condition is that the bilinear form ω defined by

ω(v, w) = g(Jv,w)

is skew-symmetric and closed. Since the nondegeneracy of g implies that of ω, the
form ω is symplectic. As a kind of converse, observe that a symplectic manifold
always supports an almost complex structure J on the tangent bundle TM that
is compatible with ω in the sense that the bilinear form g defined by the above
equation is a positive definite inner product. In fact, for any symplectic manifold
M there is a contractible set J (ω) of such almost complex structures. In most
cases, these will not be integrable. It was Gromov who first realised (in 1985) how
to use these almost complex structures to get information about the underlying
symplectic structure: see [G1], [G2].

Gromov’s fundamental idea was to look at spaces of J-holomorphic curves in
(M,ω, J). These are maps u from a Riemann surface (Σ, j) to the almost complex
manifold (M,J) that satisfy the generalized Cauchy–Riemann equation

du ◦ j = J ◦ du.

If J is integrable, u is a (parametrized) holomorphic curve of the usual kind. Even
if J is not integrable, these curves behave very much as one would expect, ba-
sically because every almost complex structure on a 2-manifold is integrable. In
particular, the ellipticity of the Cauchy–Riemann equation implies that the set
M(A, J) of all such curves that represent the homology class A ∈ H2(M ;Z) is a
finite-dimensional manifold for generic J in J (ω). The other essential ingredient
comes from the existence of the symplectic form ω. This gives an a priori bound
to the energy (or W 1,2-norm) of the elements in M(A, J), which in turn implies
that this space has a well-behaved compactification. Hence it makes sense to try
to count the number of these curves that intersect certain homology classes in
M . In general, one gets a finite number that is independent of J . This gives rise
to symplectic invariants, that in various contexts are called Gromov invariants,
Gromov–Witten invariants, or Gromov–Taubes invariants and so on. Many foun-
dational results in symplectic topology can be proved using J-holomorphic curves,

3An almost complex structure is an automorphism of the tangent bundle TM with square
equal to −Id. If it is induced from an underlying complex structure on M it is said to be
integrable.
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for example the nonsqueezing theorem that we discuss below. They are also an
essential ingredient in symplectic versions of Floer homology.

2 Recent advances

In this section I will list some of the most significant advances in symplectic geom-
etry of the past 4 years. I will be very brief (and in particular do not attempt to
give full references) since in many cases other people will be giving talks on these
subjects at this I.C.M.

2.1 Taubes–Seiberg–Witten theory

A few months after the Seiberg–Witten equations were first formulated in Fall
1993, Taubes realised that the methods used by Witten to calculate the associated
invariants for Kähler manifolds could be adapted to the symplectic case. This was
the first time that methods of gauge theory were found to interact significantly
with symplectic geometry. His first results [T1,2] from Spring 1994 established
a structure theorem for the Seiberg–Witten invariants of symplectic 4-manifolds,
that implied in particular that they do not vanish. He then wrote a series of deep
papers that showed that these invariants coincide with a certain kind of Gromov
invariant that counts J-holomorphic curves in an appropriate way: see [T3–6] and
also Ionel–Parker [IP1].

This has opened the door to the construction of many interesting examples
of symplectic 4-manifolds as well as to a much better understanding of the rela-
tion of smooth 4-manifolds to symplectic ones: cf. the I.C.M. talks of Taubes
and Fintushel–Stern. For example, Taubes gave the first examples of mani-
folds that satisfy the necessary topological preconditions for being symplectic
(namely they support an almost complex stucture and also have a cohomology
class a ∈ H2(M,R) whose top power does not vanish) but nevertheless have no
symplectic structure. One such example is the connected sum CP 2#CP 2#CP 2

of three copies of the projective plane, which cannot be symplectic because its
Seiberg–Witten invariants vanish. Another consequence is a proof that there is
only one symplectic structure on the complex projective plane (up to rescaling) (see
[G1] and [T2]) and a complete classification of symplectic structures on blow-ups of
rational and ruled surfaces. This last is a combination of work by Li–Liu [LL1,LL2],
Ohta–Ono [OO] and Liu [Liu] on Seiberg–Witten theory for symplectic manifolds
with b+ = 1, work by Lalonde–McDuff [LM4] classifying symplectic structures on
ruled surfaces and work on blow-ups by McDuff [Mc1] and Biran [Bi].

