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Mathematial Problems

in Geophysial Wave Propagation

George Papanicolaou

Abstract. We review several aspects of the mathematical theory of
wave propagation in random media with particular emphasis on topics of
geophysical interest.
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404 George Papanicolaou

1 Introduction

1.1 Why geophysical wave propagation

In deciding what to present as a plenary lecture in applied mathematics and prob-
ability at ICM-98, I considered several areas with which I am familiar and decided
to focus on geophysical wave propagation for a couple of reasons. One, a technical
one, is that inhomogeneities are strong and highly anisotropic so that the modeling
and analysis of wave propagation in the earth’s crust is mathematically interesting
and quite difficult. The other reason is closely related to what my view of modern
applied mathematics is: the creation and development of a mathematical environ-
ment for physical, economic, biological or other phenomena. This involves active
participation of the mathematician in the quantitative modeling, in the analysis,
in the computations, as well as in the interpretation of results and assessment of
the effectiveness of the modeling.

The resulting mathematical methodology will be uneven, from routine off-
the-shelf toolbox applications to entirely uncharted problems that need new ideas
and techniques, and it is up to the mathematician to decide what the right mix
of mathematical sophistication and rough heuristics should be. An overly math-
ematical approach will impede communication with nonmathematical specialists
who value results and do not care much for mathematical generality. Accepting
the conventional wisdom in a field, and concentrating on technical mathematical
issues, is not a good idea either. Geophysical wave propagation is a case in point.
It is fair to say that wave localization is virtually unknown to geophysicists. But,
as I will try to explain in this lecture, wave localization is quite important in ex-
ploration geophysics because, among other things, it influences the resolution of
seismic imaging and the effective depth penetration of seismic probes. What is
the best way to approach these problems mathematically?

A few years ago, K. Aki, a distinguished seismologist whose ideas about the
role of crustal inhomogeneities in seismic wave propagation have been very influ-
ential, heard a seminar that I gave on wave localization and asked this question:
How can one tell from seismic observations that wave localization has taken place?
Electronic wave localization in semiconductors goes back forty years [1], with the
strong participation of mathematicians during the last twenty years, so we should
be able to say quite a bit, as I will try to explain in this lecture. But Aki’s question
is a profound one that leads to the most complex and least understood issue in
geophysical wave propagation, the localization-transport transition. It is a prag-
matic, operational question which reminds us that great intellectual challenges
can have humble, unpretentious origins. I think that it takes a mathematician to
answer Aki’s question and perhaps it will be one that does it.

1.2 Random media or environments in general

I will treat the earth’s crust as a random medium, that is, as an elastic medium
with density and Lame parameters that are random functions of space. The equa-
tions of linear elastic wave propagation become now stochastic partial differential
equations. Initial and boundary conditions must also be specified and they could
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bring in additional randomness, from modeling the rough surface of the earth. At
this level of generality the randomness is nothing more than variable coefficients
and non-flat boundaries, so general linear PDE methods can deal with everything
(symmetric hyperbolic systems). If dissipation is important, and it is in some
contexts, it can be put into the equations in different ways. There is no general
agreement on how to best model dissipation analytically and this is an interesting
issue that I will not address here.

But even this much is somewhat grudgingly accepted by geophysicists. I reg-
ularly hear comments like: there is only one earth and it is not changing all that
fast, so where is the statistical ensemble of realizations coming from? If stochas-
tic modeling is to be criticized along such lines then why are we modeling the
Dow Jones Industrial Average, or some other index or asset price, as a stochastic
process? There is only one realization of the DJIA just as there is only one real-
ization of the earth. What the stochastic processes model is uncertainty, lack of
information and its consequences when only imperfect and sparse observations or
measurements are available, and even desirable. The notion of ‘effective’ medium
is very much part of the mathematical physics of the 19th century, of Maxwell,
Rayleigh and others, which is why equations with constant coefficients have any
relevance at all in modeling. The conceptual barrier seems to come up when one
thinks of fluctuations.

It is not an accident, therefore, that in one of the first instances of wave
propagation in random media, natural light propagation through a turbulent at-
mosphere, astrophysicists at the turn of the 20th century did not go to Maxwell’s
equations (or the wave equation if the vector nature of light waves can be ne-
glected) but developed a new, phenomenological theory, the radiative transport
theory, to interpret observed phenomena. There are a few isolated attempts to
consider random media, with fluctuations, during the first half of the 20th century
but it is with the advent of radar and sonar during in the forties that random
waves emerge as a subject. Keller’s papers in the sixties [2] where very influential
because they were the first ones written by a mathematician, who thought about
the conceptual foundations and separated heuristics from legitimate calculations.
It was also in the sixties that the connection between radiative transport theory
and stochastic wave equations was clarified, as I will discuss in section 3.1.

Atmospheric wave propagation, from radio to radar to optical frequencies,
and underwater sound propagation, from 20 hertz to kilohertz, were the main ap-
plications driving the theory of wave propagation in random media in the seventies
and are discussed in Ishimaru’s book [3]. It is interesting to note that the notion
of wave localization is nowhere to be found in this book. Random media in seis-
mology appeared first in the mid eighties in a simple version of radiative transport
[4]. Transport theory is now just beginning to become mainstream in seismology
as is seen from the recent book of Fehler and Sato [5]. But wave localization is not
discussed in this book either. A treatment of waves in random media that deals
extensively with wave localization is given by Ping Sheng [6].

