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Abstract. A review on some recent developments in solvable lattice
models in connection with the representation theory of the quantum affine
algebras is given.
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1 The XXZ model: a solvable system of infinite degrees of freedom

The aim of this talk is to review some recent (in 90’s) progress in solvable lattice
models. I will, in particular, stress the connection with the representation theory
of the quantum affine algebras. In this section, I introduce the XXZ model and
the six-vertex model, state the problems we wish to solve and give the clue to the
solvability of these models. I also give some results in prehistoric ages (i.e., before
’85, the birth of Quantum Groups) which led us to this connection.

1.1 The XXZ Hamiltonian

Consider the one-dimensional quantum Hamiltonian with a real parameter ∆,

H = −
1

2

∑

k

(σx
kσ

x
k+1 + σy

kσ
y
k+1 +∆σz

kσ
z
k+1). (1)

Here σx, σy, σz are the Pauli matrices, and the index k signifies the k-th component
of the tensor product ⊗kVk of the two-dimensional spaces Vk ≃ V = Cv0 ⊕Cv1.
The Hamiltonian (1) is called the XXZ Hamiltonian.

Here we have not specified the range of the index k. If the range is finite, e.g.,
an interval 0 ≤ k ≤ N − 1 or a periodic chain k ∈ Z/NZ, both the space ⊗kVk

and the operator H are well-defined. However, in physics, we are interested in the
large volume limit, i.e., N = ∞, where the number of degrees of freedom of the
system becomes infinite. There is no apriori meaning of these expressions in this
limit. In fact, some physical quantities are divergent (e.g., the trace of e−H/kT ).
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360 Tetsuji Miwa

We say a model is solved if we can extract finite quantities and give them closed
expressions.

The problems we are interested in, in general, are
(A) the diagonalization of the Hamiltonian; and
(B) the computation of the matrix elements of the local operators;

a particular case of (B) is
(C) the computation of the correlation functions.

1.2 Vacuum states as infinite linear combinations of paths

Our consideration is restricted to the T = 0 case. In this case, we are interested in
the lowest eigenvalue of the Hamiltonian and the corresponding eigenvectors (the
vacuum states). We are also interested in those eigenvectors whose eigenvalues
have finite differences to the lowest one in the large volume limit (the excited
states).

If ∆ → ±∞, the Hamiltonian effectively approaches a diagonal one H ∼
∓ 1

2

∑
k σ

z
kσ

z
k+1. If ∆ = ∞, there are two vacuums (i = 0, 1),

|p̄(i)〉 = ⊗kvp̄(i)(k) where p̄(i)(k) = 1
2 (1− (−1)i). (2)

All the spins are equal in the vacuum states. The corresponding eigenvalue is
−♯{k}, and therefore divergent in the large volume limit. However, we renormalize
the Hamiltonian by replacing σz

kσ
z
k+1 by σz

kσ
z
k+1 − 1 so that its lowest eigenvalue

is 0. On the other hand, if ∆ = −∞, the vacuums (i = 0, 1) are

|p(i)〉 = ⊗kvp(i)(k) where p(i)(k) = 1
2 (1− (−1)k+i). (3)

The spins are alternating in the vacuum states. The renormalization of the Hamil-
tonian is such that σz

nσ
z
n+1 + 1.

If ∆ is finite we must take account of the interaction terms σx
kσ

x
k+1+σy

kσ
y
k+1.

These terms are non-diagonal and mix the vectors of the form |p〉 = ⊗kvp(k). How-

ever, they preserve the total spin of the vectors, i.e., 1
2

∑
k(1− 2p(k)). Therefore,

if |∆| is sufficiently large, it is natural to expect that the vacuum states are con-
tained in the same subspace of total spin as |p̄(i)〉 or |p(i)〉. In fact, this is true.
For ∆ ∼ ∞, this implies that |p̄(i)〉 remains as the vacuum.

The case ∆ ∼ −∞ is more interesting because the vacuum states are linear
combinations of (3) and other vectors of total spin 0 (we assume N is even). If N is
infinite, infinitely many terms appear in the linear combination. Mathematically,
this is a serious problem because it is not clear if we can introduce a suitable
topology in order to deal with this infinite sum.

One can make a perturbation expansion of the vacuum state in the form

|vac〉i =
∑

p

c(p)|p〉 where |p〉 = ⊗k∈Zvp(k). (4)

Note that N = ∞ in this formula. We set c(p(i)) = 1 and the other coefficients are
of the form c(p) =

∑
j≥1 cj(p)ε

j with ε = ∆−1. In principle, one can determine
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each coefficient cj(p) recursively by solving the equation Hre|vac〉i = 0. Here the
renormalized Hamiltonian Hre is given in the form

Hre = −
1

2

∑

k

(
σx
kσ

x
k+1 + σy

kσ
y
k+1 +∆(σz

kσ
z
k+1 + 1 +

∑

j≥1

rjε
j)
)
, (5)

in which the coefficients rj are determined in each step of the recursion to remove
the divergence and to make the eigenvalue 0.

An important feature of this expansion is that c(p) is zero unless p(k) = p(i)(k)
for all but finite k. We call such p a path belonging to the i-th ground-state.

1.3 Phases of the XXZ model

If we vary ∆ from −∞ to ∞, the eigenvalues cross each other. The vacuum states
change from one region to another when the eigenvalues cross. In the infinite
volume limit, it is known that there are three different phases (see, e.g., [1]),

(i) ∆ < −1, (ii) − 1 ≤ ∆ ≤ 1, (iii) ∆ > 1. (6)

We have already mentioned (i) and (iii). The phase (ii) is such that the
vacuum state belongs to the subspace of the total spin 0. In this phase, there
is a unique vacuum state, which belongs to the space of total spin 0. Nothing
like the path expansion (4) is available because there is no special limit where
the Hamiltonian is diagonal. I will discuss that this difference between phase
(i) and (ii) causes an essential difference in our treatment of the model in the
representation theory. As for the phase (iii), where the vacuum states are trivial,
there is nothing to say about from the representation theory, and I will not discuss
this phase any further.

1.4 Excited states and particles

The method invented by Bethe when he solved the XXX model is called the Bethe
Ansatz. It starts with finite periodic N , and consider the infinite volume limit
in the second step. The key idea in this method is to introduce the notion of
quasi-particles borrowed from the quantum field theory.