2.2 General Gromov–Witten invariants

The theory of J-holomorphic curves outlined above was unsatisfactory for many
years because there was a basic technical problem (the “multiply-covered curve
problem”) that meant that it worked only in a very restricted class of manifolds.
In 1994 Kontsevich suggested a way to get around this difficulty using the concept
of stable maps and other ideas from algebraic geometry, and subsequently several
teams have made this a reality. Among them are Fukaya–Ono [FO], Li–Tian [LiT],
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Liu–Tian [LiuT], Ruan [R], and Siebert [Sieb], who have all completed substantial
papers on this subject in the past two years. (See also Hofer–Salamon [HS].)
This important foundational work shows that methods that one might think are
intrinsically algebraic can be extended to the smooth symplectic context. Another
consequence is a proof that the nondegenerate case of Arnold’s conjecture holds
on all symplectic manifolds: see [FO], [LiuT].

One of the recent insights that has come from string theory and quantum
physics is that Gromov–Witten invariants have very interesting formal properties:
for example they give rise to a deformation of the cup product on the cohomology
ring of a symplectic manifold. This is known as quantum cohomology: see Ruan–
Tian [RT]. These invariants have been also used to solve long-standing problems
in enumerative geometry and have many other applications: cf. the I.C.M. talks
by Vafa and Ruan.

2.3 Donaldson theory

In the past two years Donaldson has developed a completely new way to use
the existence of almost complex structures on symplectic manifolds, taking the
manifold (M,J) to be not the target space but rather the domain of the maps
considered. He has developed a theory of “almost holomorphic” sections of certain
“almost ample” line bundles that imitates the usual theory in the Kähler case
so faithfully that he can prove that every closed symplectic manifold admits a
symplectic Lefschetz pencil: see [D1,D2] and also the Bourbaki seminar [Sik]. I
will state a version of the theorem here because of its relevance to the theme of
this talk. For a much fuller discussion, see Donaldson’s I.C.M. talk.

Theorem 2.1 Let (M,ω) be a closed symplectic manifold such that the cohomol-
ogy class [ω] is integral. Then for each sufficiently large k there is a symplectic
submanifold Bk of codimension 4 and a smooth map p : M − Bk → CP 1 that
has only finitely many singular points. Each fiber of p is symplectically embedded
except at its singular points, and near these p has the form (z1, . . . , zn) 7→

∑
i z

2
i

in suitable local coordinates (z1, . . . , zn) ∈ Cn. Finally, p extends smoothly to the

blow-up M̃ of M along Bk.

The induced map p : M̃ → CP 1 is usually called a Lefschetz fibration. It
is constructed so that its general fiber Fk represents the Poincaré dual PD(k[ω])
of a suitably large integral multiple of the symplectic cohomology class [ω]. Au-
roux [Au] has shown that for sufficiently large k the codimension-2 symplectic
submanifold Fk is unique up to isotopy. Similarly, it can be shown that the whole
structure of the Lefschetz pencil is unique up to isotopy for sufficiently large k.
Moreover the symplectic form on such a pencil is determined up to deformation4

by the symplectic form on the fiber Fk. Hence, in principle, the classification of
symplectic 2n-manifolds can be reduced to that of symplectic (2n− 2)-manifolds,
and hence to the complicated world of symplectic 4-manifolds. This, in turn, is

4Two closed symplectic manifolds (V, ωV ), (W,ωW ) are said to be deformation equivalent if
there is a diffeomorphism φ : V → W and a family of not necessarily cohomologous symplectic
forms ωt, t ∈ [0, 1] on V such that ω0 = ωV , ω1 = φ∗(ωW ).
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reduced to data concerning Riemann surfaces. Many very interesting questions
arise here, and I refer you to the I.C.M. talks by Donaldson and Fintushel–Stern
for further discussion. One important point is that it is not known whether the
classification of symplectic 4-manifolds is more complicated than that of smooth
4-manifolds. For example, I do not know any example of a smooth 4-manifold that
supports two symplectic structures which are not deformation equivalent.

2.4 Contact geometry

Contact geometry is the odd-dimensional analog of symplectic geometry. It is
now particularly well understood in dimension 3 because there are two ways to
get geometric information about a contact 3-manifold M . One can reduce to 2-
dimensions by looking at the intersection of the contact structure with families of
surfaces inM , an approach pioneered by Eliashberg [E3] and Giroux [Gi], and one
can also use elliptic techniques in the 4-dimensional symplectization M ×R. For
new developments in this area I refer you to the I.C.M. talks by Eliashberg and
Hofer.

2.5 Hofer geometry

Hofer [H] pointed out in 1990 that the group of Hamiltonian symplectomorphisms
carries a biinvariant metric, that is now called the Hofer metric. There have
been significant advances in understanding the properties of this metric and its
geometric and dynamic implications, notably by Bialy–Polterovich [BP], a series
of papers by Polterovich (see [P]) and Lalonde–McDuff [LM1–3]. In particular,
the papers [LM1–3] develop a new elliptic approach to Hofer geometry, and show
that the energy-capacity inequality that is basic to the whole theory is equivalent
to the nonsqueezing theorem discussed in §3 below. There also is an interesting
connection between the Hofer length of an element in π1(Ham(M)) and properties
of the associated symplectic fibration over S2 with fiber M : see [P] §7, and §4.2
below. For further details, see the I.C.M. talk by Polterovich [P].