For finite N , there exist only finitely many eigenvectors of the Hamiltonian.
It has only discrete eigenvalues. However, in the infinite volume limit, continuous
spectra appear. To parametrize the eigenvectors belonging to the continuous spec-
tra we need continuous parameters. The Bethe Ansatz uses a set of continuous
parameters β1, . . . , βn, called the rapidity variables, to parametrize the eigenvec-
tors in the finite volume. An eigenstate parametrized by n continuous parameters
is called an n quasi-particle state. Since there are only finitely many eigenvec-
tors, only some discrete values of the quasi-momenta are allowed to give actual
eigenvectors.

The vector |p(0)〉 = ⊗kv0 is the 0 quasi-particle state. One quasi-particle
state is a linear combination of |p〉 such that p(k) = 1 for one and only one k, and
so on for two and more quasi-particle states. This picture is not appropriate in
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the phases (i) and (ii), and, in particular, in the large volume limit, because the
vacuum states in this terminology are N

2 particle states. In these phases, n(> 0)
quasi-particle states may have lower ‘energies’ (=eigenvalues of the Hamiltonian)
than the 0 quasi-particle state. There is a trick to reparametrize the vacuum and
the excited states in such a way that the vacuum states are the 0 particle states
and the excited states are the n(> 0) particle states. This is possible only in
the infinite volume limit. I stress this point because in many cases something
good happens only in the infinite volume limit. The remarkable thing in this
parametrization is that the renormalized energy of an n-particle state with the
rapidities βj(1 ≤ j ≤ n) is given by an additive formula

∑
j ε(βj). The function

ε(β) is a simple function, e.g., if ∆ = −1, we have ε(β) = π
ch β . Each particle with

the rapidity βj carries the energy ε(βj). This is the reason why these states are
called the n-particle states.

Note that, if ∆ = −1 the above formula tells that there is no energy gap
between the vacuum and the excited states: The energy difference ε(β) approches
0 if |β| → ∞. This property is called ‘massless’ by using the language of quantum
field theory. In statistical mechanics, this is called ‘critical’. In the phase (ii) the
particles are massless, while in the phase (i) they are massive.

A further remarkable fact about the particle structure, valid both in the mas-
sive and the massless phases, is the degeneracy of the n-particle states ([15, 6]).
A clear view of this fact was given in [6] for ∆ = −1. I write their formula in
the form adapted to our notation. Denote the space of the eigenvectors of the
Hamiltonian by F . We call it the physical space. We have the decomposition

F = ⊕n≥0,even

n∏

j=1

∫ ∞

−∞

dβj

2π

[
⊗n

j=1(C
2)βj

]
sym (7)

It means that the n-particle states with a fixed set of rapidities (β1, . . . , βn) have
2n-fold degeneracy. This degeneracy is identified with the tensor product ⊗n

C
2.

Here is a key to the connection with the representation theory. The Hamil-
tonian (1) with ∆ = −1 has a global sl2 symmetry, i.e., there exists an sl2 action
on ⊗kVk which commutes with the Hamiltonian. The formula (7) claims that the
vector space of the n-particle states with rapidities (β1, . . . , βn) is isomorphic to

⊗n
C

2 = ⊕ε1,...,εn=0,1Cvε1 ⊗ · · · ⊗Cvεn . (8)

as sl2-module. In other words, we have a complete parameterization of the excited
states by the rapidities (β1, . . . , βn) and the isospins (ε1, . . . , εn). Let us denote
this state by |βn, . . . , β1〉εn,...,ε1 .

There is a further symmetry of the n-particle states that is indicated by the

symbol
[ ]

sym
in (7): There exists a matrix S(β) depending on the rapidity

variable β, which acts on C
2 ⊗ C

2. This is called the S-matrix. The S-matrix
exchanges the rapidities of n-particle states.

|βn, . . . , βj , βj+1, . . . , β1〉εn,...,εj ,εj+1,...,ε1 (9)

=
∑

ε′
j
,ε′

j+1

S(βj − βj+1)
ε′j ,ε

′
j+1

εj ,εj+1 |βn, . . . , βj+1, βj , . . . , β1〉εn,...,ε′j+1
,ε′

j
,...,ε1 .
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I will give the explicit formula of the S-matrix only later when I discuss the
sine-Gordon theory.

The meaning of the rapidity variables in the representation theory is unclear
at this stage because a larger symmetry is still hidden behind. In Section 2, I will
show that the hidden symmetry distinguishes the rapidities. The particles with
different rapidities correspond to different (i.e., non-isomorphic) representations.

1.5 Correlation functions

Now, I will explain what (B) and (C) mean. We call a linear operator acting on
⊗k∈ZVk local if its action is restricted to a finite interval of the one-dimensional
lattice Z where the index k runs. The Hamiltonian is not local though each
summand in (1) is local.

The correlation functions are the vacuum-to-vacuum matrix element of local
operators. If we take a local operator acting on n sites of the lattice, its correlation
function is called an n-point function. Quantities of physical interest are often
given in terms of the correlation functions. For example, the one point function

P (i)(k) =
i〈vac|σ

z
k|vac〉i

i〈vac|vac〉i
(10)

gives the magnetization.

Introduce a new parameter q by ∆ = 1
2 (q + q−1). The massive phase is

−1 < q < 0 and, the massless phase is |q| = 1. Here we are considering the
one-point function in the massive phase.

By obvious reasons, the one-point function satisfies P (1−i)(k + 1) = P (i)(k)
and P (0)(0) + P (1)(0) = 0. The function P (0)(0) was computed by Baxter ([2]):

P (0)(0) =

∞∏

k=1

(
1− q2k

1 + q2k

)2

. (11)

The above q is identified with the q in the affine quantum algebra Uq(ŝl2). The

representation theory of Uq(ŝl2) provides us with the scheme for computing the
general correlation functions, and the general matrix elements of local operators
with respect to the excited states. I will explain this in Section 4.

2 Quantum affine algebras: the structure underlying the solvabil-
ity

An operator which commutes with the Hamiltonian is called its symmetry. In
this section I discuss the symmetries of the XXZ Hamiltonian. There are two
kinds of symmetries, abelian and non-abelian. The latter is the symmetry of the
quantum affine algebra Uq(ŝl2). This algebra underlies the solvability of the XXZ
Hamiltonian.
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2.1 Integrability and the transfer matrix

What I have described in the previous section is heavily dependent on the special
choice of the Hamiltonian (1). In the infinite volume limit, in general, Hamiltonians
have infinitely degenerate eigenvalues. This is an obstacle for the diagonalization.
In the XXZ case, this infinite degeneracy is decomposed into finite degenaracy in
the particle structure: If the number of particles and their rapidities are fixed, the
degeneracy reduces to finite. The decomposition is explained as follows.