2.6 The topology of the group of symplectomorphisms

There has been quite a bit of recent progress in understanding the relations be-
tween the groups

Ham(M,ω) →֒ Symp(M,ω) →֒ Diff(M)

for closed symplectic manifolds (M,ω). Observe that the inclusion Ham(M,ω) →
Symp(M,ω) induces an isomorphism on all homotopy groups except for π0 and
π1. As far as concerns π0, the Hamiltonian group is path-connected by definition,
while Symp(M,ω) often is not. As for π1, there is an exact sequence

0 → π1(Ham(M,ω)) → π1(Symp(M,ω)) → Γω → 0,

where Γω is a countable subgroup of H1(M,R) that is called the Flux group:
see [MS] or [LMP1]. It is not hard to show that Ham(M,ω) coincides with the
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identity component of Symp(M,ω) in the case when b1(M) = rkH1(M,R) = 0,
in particular if M itself is simply connected.

Perhaps the most surprising recent result is that of the stability of Hamiltonian
loops, i.e if {φt}t∈[0,1] represents an element of π1(Ham(M,ω)) then any pertur-
bation {φ′t} of the loop {φt} that preserves some nearby symplectic form ω′ rep-
resents an element of π1(Symp(M,ω′)) that lies in the image of π1(Ham(M,ω′)):
see Lalonde–McDuff–Polterovich [LMP2]. Another way of saying this is that if
φ ∈ π1(Symp(M,ω)) and φ′ ∈ π1(Symp(M,ω′)) map to the same element of
π1(Diff(M)) and if φ maps to zero in Γω then φ′ must map to zero in Γω′ . It
follows fairly easily that the Flux subgroup Γω never has more than b1(M) gener-
ators. It is still not known whether it is always discrete. This would be the case
if and only if the group Ham(M,ω) is closed in Symp(M,ω) with respect to the
C1-topology: see [LMP1].

Otherwise the theory is at the stage of computing interesting examples. Sei-
del [Seid1] has found a very nice construction that shows that for many symplec-
tic 4-manifolds that contain a Lagrangian 2-sphere5 the map π0(Symp(M,ω)) →
π0(Diff(M)) is not injective. This work is based on an analysis of the Floer ho-
mology of the generalized Dehn twists that occur as monodromy in Lefschetz
fibrations: see Donaldson’s I.C.M. talk. Seidel has also shown that when M
is the product of two projective spaces CPm × CPn, where m ≤ n, the map
πk(Symp(M,ω)) → πk(Diff(M)) is not surjective for odd k ≤ 2n − 1. Many of
the above results are proved by considering properties of appropriate fibrations:
see §4.2 below.

We end this section by mentioning an example where the rational cohomology
of the groups Symp(M,ω) has been fully worked out. Here (M,ω) is the product
S2×S2 equipped with the symplectic form ωλ = (1+λ)σ0⊕σ1, where σi, i = 0, 1,
is an area form on S2 of total area 1. Let Gλ, λ ≥ 0 denote the corresponding
group of symplectomorphisms. Gromov showed in [G1] that, when λ = 0, Gλ is
deformation equivalent to the extension of the Lie group SO(3) × SO(3) by the
involution that interchanges the two factors. Abreu showed in [Ab] that when
0 < λ ≤ 1 the group Gλ no longer has the homotopy type of a Lie group since its
rational cohomology ring has an even-dimensional generator. Abreu–McDuff [AM]
have completed this calculation, showing that when k − 1 < λ ≤ k

H∗(Gλ,Q) = Λ(x1, x3, x
′

3)⊗ S(x4k),

where xi, x
′

i denote generators in dimension i, Λ is an exterior algebra and S is
a polynomial algebra. One can give a meaning to the “limit” of these groups Gλ

as λ→ ∞ and show that this is homotopy equivalent to the group D of fiberwise
orientation-preserving diffeomorphisms of the trivial fibration S2×S2 → S2. Since
Diff(S2) is homotopy equivalent to the Lie group O(3), the group D is homotopy
equivalent to a group D′ that fits in the exact sequence

0 → Map(S2, SO(3)) → D′ → SO(3) → 0.

The cohomology ring of D is isomorphic to Λ(x1, x3, x
′

3) and restricts onto this
part of H∗(Gλ), while the “jumping generator” x4k dies in the limit.