The XXZ Hamiltonian on the finite N -periodic lattice has an abelian (i.e.,
mutually commuting) family of symmetries. The simultaneous eigenspaces of this
commuting family of operators give rise to the decomposition into the particles in
the infinite volume limit.

Let us discuss the commuting family. There exists a family of operators T (ζ)
parametrized by a complex parameter ζ

T (ζ)(⊗kvεk) =
∑

{ε′
k
}k∈Z/NZ

T (ζ)
{εk}
{ε′

k
}(⊗kvε′

k
). (12)

We have

[T (ζ1), T (ζ2)] = 0, (13)

T (1) is the shift operator, i.e., T (1)
{εk}
{ε′

k
} =

∏

k

δεk+1,ε′k
, (14)

T (1)−1T (ζ) = 1 + (c1H + c2)(ζ − 1) +O((ζ − 1)2). (15)

This operator naturally appears in the study of a statistical mechanical model of
a different kind, which I will explain in the next section.

2.2 The six-vertex model

The operator T (ζ) appears in the six-vertex model, a model in classical statistical
mechanics on the two dimensional lattice. Consider a ‘lattice’ consisting of lines
in the two dimensional plane. The lines are either horizontal or vertical. We call
an intersection of two lines a vertex. We associate a local variable εk to each edge
k, which is a line segment between two neighboring vertices. The variable εk takes
values 0 or 1.

A configuration C is an assignment of values 0 or 1 to all the local variables.
Consider a vertex v, and a local configuration around the vertex, say ε′1 and ε1 for
the upper and the lower edges on the vertical line, and ε′2 and ε2 for the right and
the left edges on the horizontal line. We associate a local weight, Rε1,ε2

ε′1,ε
′
2
, called

the Boltzmann weight, to each local configuration. We consider these weights as
the matrix elements of an matirx R acting on V ⊗ V :

R(vε1 ⊗ vε2) =
∑

ε′1,ε
′
2

Rε1,ε2
ε′1,ε

′
2
vε′1 ⊗ vε′2 . (16)

The most basic quantity in classical statistical mechanics is the partition
function Z. This is the sum of the product of the local Boltzmann weights; the
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sum is taken over all the configurations and the product is taken over all the
vertices.

Z =
∑

C

∏

v

R
ε1(v,C),ε2(v,C)
ε′1(v,C),ε

′
2(v,C)

. (17)

Sometimes it is necessary to consider similar configuration sums for a different
arrangement of lines, e.g., by introducing lines with different angles.

Now, consider a vertical slice of the whole lattice, i.e., a vertical line and the
two sets of horizontal edges in the right and left sides of the vertical line. Let us
denote the local variables on the right edges by {ε′k} and those on the left by {εk}.
One can associate a matrix T acting on ⊗kVk. This is called the transfer matrix:

T
{εk}
{ε′

k
} =

∑

Cs

∏

vs

R
ε1(vs,Cs),ε2(vs,Cs)
ε′1(vs,Cs),ε′2(vs,Cs)

. (18)

Here the subscript s is put to indicate the restriction to the slice. The configuration
Cs is fixed to {ε′k} and {εk} on the horizontal edges.

The transfer matrix is convenient in the calculation of the partition function.
For a finite lattice on the torus Z = trTN where N is the number of the vertical
lines on the torus.

So far, I have discussed general setting for a type of models called vertex

models. Now, I introduce the six-vertex model whose transfer matrix gives the
commuting family of operators satisfying (13-15).

We associate a rapidity variable βj to each line j in the lattice. We set

ζj = e
πβj
ξ , where ξ and q are related by q = −e−

π2i
ξ . In the massive phase, ξ is

purely imaginary (Im ξ < 0), and in the massless phase, ξ > 0.
Consider the following R̄ depending on the parameters q and ζ.

R̄ε,ε
ε,ε = 1, R̄ε,1−ε

ε,1−ε =
q(1− ζ2)

1− q2ζ2
, R̄ε,1−ε

1−ε,ε =
ζ(1− q2)

1− q2ζ2
(ε = 0, 1), (19)

all the other weights are zero.

The vertex model given by this R-matrix is called the six-vertex model. Note that
only 6 out of 16 local configurations have a non-zero weight.

In general, we choose the Boltzmann weights at a vertex v to be R̄(ζ1/ζ2) if
the vertical line passing thorough v carries the parameter β1 and the horizontal line
β2. With this special choice of the Boltzmann weights, the partition function has
a large symmetry, i.e., it is invariant under deformation of the arrangement of the
lines. This is called the Z-invariance. General Z-invariance is a straightforward
consequesnce of the simplest case where only three lines are involved. The equation
of the Z-invariance in this case is called the Yang-Baxter equation.

Suppose we define the transfer matrix T by choosing the parameter ζ for
the vertical line, and 1 commonly for the horizontal lines. With this choice the
transfer matrix T (ζ) satisfies (13-15). Note, in particular, that (13) follows from
the Z-invariance.

The origin of the Z-invariance, or the Yang-Baxter equation, is clarified in
the theory of quantum groups. I will explain this in the particular context of the
six-vertex model.
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2.3 R-matrices as intertwiners [5, 9]

The quantum affine algebra Uq(ŝl2) is a q-deformation of the universal enveloping

algebra U(ŝl2) of the affine Lie algebra ŝl2. The structure and the representation
theory of the former for a generic value of q is not very far from those of the latter
which I will recall partly.

The Lie algebra ŝl2 is a central extension of the infinite dimensional Lie algebra
sl2 ⊗C[t, t−1]. The last one contains two subalgebras that are isomorphic to sl2:
(sl2)i = Cei ⊕Cfi ⊕Chi (i = 0, 1) where

e0 =

(
0 0
1 0

)
⊗ t, f0 =

(
0 1
0 0

)
⊗ t−1, h0 =

(
−1 0
0 1

)
⊗ 1 + c, (20)

e1 =

(
0 1
0 0

)
⊗ 1, f1 =

(
0 0
1 0

)
⊗ 1, h1 =

(
1 0
0 −1

)
⊗ 1.

Here, c is the central element.
There are two important categories of representations of ŝl2:

the affinization of finite dimensional representations; (21)

and

the integrable highest weight representations (IHWR). (22)

There exists one-parameter family of automorphisms Aζ : U(ŝl2) → U(ŝl2)
sending the generators ei, fi, hi to ζei, ζ

−1fi, hi. Given a finite dimensional repere-
sentation M , i.e., an algebra map ρ : U(ŝl2) → End (M), one can define a new
representation by ρ ◦ Aζ . This representation is called the affinization of M . For

example, there is a natural action of ŝl2 on V ≃ C
2 given by the matrix part of

(20). The affinization of V is denoted by Vζ .
The value of c is called the level of representation. The level of Vζ , as well as

the affinizations of all the finite dimensional representations, is zero.
I will say a few words on IHWR. A representation of ŝl2 is called integrable

if M is decomposed into a direct sum of finite dimensional modules by the action
of each subalgebra (sl2)i. Let λ ∈ (Ch0 ⊕Ch1)

∗
be an ŝl2-weight. A vector uλ is

called a highest weight vector with the highest weight λ if eiuλ = 0, hiuλ = λ(hi)uλ

(i = 0, 1). A representation M is called a highest weight representation if it

is generated by a highest weight vector: M = U(ŝl2)uλ. There exists (and, in
fact, uniquely exists) an integrable highest weight representation with the highest
weight λ if and only if λi = λ(hi) is non-negative integer for each i. We denote it
by V (λ). The level of this representation is equal to l = λ0 + λ1.

The above story of the representation theory of ŝl2 is ‘deformed’ to that of
Uq(ŝl2). There is, however, one significant difference in the two theories. The
tensor product of two representations is defined in both theories. The action is
given by the canonical algebra map ∆ : U → U ⊗U (U = U(ŝl2) or U = Uq(ŝl2)).
This map (unfortunately, there is a conflict in the notation ‘∆’) is called the

coproduct. For U = U(ŝl2) the coproduct is given by ∆(X) = X ⊗ 1 + 1⊗X for
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X ∈ sl2. It is invariant with respect to the transposition σ : U ⊗ U → U ⊗ U ,
σ(x ⊗ y) = y ⊗ x. Namely, we have σ ◦∆ = ∆. This is no longer true after the
deformation: ∆ and ∆′ = σ ◦∆ are differennt.

A question arises. Are the two actions on the tensor product, one given by ∆
and the other given by ∆′, isomorphic? The answer is ‘no’ in general. However,
it is ‘yes’ in certain situation including the tensor product of two representations
from the union of the categories (21) and (22).

I recall the notion of intertwiner, which plays the central role in the following
story. Consider two actions of an algebra A, Mi with the action given by ρi
(i = 1, 2). A map F : M1 → M2 is called an intertwiner if the following diagram
commutes:

M1
F
−→ M2

ρ1(a) ↓ ρ2(a) ↓

M1
F
−→ M2

(x ∈ A). (23)

Consider the tensor product of two affinizations Vζi(i = 1, 2) of the two di-

mensional representation V of Uq(ŝl2). The R-matrix R̄(ζ1/ζ2) ∈ End (Vζ1 ⊗ Vζ2),
which gives the Boltzmann weights of the six-vertex model, is the intertwiner of
the two representations, one given by ∆ and the other given by ∆′. Namely, we
have an equality R̄(ζ1/ζ2)∆(x) = ∆′(x)R̄(ζ1/ζ2) for all x ∈ Uq(ŝl2).

2.4 Uq(ŝl2) symmetry of the XXZ model

After these preparation from the representation thoery, it is high time that I told
the main idea of this talk: the Uq(ŝl2) symmetry of the XXZ Hamiltonian and the
transfer matrix of the six-vertex model. It exists only for the massive phase and
only in the infinite volume limit. This limitation makes a clear distinction of this
symmetry from the abelian symmetry given by the transfer matrix itself.

Formally speaking, the space on which these operators act is the infinite tensor
product ⊗k∈ZVk of the two dimensional spaces Vk ≃ C

2. We consider these spaces
as the two dimensional Uq(ŝl2) module with the following actions of the generators.

e0 = f1 =

(
0 0
1 0

)
, e1 = f0 =

(
0 1
0 0

)
, t−1

0 = t1 =

(
q 0
0 q−1

)
. (24)

Formally speaking again, an action ρ∞ on ⊗k∈ZVk is given by the coproduct,
∆(ei) = ei⊗ 1+ ti⊗ ei, ∆(fi) = fi⊗ t−1

i +1⊗ fi,∆(ti) = ti⊗ ti. Namely, we have,

∆∞(e0) =
∑

k

· · · ⊗

(
q−1 0
0 q

)
⊗

k−th(
0 0
1 0

)
⊗

(
1 0
0 1

)
⊗ · · · , (25)

∆∞(f0) =
∑

k

· · · ⊗

(
1 0
0 1

)
⊗

k−th(
0 1
0 0

)
⊗

(
q 0
0 q−1

)
⊗ · · · ,

∆∞(e1) =
∑

k

· · · ⊗

(
q 0
0 q−1

)
⊗

k−th(
0 1
0 0

)
⊗

(
1 0
0 1

)
⊗ · · · ,
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∆∞(f1) =
∑

k

· · · ⊗

(
1 0
0 1

)
⊗

k−th(
0 0
1 0

)
⊗

(
q−1 0
0 q

)
⊗ · · · ,

∆∞(t−1
0 ) = ∆∞(t1) = · · · ⊗

(
q 0
0 q−1

)
⊗

(
q 0
0 q−1

)
⊗ · · · .

This action is obviously not well-defined on arbitrary vectors of the form

⊗k∈Zvεk because ∆∞(t1) counts the total spin q
∑

k∈Z

1
2 (1+(−1)εk )

. The total spin
is finite if we restrict to the vectors |p〉 considered in Section 1. Hopefully, if
−1 < q < 0, the formal expressions (25) define actions on certain vectors of the
form (4). One can check this idea in the small q expansion. For example, one can
seek for a singlet, i.e., a vector annihilated by all ρ∞(ei) and ρ∞(fi) (i = 0, 1)
starting from the ground state vector |p(0)〉 of (3). The result is remarkable. We
get the same expansion as the vector |vac〉0.

Denote the physical space corresponding to the i-th ground state by Fi. We
postulate that there is an action ρ(i) of Uq(ŝl2) on Fi, and that the transfer matrix
T (ζ) intertwines ρ(0) with ρ(1). In other words, the transfer matrix, and in partic-

ular, the XXZ hamiltonian, has the Uq(ŝl2) symmetry. If this is true, the Uq(ŝl2)
module Fi must be highly reducible because the space of the intertwiners, con-
taining all T (ζ), is infinite dimensional. Recall the decomposition (7) for ∆ = −1.
This result suggests how the space Fi for ∆ < −1 decomposes with respect to the
Uq(ŝl2) action. The rapidity variables βj in (7) should be the parameters of the

affinization ζj = e
πβj
ξ .

This ia a nice picture. However, its mathematical content is still unclear be-
cause we have no means to make a rigorous meaning of the infinite tensor product.
In the following sections, I will give a different picture to the space Fi which en-
ables us to formulate everything in the representation theory without using the
infinite tensor product.