5i.e. a sphere on which the symplectic form vanishes.
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2.7 Symplectic fibrations

A unifying theme that is relevant to several of the areas mentioned above is that of
symplectic fibration. This concept occurs in symplectic topology in several closely
related variants, but one essential ingredient is a fibration (possibly local and/or
singular) with a family of cohomologous symplectic forms on its fibers. Moreover,
these fiberwise forms should be induced by the ambient symplectic form, if there
is one. (A precise definition is given in §4.)

I pointed out in various places above that the proofs use properties of symplec-
tic fibrations. It is also worth noting that the use of (local) fibrations is ubiquitous
in 4-dimensional symplectic topology. This is obvious in so far as Donaldson’s
theory goes. However, this remark applies also to the kinds of symplectic surg-
eries that have been recently developed and explored. For instance, almost all the
new examples of symplectic 4-manifolds are constructed using the fiber connect
sum (see Gompf [Go], and McCarthy–Wolfson [MW]) which exploits the local
fibered structure of a symplectic manifold near a symplectic submanifold with
trivial normal bundle. This construction is also known as the symplectic sum.
It has good formal properties: see for example Ionel–Parker [IP2] and McDuff–
Symington [MSy]. Other symplectic surgeries developed by Luttinger [Lu], Eliash-
berg and Polterovich [EP] and Symington [Sym] also use the canonical local fibered
structure of a symplectic manifold near a symplectic or Lagrangian submanifold.

As another example, observe that the knot surgeries used by Fintushel and
Stern in [FS] to construct a family XK of homotopy K3-surfaces are only known
to yield symplectic manifolds when the knot K is fibered. To some extent this is a
matter of expedience: the presence of a suitable fibration allows one to construct
a symplectic form out of forms on the base and the fibers. However, Donaldson’s
theorem shows that fibrations are intrinsic to the structure of symplectic manifolds,
and it is quite possible that it will eventually be shown that Fintushel and Stern’s
manifolds XK are symplectic if and only if the knot K is fibered.

3 Symplectic rigidity

In this section we will discuss “semi-local” symplectic topology, which I take to
mean properties of open subsets of Euclidean space and of the symplectomorphisms
between them. To emphasize that we are dealing with the standard symplectic
form here, I will denote it by ω0 =

∑
i dxi∧dyi. We will begin with a discussion of

Gromov’s nonsqueezing theorem, which is the basis of all symplectic topology, and
then in §3.2 will talk about some more specialised problems concerning symplectic
embeddings.

3.1 The nonsqueezing theorem

Gromov’s nonsqueezing theorem [G1] answers the question of when a ball can be
symplectically embedded in a cylinder. To emphasize the relation with fibrations
we will think of the cylinder

Z2n(λ) = B2(λ)×R2n−2
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as the inverse image of the 2-disc B2(λ) of radius λ by the projection

p : R2n → R2, (x1, . . . , yn) 7→ (x1, y1).

Then, if B2n(r) denotes the (closed) standard ball of radius r in Euclidean space
R2n the nonsqueezing theorem can be stated as follows.

Theorem 3.1 For all (local) symplectomorphisms φ of R2n

area
(
p ◦ φ(B2n(r))

)
≥ πr2.

In other words, it is impossible to embed a standard ball of radius r into the
cylinder Z2n(λ) of radius λ when λ < r.

This property of symplectomorphisms is fundamental. Indeed it characterises
symplectomorphisms in the following sense. Suppose that ψ is a diffeomorphism
such that

area
(
p ◦ L ◦ ψ(B2n(x; r))

)
≥ πr2

for all linear symplectomorphisms L and all sufficiently small balls B2n(x; r) in
R2n. Then ψ∗(ω0) = ±ω0. If in addition ψ is orientation preserving we must
have the + sign when n is odd. Applying this to the diffeomorphism ψ × Id of
R2n × R2, one also can characterize symplectomorphisms in this way when n is
even. This is the essential ingredient of the proof by Eliashberg [E1] (see also
Ekeland–Hofer [EH]) that the group of symplectomorphisms is C0-closed in the
group of diffeomorphisms.6 As Gromov pointed out in his 1986 ICM talk [G2],
without this there would be no interesting theory of symplectic topology. This
result is also the foundation of the theory of symplectic measurements such as
the Gromov width of sets7 and the Hofer norm on the group of Hamiltonian
symplectomorphisms that is discussed in Polterovich’s talk [P].