3 CFT and the SG model:integrable quantum field theories

Quantum field theory and statistical mechanics are twins. They share similar ideas
in many aspects. Integrable QFT and solvable lattice models, in particular, have
a common algebraic structure. In this section, I review a few results of the former,
from which we learn how to solve the models by using the symmetry algebras.

3.1 Lattice theory and continuum limit

In Section 1, I have described the structure of the eigenvectors of the XXZ model
by using the language of QFT. This is possible because of the similarlity between
QFT and statistical mechanics. In fact, the connection between these two theories
is more than a mere analogy because in the continuum limit, lattice theories are
described by QFT. The correlation functions of local variables in the former are
scaled to those of local fields in the latter. For example, take the two dimen-
sional Ising model. This is a model in classical statistical mechanics on the two
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dimensional lattice. We have the scaling identity (see [21, 18])

〈ϕ(0)ϕ(x)〉 = lim
ε→0,m,n→∞

x=(mε,nε)

〈σ0,0σm,n〉. (26)

Here, ε is a parameter in the Ising model such that the system becomes massless
at ε = 0. This identity along with the n point generalization defines a massive
QFT with the local field ϕ(x).

In general, it is rather difficult to carry out the computation in the right hand
side. Instead one can study the left hand side by using some other principle, and
then identify it with the continuum limit of some statistical mechanical system.
This idea was fully developed and extremely successful in the two dimensional
conformal field theory, which deals with the short distance behavior of massive
QFT.

The success of CFT came from the principle of conformal invariance. The
conformal invariance forces the theory to be massless. Therefore, it has no power
to say something about the scaling limit of off-critical (massive) models except in
the short distance limit. My interest in CFT in this talk lies not in taking the
scaling limit like (26) for critical models but in seeking for an algebraic machinery
applicable to off-critical models.

3.2 Primary fields and vertex operators [3, 16, 20]

The local fields in CFT have the conformal invariance. This is a symmetry of
the Virasoro algebra, which is a central extension of the Lie algebra of vector
fields on the unit circle. (I restrict the discussion to the so-called chiral CFT.)
This symmetry is a little bit different from the symmetry of the XXZ Hamitonian
discussed in Section 2. The action of Uq(ŝl2) commutes with the XXZ Hamiltonian.
The action of Virasoro algebra does not commute with the loacl fields. However,
it induces an adjoint action on the set of local fields, and this action is identified
with a highest weight representation.

The operators serving as a highest weight vector in this representation are
called the primary fields. It is important to know the primary fields as an operator
acting on the physical space of the conformal field theory. The operators in this
context is called the vertex operators.

Let us consider the conformal field theory with the symmetry of the affine
Lie algebra ŝl2. We fix a positive integer l. The physical space of this theory is
the direct sum of the level l integrable highest weight representations: FCFT,l =
⊕λV (λ).

Let V
(j)
ζ be the affinization of the 2j + 1 dimensional representation of ŝl2.

We considered a special case, j = 1
2 in Section 2. The intertwiner of the form

φ(j)(ζ) : FCFT,l → FCFT,l ⊗ V
(j)
ζ (27)

exists if and only if 0 ≤ j ≤ l
2 . It is called the vertex operator of level l and spin

j. This is identified with the primary field which generates the highest weight
module with the highest weight λ such that λ(h1) = 2j.

Documenta Mathematica · Extra Volume ICM 1998 · I · 359–379



370 Tetsuji Miwa

3.3 The KZ equation

The two-point scaling funtion of the Ising model (26) is expressed in a closed
form by using a solution of the non-linear ordinary differential equation called
the Painleve equation. No such result is known for other solvable lattice models
that are essentially different from the Ising model. In CFT, the correlation func-
tions satisfy a system of linear partial equations which is a generalization of the
hypergeometric differential equation.

Let us consider a particular example, the operator φ( 1
2 )(ζ) in (27). For sim-

plicity we denote it by φ(ζ). This operator has two components φ0(ζ), φ1(ζ) cor-
responding to v0, v1 ∈ Vζ , each of which acts on FCFT,l. Denote by |0〉 the highest
weight vector in the spin 0 highest weight module. Set

f(ζ1, . . . , ζn) =
∑

ε1,...,εn

fε1,...,εn(ζ1, . . . , ζn)vε1 ⊗ · · · ⊗ vεn ∈ Vζ1 ⊗ · · · ⊗ Vζn (28)

where

fε1,...,εn(ζ1, . . . , ζn) = 〈0|φε1(ζ1) · · ·φεn(ζn)|0〉. (29)

Let Pjk be the transposition of the j-th and the k-th components in the tensor
product Vζ1 ⊗ · · · ⊗ Vζn . After some trivial modification the function f satisfy
the following system of linear partial differential equations called the Knizhnik-
Zamolodchikov equation.

∂

∂ζj
f(ζ1, . . . , ζn) =

1

l + 2

∑

k 6=j

Pjk

ζj − ζk
f(ζ1, . . . , ζn). (30)

3.4 Form factors of the SG model [19]

The two-point functions in CFT are simple power functions. This is clearly seen
from the equation (30). The quantum field theory in the scaling limit of the
Ising model is not conformally invariant. The two-point function is already highly
non-trivial. There are a variety of quantum field theories obtained as the scaling
limit of the off-critical solvable lattice models. These are massive field theories.
Their correlation functions are, in general, not known. However, these theories
have the integrability inherited from the lattice models. They have the factorized
S-matrix and their form factors satisfy the q-deformation of the KZ equation. I
will explain these points in the sine-Gordon model which are the scaling limit of
the eight-vertex model (a generalization of the six-vertex model).

One way to compute the two-point function is to put a complete set of inter-
midiate states.

〈vac|φ(0)φ(x)|vac〉 =
∑

n≥0,even

n∏

j=1

∫ ∞

−∞

dβj

2π

1

n!

∑

ε1,...,εn

(31)

× 〈vac|φ(0)|βn, . . . , β1〉εn,...,ε1 ε1,...,εn〈β1, . . . , βn|φ(x)|vac〉.
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The matrix elements 〈vac|φ(0)|βn, . . . , β1〉εn,...,ε1 are called the form factors.
For the Ising model, the form factors are given by the Pfaffian of the two-particle
one, which is tanh β1−β2

2 .
There is a redundancy of the vectors 〈vac|φ(0)|βn, . . . , β1〉εn,...,ε1 . Only those

with the restriction β1 < · · · < βn are independent. The assumption of the
factorized S-matrix is such that the linear relations among the vectors are given
by the two-particle S-matrix in the form (9). For example, the two-particle S-
matrix of the Ising model is −1.