I will consider two aspects of this theorem in more detail below. Firstly, if one
thinks of it as a statement about symplectic embeddings, the question obviously
arises as to what other symplectic embeddings are possible between standard ob-
jects such as ellipsoids and polydiscs. Secondly, one can view this theorem as a
fact about the trivial fibration

p : Z2n(λ) → B2(λ),

and ask whether general symplectic fibrations have similar properties.
To end this section, I’d like to say one more thing concerning the relation of

the C0 (or uniform) topology to the symplectic world. Using the above ideas it is
possible to define the notion of a symplectic homeomorphism between two smooth
symplectic manifolds, though very little is known about the properties of such
maps. For example, as in [EH] one can define the notion of a symplectic capacity
such as the Gromov width and then say that a homeomorphism is symplectic if
it preserves the capacity of sufficiently small open sets. Here I want to mention

6The C0-topology is the topology of uniform convergence on compact subsets.
7The Gromov width wG(U) of an open subset U of (M2n, ω) is defined to be the supremum

of the numbers πr2 such that the ball B2n(r) embeds symplectically in U .
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a slightly different question. Colin [C] has recently shown that contact structures
are C0-stable in dimension 3 though not in higher dimensions. In other words,
two plane fields ξ, ξ′ on a closed 3-manifold that are sufficiently C0-close and that
both satisfy the contact condition are isotopic through a family of contact plane
fields.

Question 3.2 Is there a symplectic analog of this result?

It is not even clear what is the appropriate notion of “C0-close” in this context.
In the contact case the condition for a hyperplane field ξ to be contact involves the
first derivative of the defining form α. In other words, if ξ = kerα and the manifold
has dimension 2n+1 then one requires that α∧dαn 6= 0. It follows that one can get
a sensible C0-topology by using the C0-topology on the defining forms α (which
is, of course, equivalent to using the C0-topology on the plane fields themselves).
However, any two symplectic forms ω and ω′ that are cohomologous and sufficiently
C0-close may be joined by the symplectic isotopy tω + (1− t)ω′, t ∈ [0, 1], and so
are diffeomorphic by Moser’s theorem. Hence this is not the right analog. The
question is whether there is an intrinsic C0 notion of a symplectic structure for
which the above stability result would hold at least in dimension 4. One might,
for example, say that two symplectic structures are ε-close on a compact domain
K if

|wG(U, ω)− wG(U, ω
′)| ≤ ε

for all open subsets U ⊂ K, where wG is the Gromov width defined above. It is
not known what the consequences of such a definition would be.

This raises the whole question of what a symplectic structure “really is”. I
do not think that it is just a structure that allows certain analytic techniques
(such as those of Gromov, Taubes and Donaldson) to work. As the nonsqueezing
theorem shows there is a geometric flavor to the theory that does not seem to be
captured this way. I would argue that one important geometric element is the
presence of the local characteristic foliations mentioned in §1 and that another is
the local product structure. An idea of what one might expect is suggested by
the Eliashberg–Thurston [ET] paper on confoliations, where the authors work out
the relation between foliations and contact structures and show that an essential
ingredient of a contact structure is a “positive twist” condition.

3.2 Symplectic embeddings and folding

Let us write E(a1, . . . , an) for the ellipsoid

E(a1, . . . , an) = {z ∈ R2n :
∑

i

x2i + y2i
ai

≤ 1 }.

It is well known that every ellipsoid in R2n is linearly symplectomorphic to one
of the form E(a1, . . . , an), where a1 ≤ . . . ≤ an. Consider the question of when
E(a1, . . . , an) embeds symplectically into the unit ball B2n(1) =E(1, . . . , 1). Floer,
Hofer and Wysocki [FHW] looked at the 4-dimensional case and showed using
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symplectic homology that when the ellipsoid is “round”, that is when the ratio
a2/a1 is ≤ 2, there is such an embedding only if the ellipsoid is a subset of the
ball. Recently Schlenk [Sch] extended this result to higher dimensions, basing his
argument on Ekeland–Hofer capacities.

Theorem 3.3 If an ≤ 2a1 then E(a1, . . . , an) embeds symplectically in B2n(1)
only if an ≤ 1.

He has also shown that this result is sharp in the sense that as soon as an > 2a1
it is possible to construct symplectic embeddings of E(a1, . . . , an) into a ball with
radius r, where r2 < an. To be precise, he proved:

Theorem 3.4 Given any ν > ε > 0 there is a symplectic embedding

E(1, . . . , 1, 2 + 2ν) →֒ E(2 + ν + ε, . . . , 2 + ν + ε) = B2n(
√
2 + ν + ε).

The proof constructs explicit embeddings by a technique known as symplectic
folding. This is based on an idea of Traynor [Tr], who realised that in these
embedding questions it is useful to think of a ball or ellipsoid as fibered over the
2-disc E(a1) via the projection

p : E(a1, . . . , an) → E(a1).

Observe that the fiber of p at a point x ∈ E(a1) is simply the ellipsoid E(a′2, . . . a
′

n)
where a′i = ai(a1 − |x|2)/a1. The idea is to construct embeddings of E(a1, . . . , an)
into R2n = R2×R2n−2 of the form f×g where f : E(r1) → R2 is area-preserving
and g : E(a2, . . . an) → R2n−2 is symplectic. In doing this one just has to control
the image of f × g on the “partial product” E(a1, . . . , an). This technique was
developed further by Lalonde–McDuff [LM1], who incorporated the idea of folding.