The S-matrix of the sine-Gordon theory is given by (19) with a real parameter
ξ, as S = S0R̄. The scalar factor S0 is given by

S0 = −e

−i

∫
sinκβsh π−ξ

2 κ

ch π
2κsh

ξ
2κ

dκ

κ
. (32)

This function is expressed by means of the double gamma functions ([22, 13]).
Note that S0 depends on β, ξ in such a way that it is not single-valued in ζ, q as
opposed to the matrix part R̄.

In the limit ξ → ∞, the double gamma function reduces to the usual gamma
function, and the S0 is given by

S0(β) =
Γ( 12 + β

2πi )Γ(−
β
2πi )

Γ( 12 − β
2πi )Γ(

β
2πi )

. (33)

The R̄ reduces to β−πiP
β−πi where P is the transposition.

The S-matrix of the SG theory is identical with the S-matrix of the six-vertex
model in the massless phase. This is because the SG theory is the continuum limit
of the eight-vertex model as I have already mentioned. The continuum limit is
taken at the critical region of the eight-vertex model. This is nothing but the six-
vertex model in the massless phase. The case discussed in Section 1 is a special
case of this story where ξ = ∞.

Set

Fε1,...,εn(β1, . . . , βn) = 〈vac|φ(0)|βn, . . . , β1〉εn,...,ε1 . (34)

Because of (9) it satisfies

Fε1,...,εj+1,εj ,...,εn(β1, . . . , βj+1, βj , . . . , βn)

=
∑

ε′
j
,ε′

j+1

S(βj − βj+1)
ε′j ,ε

′
j+1

εj ,εj+1Fε1,...,ε′j ,ε
′
j+1

,...,εn(β1, . . . , βj , βj+1, . . . , βn).(35)

There is another equation for the form factor. It gives the analytic continua-
tion of the form factor in the last variable βn:

Fε1,...,εn(β1, . . . , βn + 2πi) = Fεn,ε1,...,εn−1
(βn, β1, . . . , βn−1). (36)

I will not explain why this is valid. In Section 4, however, its origin in the
representation theory is given in the case of the XXZ model with ∆ < −1.
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3.5 The quantum KZ equation [8]

Set

F (β1, . . . , βn) =
∑

ε1,...,εn

Fε1,...,εn(β1, . . . , βn)vε1 ⊗ · · · ⊗ vεn . (37)

Combination of (9) and (36) gives the following difference equation for the form
factor.

F (β1, . . . , βj + 2πi, . . . , βn) = Sj+1,j(βj+1 − βj − 2πi) · · ·Sn,j(βn − βj − 2πi)

×S1,j(β1 − βj) · · ·Sj−1,j(βj−1 − βj)F (β1, . . . , βj , . . . , βn). (38)

Here, I denote by Sj,k the action of S on the j-th and k-th components. In the
limit where ξ, β1, . . . , βn → ∞, this equation scales to the differential equation
(30) with the level l equal to 0.

One can repeat the story in 3.2 and 3.3 for Uq(ŝl2). Vertex operators are
defined as the intertwiners between the highest weight representations with and
without the tensor product by the affinization of a finite dimensional representa-
tion. The matrix elements of the product of vertex operators between the highest
weight vectors satisfy a system of difference equation. This is called the quantum
KZ equation. The above equation is a special case with level 0.

A question arises: Are these matrix elements representing the correlation
functions of some integrable models? The answer is NO BUT. I will come back to
this question later.

4 CTM and HTM: the key words in the dictionary

I present the algebraic structure of the XXZ and the six-vertex models in the lan-
guage of representation theory. Two kinds of transfer matrices, that are acting on
the half-infinite tensor product, play the central roles in the symmetry of Uq(ŝl2).
I will explain how to identify these operators in the representation theory. This
identification brings us the solutions to the problems mentioned before: the diag-
onalization of the XXZ Hamiltonian, and the computation of the form factors and
the correlation functions.

4.1 CTM [1]

Our goal is to understand the infinite tensor product ⊗k∈ZVk as a Uq(ŝl2) module.
It is rather a big representation, of course not irreducible. The half infinite tensor
product is also a representation space of Uq(ŝl2). It is much smaller than the
infinite tensor product in both directions. The idea is to study the content of this
representation first, There are two operators which naturally act on this space.
They are the corner transfer matrix (CTM) and the half transfer matrix (HTM).

I start from the CTM. Recall the Boltzmann weights given by (19). There
are three different ones. Let us call them the a, b and c weights, respectively, from
the left to the right. We restrict to the region

−1 < q < 0, 1 < ζ < −q−1. (39)
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In this region, the c weight dominates the others.
The XXZ Hamiltonian and the transfer matrix of the six-vertex model act

formaly on the vectors parametrized by the paths, which satisfy certain boundary
conditions. We consider similar boundary conditions for the configurations on the
two-dimensional lattice. A configuration is called the ground state if it consists
of the c weight only. There are two such configurations. The local variables
take constant values 0 or 1 along the NE-to-SW diagonal lines, and these values
alternates over the diagonal lines. Choose two vertical lines, and consider the
set of horizontal edges between these two lines. We number these edges by Z

(increasingly from S to N). The configuration of a ground state on these edges is
equal to p(0) or p(1). Accordingly, we call it the i-th ground state.

Consider the half infinite tensor product ⊗∞
k=1Vk. We denote by Hi the space

spanned by the vector of the form ⊗∞
k=1vp(k) where the half infinite path p satisfies

p(k) = 1
2 (1 − (−1)k+i) for sufficiently large k. The corner transfer matrix A(ζ)

formally acts on the space Hi. Its matrix element is given as follows.
Consider the center of the plaquet in the lattice between the edges 0 and

1. Divide the whole lattice into four quadrants at this point making cuts in the
N,E,W,S directions. Take the NW quadrant. Fix the local variables of the edges
on the N-cut to {p′(k)}k∈Z≥1, and those on the W-cut to {p(k)}k∈Z≥1. Consider
the configuration sum for this quadrant with this restriction on the N and W
boundaries. We also restrict the sum to those configurations which belong to the
i-th ground state, i.e., different from the i-th ground state at finitely many places.

We define the matrix element A(ζ)
{p′(k)}
{p(k)} to be the configuration sum under these

restrictions.
This is only a formal definition, and it is divergent. In the region (39), the

CTM can be renormalized to a ‘finite’ operator with discrete (and, in fact, equally
spaced) eigenvalues, while if |q| = 1, the renormalized operator has a continuum
spectrum. This difference comes from the difference in the analytic structure of
the free energy.

Consider a finite lattice with N sites (i.e., N = ♯{vertex}). The limit κ =

limN→∞ Z
1
N is called the partition function per site. (The free energy is given by

its logarithm.) In the massive region, it is given by

κ = ζ
(q4ζ2; q4)∞(q2ζ−2; q4)∞
(q4ζ−2; q4)∞(q2ζ2; q4)∞

(40)

where (z; p)∞ =
∏∞

n=0(1− pnz).
The above κ is a single-valued meromorphic function in ζ. It has a natural

boundary at |q| = 1. If |q| = 1, the partition function per site has an different
expression: it is given by −S−1

0 (see (32)) with a real value of ξ and an imaginary
value of β. (Note that in the sine-Gordon theory, β is real.) This is not single-
valued in ζ, nor in q.

Physical intuition tells that the renormalization of CTM and HTM is done
by choosing the overall factor of the Boltzmann weight in such a way that the
partition function per site is 1. Therefore, the structure of the physical space and
the renormalized operators acting on it differs in the massive and the massless
phases.
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In the region (39), we have

Are(ζ) = ζ−D. (41)

The operator D is independent of ζ and has the spectrum {0, 1, 2, . . .}. This
remarkable (however, no rigorous proof is available) property is a consequence of
the single-valuedness of κ.

Let Λi be the affine sl2 weight such that 〈Λi, hj〉 = δij (i, j = 0, 1). I state
the main postulate:

the space of the eigenvectors of the CTM in the i-th ground state is isomorphic to

the integrable and irreducible highest weight representation V (Λi) of Uq(ŝl2).

Namely, the half infinite tensor product Hi is interpreted as the highest weight
module ([7])

Hi ≃ V (Λi). (42)

I give the evidence for this statement: The character of the space Hi and that
of V (Λi) are equal. The former can be computed in the the crystal limit q → 0
because we have

D = −
1

2

∞∑

k=1

k(σx
kσ

x
k+1 + σy

kσ
y
k+1 +∆σz

kσ
z
k+1), (43)

and this is diagonal in the limit. The equality of the characters is equivalent to
the combinatorial identity

∑

p∈Hi,m

q

∑
∞

k=1

(
(−1)p(k)+p(k+1)−(−1)p

(i)(k)+p(i)(k+1)

)

=
q(m−i)(m−i+1)

(q2; q2)∞
, (44)

where Hi,m = {p ∈ Hi; 2
∑∞

k=1(p(k)− p(i)(k)) = m}.

4.2 HTM [4, 14, 13]

The matrix element of the transfer matrix is formally given by the configuration
sum (18) for a slice of the lattice consisting of one vertical line and horizontal lines
indexed by k ∈ Z which intersect the vertical one. Cut the vertical edge between

the k = 0, 1 horizontal lines. The matrix element of the half transfer matrix Φ
(i)
ε (ζ)

(ε = 0, 1) is given by the configuration sum for the upper half of the slice where
the local variables on the right and left edges are fixed to {ε′k} and {εk}, and the
one on the cut edge is fixed to ε. The superscript i indicates the restriction of the
sum to those configurations which belong to the i-th ground state.

The half transfer matrix acts as

· · · ⊗ V ⊗ V ⊗ V → (· · · ⊗ V ⊗ V )⊗ Vζ . (45)

The components described by V corresponds to the horizontal lines and the one
denoted by Vζ corresponds to the vertical line.
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In the dictionary, the half transfer matrix (45) is translated into the unique
(up to the normalization) intertwiner

Φ(i)(ζ) =
∑

ε=0,1

Φ(i)
ε (ζ)⊗ vε : V (Λi) → V (Λ1−i)⊗ Vζ . (46)

If ζ = 1 in (45), the mapping is nothing but the identity operator. However, its
translation (46) is a highly non-trivial operator even if ζ = 1.

I list some properties of the intertwiners.

ξDΦ(i)
ε (ζ) = Φ(i)

ε (ξζ)ξD, (47)

Φ(1−i)
ε2 (ζ2)Φ

(i)
ε1 (ζ1) =

∑

ε′1,ε
′
2=0,1

R
ε′1ε

′
2

ε1ε2(ζ1/ζ2)Φ
(1−i)
ε′1

(ζ1)Φ
(i)
ε′2
(ζ2), (48)

∑

ε

Φ
(1−i)
1−ε (−q−1ζ)Φ(i)

ε (ζ) = idHi
(49)

The R-matrix in (48) is normalized as R(ζ) = 1
κ(ζ) R̄(ζ) (see (40)).

4.3 Space of the physical states

The identification of the physical space follows from (42) by a simple functorial
argument.

Consider the inner product of V , 〈vi, vj〉 = δi+j,1. The Uq(ŝl2) action (24) on

V satisfies 〈xv, v′〉 = 〈v, b(x)v′〉 where b is the anti-automorphism of Uq(ŝl2) given
by b(ei) = qtiei, b(fi) = qt−1

i fi, b(ti) = t−1
i . Since the left half · · · ⊗ V ⊗ V ⊗ V

is equal to ⊕i=0,1V (Λi), the right half V ⊗ V ⊗ V ⊗ · · · is equal to the dual space
⊕i=0,1V (Λi)

∗. The action on the dual space is given by the transposed action
b(x)t. The infinite tensor product F is identified with End(H) = H ⊗ H∗. The
action on F is given by the adjont action.

F = End(H) = ⊕i,j=0,1Hom(V (Λi), V (Λj)), (50)

x.f =
∑

x(1) ◦ f ◦ b(x(2)) for x ∈ Uq(ŝl2), f ∈ End(H). (51)

Here ∆(x) =
∑

x(1) ⊗ x(2) is the coproduct of x.

The inner product on F is given by

〈f, g〉 = traceHf ◦ g for f, g ∈ End(H). (52)

The transfer matrix in the dictionary reads as

T (ζ)f =
∑

ε

Φε(ζ) ◦ f ◦ Φ1−ε(ζ). (53)

Now, I will diagonalize this operator.
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4.4 Vacuum and excited states

The vacuum state (4) is given by the iteration of the transfer matrix, because it
is the largest eigenvector. Namely, the coefficient c(p) in (4) is (up to a divergent
scalar) written as c(p) ∼ limN→∞〈p|T (ζ)N |p(N+i)〉 where p(i) = p(i+2) is the
ground state path.