For simplicity, we explain this in the case n = 2. The idea is that what is
really important about the fibration p : E(a1, a2) → E(a1) is:

(i) the fact that the subset Bc of the base E(a1) over which the fiber has area ≥ c
is connected;

(ii) the fact that the fibers are nested, i.e. if we identify the fibers with subsets of
R2, then fibers of equal area are identical and lie inside the fibers of greater area;
and

(iii) the precise function A(c) = areaBc.

It is shown in [LM2] that any other smoothly triangulable set TY of R4 that
fibers over a smoothly triangulable set Y in R2 of area πa1 and has properties
(i), (ii) and the same function A(c) is equivalent to the ellipsoid E(a1, a2) in the
following sense: for any ε > 0, one can symplectically embed E(a1, a2) into an
ε-neighborhood of T and also symplectically embed T into an ε-neighborhood of
E(a1, a2). These embeddings are also fibered, i.e. of the form (z, w) 7→ f(z)×g(w).
In particular we can take Y to be a set consisting of two rectangles of total area
a1 joined by a line segment I, and then map TY by embeddings into the product
space R2 ×R2 that are fibered over each rectangle and “folded” over the interval
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I. The set in TY that lies over I is a product I × F and the folding map has the
form

I × F → U ×R2 ⊂ R×R×R2, (t, x) 7→ (t,H(t, x), φt(x)).

The minimum amount of room needed to make this fold (i.e. the minimum area of
U) is closely related to the Hofer norm of the embedding φ1 ◦ φ−1

0 : φ0(F ) → R2.
In this construction one can see the relevance of local symplectic fibrations and
the close connection between embedding problems and Hofer geometry that was
exhibited in [LM1].

Here is a problem suggested by Schlenk [Sch]. Define s(a) for a ≥ 1 to be
the infimum of the numbers s such that there is a symplectic embedding of the
ellipsoid E(1, a) into the ball E(s, s). Schlenk has shown that as a→ ∞ the image
of E(1, a) fills up an arbitrarily large percentage of the volume of the ball. Thus
s(a)2/a converges to 1 as a→ ∞.

Question 3.5 Find sharp estimates for s(a), in particular as aց 2.

By Theorem 3.3 s(a) = a for a ≤ 2, but otherwise this function is unknown.
Schlenk has made some computer calculations of the best upper bound for s(a)
that can be obtained by (multiple) folding but it is not clear whether his estimate
is even asymptotically sharp as a ց 2. To improve this estimate one would need
a new way to construct symplectic embeddings. It would be interesting to know
if there is another way to construct such embeddings that is not so closely tied to
the local product structure as is the method of folding.

Here is another embedding problem that involves understanding the interac-
tion of an embedded ball with a fibration. The nonsqueezing theorem gives an
obstruction for a ball B to embed in a cylinder. But when this obstruction van-
ishes we do not yet know much about the space of all symplectic embeddings φ of
the ball into the cylinder, except that it is path-connected when n = 2. Consider
the slicing of the cylinder Z2n(1) by the flat discs Dx = B2(1)× {x}, x ∈ R2n−2,
that intersect the boundary ∂Z2n(1) along the leaves of its characteristic foliation.
Each disc Dx has an area form given by the restriction of the standard symplectic
form ω0.

Question 3.6 Find a lower bound for

cr = min
φ

max
x

areaφ(B) ∩Dx,

where φ varies over all symplectic embeddings of the ball B of radius r. In partic-
ular, does limr→1 cr/πr

2 = 1?

Polterovich pointed out8 that the ratio cr/πr
2 → 0 as r → 0. One can see

this by beginning with a slicing (or foliation) of R2n by parallel isotropic 2-planes
(i.e. planes on which ω0 vanishes) and then slightly perturbing it to a slicing by
parallel symplectic planes whose intersections with the standard ball B = B2n(r)

8Private communication
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have ω0-area ≤ επr2 for some ε. There is a symplectomorphism ψ of R2n that
takes the slicing R2×{x} to this new one, and, provided that r is sufficiently small,
we can arrange that the restriction ψ−1|B extends to a symplectomorphism φ of
R2n with support in the cylinder Z2n(1). Hence, for these r, we find cr/πr

2 ≤ ε.
On the other hand, we showed in [LM3] that when r = 1 any embedding φ of the
unit ball B into the cylinder B2(1) × R2n−2 must intersect the boundary of the
cylinder in a set that contains some flat circle ∂B2(1)×{x}. Hence one could say
that c1 = π.

4 Symplectic fibrations

We will begin by describing the general theory of (nonsingular) symplectic fibra-
tions that originated in work of Guillemin, Lerman and Sternberg [GLS], and then
will discuss some of the recent results about their structure.

4.1 Symplectic connections and Hamiltonian fibrations

A (nonsingular) fibration p : P → B is said to be symplectic if its fiber is a sym-
plectic manifold (M,ω) and the structural group of the fibration is Symp(M,ω).
It follows that every fiber Mb = p−1(b) carries a well defined symplectic form ωb.
However, neither the base B nor the total space P need have a symplectic form.
(In fact, here we may take the base to be any CW complex.)

There is an especially nice theory when all spaces involved are manifolds and
p is smooth. (In this case we will say that the fibration is smooth.) A 2-form τ
on P that restricts to ωb on each fiber Mb is called a connection 2-form. Note
that τ need not be either closed or nondegenerate. Nevertheless, the fact that
it is nondegenerate on the fibers implies that its restriction to the inverse image
p−1(γ) of any smooth path γ : [0, 1] → B in the base has a one-dimensional kernel9

that is everywhere transverse to the fibers. Hence the integral lines of this kernel
are horizontal lifts of γ that define parallel translation of the fibers along γ. It is
easy to see from this description that parallel translation preserves the symplectic
forms on the fibers precisely when the restriction of τ to any submanifold of the
form p−1(γ) is closed. Thus one needs

dτ(v1, v2, · ) = 0

whenever the vectors v1, v2 are vertical, i.e. tangent to a fiber. In this case the
connection form τ is said to be symplectic.

It is not hard to see that every symplectic fibration has a symplectic con-
nection τ . However, one cannot always choose τ to be closed. For example, if

p : S3 → S2 is the Hopf map, the composite map S3 × S1 → S3 p→ S2 can be
given the structure of a symplectic fibration, but clearly does not support a closed
connection 2-form.

9The kernel is spanned by vectors v such that τ(v, w) = 0 for all vectors w tangent to p−1(γ).
This is a generalization of the characteristic foliation on a hypersurface in the sense that if τ

were a symplectic form on P then this kernel would consist precisely of the vectors tangent to
the characteristic foliation of τ on the hypersurface p−1(γ).
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Thurston showed in [Th] that there is a closed connection form if and only if
there is a cohomology class a ∈ H2(P,R) that restricts to the symplectic class [ωb]
in each fiber. There are some obvious situations in which such a class a always
exists, for example if [ωb] is the first Chern class of the tangent bundle to the
fibers.10 In [GLS] Guillemin, Lerman and Sternberg prove that if the manifold
M is simply connected every symplectic fibration with fiber M supports a closed
connection 2-form. They give a beautiful construction of this form (that they call
the coupling form) from the curvature of a symplectic connection on P . This result
was extended by McDuff–Salamon, who prove the following result in [MS].

Theorem 4.1 Suppose that M → P → B is a smooth symplectic fibration with
fiber (M,ω). Then the following conditions are equivalent:
(i) The structural group of the fibration can be reduced to Ham(M,ω);
(ii) The fibration is symplectically trivial over the 1-skeleton of B and supports a
closed connection 2-form.

Note One needs to assume triviality over the 1-skeleton of B because the group
Ham(M,ω) is path-connected. It should be possible to define a subgroup H of
Symp(M,ω) such that fibrations with structural group H are precisely those with
closed connection 2-form: see [LMP3]. This group H would have to be discon-
nected and have identity component equal to Ham(M,ω).

Definition 4.2 A smooth symplectic fibration p : M → B is said to be Hamil-
tonian if it satisfies one of the equivalent conditions in the above theorem. A
symplectic form Ω on the total space of a symplectic fibration p : P → B is said
to be compatible with the fibration if restricts to ωb on each fiber Mb of p.

Proposition 4.3 Let p : P → B be a Hamiltonian fibration and suppose that
B has a symplectic form σB. Then there is a symplectic form Ω on P that is
compatible with p and is unique up to deformation.

Proof: Take Ω = τ + κp∗(σB), where τ is some closed connection form and
κ > 0 is sufficiently large. For more details see [Th] (or [MS]).

4.2 The topology of symplectic fibrations

One way to construct symplectic fibrations is to start with an element φ ∈
πk(Symp(M,ω)) and use it as a clutching function to construct a bundle over
Sk+1:

p : Pφ =
(
Dk+1

+ ×M
)
∪φ

(
Dk+1

−
×M

)
→ Sk+1.

When k > 1 the resulting fibrations are Hamiltonian, but this may not be so when
k = 1 since π1(Ham(M,ω)) is often different from π1(Symp(M,ω)): see § 2.6.
Since S2 is symplectic, it follows from Proposition 4.3 above that the loop φ is
Hamiltonian precisely when the total space Pφ carries a symplectic form Ω that is
compatible with the fibration p : Pφ → S2.