Thr right hand side is nothing but the partition function for the one half of the

lattice, or equivalently, is equal to the matrix element (A(ζ)B(ζ))
{1−p(1−k)}k≥1

{p(k)}k≥1
of

the product of the CTMs corresponding to the NW and the SW quadrants. Using

the symmetry property of R(ζ), R
ε′2ε1
ε2ε′1

(ζ2/ζ1) = R
1−ε′1,ε

′
2

1−ε1,ε2
(−q−1ζ1/ζ2), we obtain

Bre(ζ) = Are(−q−1ζ−1), and therefore Are(ζ)Bre(ζ) = (−q)D.

We reached the conclusion.

|vac〉i = χ− 1
2 (−q)D ∈ End (Hi). (54)

Here χ = traceHi
q2D =

∏∞
n=1

1
1−q2n is the normailzation factor such that

i〈vac|vac〉i = 1. One can easily check T (ζ)|vac〉i = |vac〉1−i by using (48) and
(49).

To find particles in F is equivalent to find submodules isomorphic to Vξn ⊗
· · · ⊗ Vξ1 in End (H). This problem is also solved by using intertwiners, but of a
different kind:

Ψ∗(i)(ξ) : Vξ ⊗ V (Λi) → V (Λ1−i). (55)

The essential difference of this intertwiner from Φ(i)(ζ) is that Vξ is placed in the
left of V (Λi). In the CFT case, there are no such difference because the coproduct
is symmetric.

We have

ξDΨ∗(i)
ε (ζ) = Ψ∗(i)

ε (ξζ)ξD, (56)

Ψ∗(1−i)
ε1 (ξ1)Ψ

∗(i)
ε2 (ξ2) = −

∑

ε′1,ε
′
2

Rε1,ε2
ε′1,ε

′
2
(ξ1/ξ2)Ψ

∗(1−i)
ε′2

(ξ2)Ψ
∗(i)
ε′1

(ξ1), (57)

Φ(1−i)
ε1 (ζ)Ψ∗(i)

ε2 (ξ) = τ(ζ/ξ)Ψ∗(1−i)
ε2 (ξ)Φ(i)

ε1 (ζ). (58)

Here, we set

τ(ζ) = ζ−1 (qζ
2; q4)∞(q3ζ−2; q4)∞

(qζ−2; q4)∞(q3ζ2; q4)∞
. (59)

Using these relations, one can show that the n-particle states is given by

|ξn, . . . , ξ1〉εn,...,ε1,i = Ψ∗(n−1+i)
εn (ξn) · · ·Ψ

∗(i)
ε1 (ξ1)(−q)D. (60)

The eigenvalue of the transfer matrix on this states is given by
∏n

j=1 τ(ζ/ξj).
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4.5 Correlation functions and form factors [11]

The correlation functions of the XXZ model are by definition i〈vac|O|vac〉i where
O is some local operators. This expression is immediately written as the trace
χ−1traceHi

q2DO.
For example, let us consider the simplest case σz

1 ∈ End (F) = End (H⊗H∗).
This operator, in fact, acts only on H. Recall the half transfer matrix (we now
abbreviate the notation by dropping the superscript i)

Φ(1) = Φ0(1)⊗ v0 +Φ1(1)⊗ v1 : · · · ⊗ V ⊗ V ⊗ V
∼
→(· · · ⊗ V ⊗ V )⊗ V. (61)

The relation (49) gives the inverse map

Φ1(−q−1)⊗ v∗0 +Φ0(−q−1)⊗ v∗1 : (· · · ⊗ V ⊗ V )⊗ V
∼
→· · · ⊗ V ⊗ V ⊗ V, (62)

where v∗0 , v
∗
1 are the dual basis of v0, v1. Therefore, we have

σz
1 = Φ1(−q−1)Φ0(1)− Φ0(−q−1)Φ1(1). (63)

In general, the correlation functions belong to the family of functions of the
form

traceHi
q2DΦε1(ζ1) · · · ,Φεn(ζn). (64)

In CFT, the correlation functions are the matrix elements of the product of
vertex operators between the highest weight vectors. The q-analogues of such
matrix elements do not contain the lattice correlation functions. Instead, the
trace functions (64) give the lattice correlation functions. The trace functions also
contain the form factors of the local operators in the form

traceHi
q2DΦε1(ζ1) · · · ,Φεn(ζn)Ψ

∗
κm

(ξm) · · · ,Ψ∗
κ1
(ξ1). (65)

This is because the excited states are given by (60).
I finish this talk with several remarks on the formula (65).
A direct computation of the trace is not practical because the trace is taken

on the infinite dimensional space Hi. However, it is possible to realize Hi as the
Fock space of free bosons. In this realization, the operators Φ(ζ) and Ψ∗(ξ) are
explicitly expressed in terms of bosonic currents. The integral formula for the
trace functions follows from this.

The exchange relations (47-49) for the half transfer matrices induce a set
of equations similar to (35) and (36) for the trace functions (64). Solving these
equations under a certain analyticity condition which follows from the integral
formula, we have

traceH0
q2D (Φ0(ζ1)Φ1(ζ2) + Φ1(ζ1)Φ0(ζ2))

traceH0
q2D (Φ0(ζ1)Φ1(ζ2)− Φ1(ζ1)Φ0(ζ2))

=
(−q3ζ−1; q2)∞(−qζ; q2)∞
(q3ζ−1; q2)∞(qζ; q2)∞

(66)

where ζ = ζ2/ζ1. Baxter’s result (11) follows from this.
Suppose that an operatorO commutes with Ψ∗(ξ) (in fact, the local operators,

e.g., (63), do commute), then the trace functions traceHi
OΨ∗

κm
(ξm) · · · ,Ψ∗

κ1
(ξ1)

Documenta Mathematica · Extra Volume ICM 1998 · I · 359–379



378 Tetsuji Miwa

satisfy exactly the same equations as (35) and (36) with pure imaginary ξ. Note,
in particular, that the shift β → β + 2πi corresponds to the shift ζ → q2ζ. The
relation (36) follows from q2DΨ∗(ξ) = Ψ∗(q2ξ)q2D and the cyclicity of the trace.
The relation (58) tells that the operators Φ(ζ) and Ψ∗(ξ) commute up to a simple
factor τ(ζ/ξ). With a suitable modification to cancel the factors τ(ζi/ξj), the trace
function (65), in general, gives a solution of the qKZ equation with level 0.

The connection between the XXZ model and the representaiton theory of
Uq(ŝl2) fails in the massless phase. The reason for this is that the latter is singular
when |q| = 1. The product of the intertwiners exhibit singularities there. However,
the bosonic construction of the vertex operators satisfying the relevant exchange
relations is possible ([17, 13, 10]). The integral formulas for the correlation func-
tions and the form factors are, thus, available (so far, without a firm basis of the
representation theory).
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