10Note that this bundle has a well defined complex structure since the space J (ωb) of fiberwise
compatible almost complex structures is contractible for all b ∈ B.
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Seidel pointed out in [Seid2] that every element of π1(Ham(M,ω)) gives rise
to an automorphism of the quantum cohomology of M (cf. § 2.2). By interpreting
this automorphism in terms of the geometry of the bundle Pφ → S2, Lalonde–
McDuff–Polterovich showed in [LMP2] that the Leray spectral sequence for the
rational cohomology of the total space Pφ degenerates. To do this it is enough to
show that every rational homology class α ∈ H∗(M,Q) is the intersection with
[M ] of a homology class α̃ ∈ H∗+2(P ). Roughly speaking, one constructs α̃ as
the set of points in P that lie on a suitable family of J-holomorphic sections of
p : P → S2 that intersect a cycle representing α.

This argument generalizes significantly, for example to Hamiltonian fibrations
over any sphere: see [LMP3].

Question 4.4 If (M,ω) → P → B is a fibration with structural group
Ham(M,ω), is the rational cohomology H∗(P,Q) of P isomorphic as a vector
space to H∗(B;Q)⊗H∗(M,Q)?

The answer is known to be “yes” when the hard Lefschetz theorem holds for
H∗(M,Q): see [B]. However, it is “no” if one drops the Hamiltonian condition. For
example, the Kodaira–Thurston manifold in [Th] that is symplectic but nonKähler
is the total space of a symplectic fibration X → T 2 with fiber T 2. Here

X = T 2 × S1 × [0, 1]/ ∼, (x, y, s, 0) ∼ (x, x+ y, s, 1),

and it is easily seen that b1(X) = 3 rather than 4.
The story concerning the multiplicative structure of H∗(P,Q) is more compli-

cated. Here one can consider both the standard cup product and also versions of
the quantum (or deformed) cup product. Seidel exploits properties of the quantum
product in his work on Symp(CPm ×CPn) that was mentioned in 2.6 above. He
also pointed out11 that if (M,ω) admits no J-holomorphic spheres at all and if P
is a fibration over S2 then H∗(P,Q) is isomorphic as a ring (under cup product)
with the product of the rings H∗(S2,Q) and H∗(M,Q). The following general-
ization looks very plausible, but the full details of the proof are not yet worked
out: see [Mc2]. We say that the quantum product is trivial if it equals the usual
cup product.

Claim 4.5 Let (M,ω) → P → S2 be a fibration with structural group Ham(M,ω),
and suppose that the quantum product on M is trivial. Then H∗(P,Q) is isomor-
phic as a ring (under cup product) with the product of the rings H∗(S2,Q) and
H∗(M,Q).

If the quantum product on M is nontrivial, no general statement about the
ring structure of H∗(P ) has yet been found. Nor is it yet clear what happens with
bases other than S2.

In view of Donaldson’s work mentioned in §2.3 above, it would be interesting
to have an answer to the following question.

11Private communication
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Question 4.6 To what extent do these results carry over to Lefschetz (i.e. sin-
gular) fibrations?

In the algebraic case there is a good understanding of the cohomology of
Lefschetz pencils: see Looijenga [L] for example. However, this is closely related
to the fact that the hard Lefschetz theorem holds for algebraic manifolds, and so
it is not clear what, if anything, will carry over to the symplectic case.

Finally, we remark that these ideas allow one to decide when the nonsqueezing
theorem holds for the fibration P → S2: see [Mc2]. By this we mean the following.
Let (P,Ω) be a symplectic (2n+2)-dimensional manifold such that Ω is compatible
with the fibration P → S2, and define the area of (P,Ω) to be the number A such
that

1

(n+ 1)!

∫

P

Ωn+1 =
A

n!

∫

M

ωn.

Thus, if the fibration P → S2 is symplectically trivial so that (P,Ω) is the product
(S2 ×M,σ ⊕ ω), A is simply the area of the base (S2, σ). Then we will say that
the nonsqueezing theorem holds for the fibration p : (P,Ω) → S2 if the area A
constrains the size of the balls that embed into (P,Ω), i.e. if πr2 ≤ A whenever
B2n+2(r) embeds symplectically in (P,Ω). By considering the case when P is CP 2

blown up at a point, it is not hard to see that some condition is needed in order for
the nonsqueezing theorem to hold. It looks very likely that by studying properties
of J-holomorphic sections one can establish the following claim: see [Mc2].

Claim 4.7 Let p : P → S2 be a symplectic fibration whose fiber (M,ω) has trivial
quantum product, and let Ω be a symplectic form on P compatible with p. Then
the nonsqueezing theorem holds for the fibration p : (P,Ω) → S2.
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