What is wave localization anyway? I will explain it in some detail in section
4.3 but, roughly, it is when random inhomogeneities trap wave energy in a finite
region and do not allow it to spread as it would normally. Random media behave
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then like periodic media that have band-gap spectra, allowing wave propagation
in some frequency ranges but not in others. It is remarkable that this happens for
random media that are not close to periodic ones at all. Mathematically, it is shown
that wave or wave-like operators with stationary (translation invariant) random
coefficients in unbounded regions have discrete spectra [7]. Discrete spectra means
that the wave energy in each mode initially will remain there for ever, oscillating
in time but not propagating out to infinity. In three dimensional wave propagation
this can happen only when parameter fluctuations are very large. This is not the
case for electromagnetic waves in the atmosphere or sound waves in the ocean.
The fluctuations are weak, a few percent, and when they are important they lead
to radiative transport, which allows spreading of wave energy in diffusive rather
than wave-like manner.

Where then do we see wave localization in classical wave propagation? We see
it when wave energy is channeled, by a waveguide, by a transmission line, by an
optical fiber, by strong anisotropy due to layering in the lithosphere, etc. We also
see it in nearly periodic structures. Waves in an one dimensional random medium
will localize, even if the fluctuations in the medium parameters are weak. In geo-
physical wave propagation and elsewhere (in optical localization) a key issue is the
identification of structures, more complicated than simple channeling or periodic-
ity, that tend to enhance the onset of wave localization by random fluctuations.
This is the localization-transport transition problem.

1.3 Acknowledgements

I would like to thank several friends and colleagues with whom I worked in the
past: R. Burridge, J.B. Keller, W. Kohler and B.S. White with whom I have
been associated for a long time, and my more recent collaborators: M. Asch, G.
Bal, J. Berryman, J. Bronski, O. Dorn, J.P. Fouque, F. Herrmann, R. Knapp, P.
Lewicki, A. Nachbin, M. Postel, L. Ryzhik, Y. Samuelides, P. Sheng, K. Solna and
S. Weinryb.

2 General notions about waves in random media

2.1 Scales

There are three basic length scales in wave propagation phenomena:

• The typical wavelength λ

• The typical propagation distance L

• The typical size of the inhomogeneities l

In geophysical wave propagation it is difficult to associate a ‘typical’ scale that is
characteristic of the inhomogeneities. The density and local speed of propagation
of waves vary on many scales. We may think of l as a typical correlation length.
When the standard deviation of the fluctuations is small then the most effective
interaction of the waves with the random medium will occur when l ∼ λ, that
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is, the wavelength is comparable to the correlation length. And this interaction
will not be observable unless the propagation distance is large (L >> λ). If
propagation distances are short, a few wavelengths or correlation lengths, then
effective medium theories will work fine. There will be a deterministic propagation
speed (for scalar waves), the effective speed, with which energy will propagate as
if the medium were deterministic. The effective medium theory will be valid
also when the wavelength is long compared to propagation distances, even if the
correlation length is short (l << L) and the fluctuations have a large standard
deviation. This is the homogenization limit.

Of course this rough way of thinking with scales does not capture the effect of
a waveguide geometry, or the effective dimension of the propagation phenomenon.
But thinking with scales is very useful and, with some experience, it can become
a very good heuristic tool.

2.2 Types of waves

It is classical waves, solutions of the wave equation or more general symmetric
hyperbolic systems, that we want consider, rather than electronic waves which are
solutions of the Schrödinger equation. The waves are vector fields in general, as
with electromagnetic waves which are solutions of Maxwell’s equations or elastic
waves where the elastic displacement field is a solution of the elastic wave equa-
tions. Mode conversion, the transfer of energy from compression to shear waves
for example, is an important effect in random media. So is polarization, which is
associated with vector waves all of whose components travel with the same speed.
Polarization tends to get lost in a random medium and the way this happens is
an important way to make inferences about the nature of the propagation envi-
ronment.

2.3 Coherent and incoherent fields

When the random fluctuations of the medium parameters are small then the ran-
dom fluctuations in the solutions will be small, if the propagation distances are not
too big. The mean solution, the coherent field, will carry most of the energy. As
the waves propagate their fluctuating component, the incoherent field, gets more
energy. The total energy is conserved, if there is no dissipation, but the coherent
field loses energy and slows down. This behavior of the coherent field is something
that can be calculated easily and is well established in the engineering literature.

2.4 Localization and transport

If fluctuations are weak and propagation distances large, most of the wave en-
ergy will be incoherent. In seismology, for example, after the first arrival from
a disturbance far away the seismogram is dominated by strong fluctuations from
multiple scattering. The later part, the coda of a seismogram is mostly incoherent
field measurement. It is in this regime that radiative transport is a good ap-
proximation. It allows accurate calculation of the envelopes of the seismograms
without resolving the detailed fluctuations. A new scale enters the description of
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propagation phenomena: the mean free path. This is a length scale that gives
an indication of the importance of multiple scattering and is much more relevant
than the correlation length of the inhomogeneities.

Wave localization is total trapping of the wave energy by scattering from the
random inhomogeneities. It is the regime where fluctuation phenomena dominate
so we have little intuition for what should happen. For one thing the random fluc-
tuations must be very strong and the structure of the propagating medium must
be special (a channeling medium or an ordered, periodic structure). In the litho-
sphere fluctuations in the speeds of propagation of elastic waves can be as large as
15% and they can be highly anisotropic, with horizontal correlation lengths much
larger than vertical ones. Localization manifests itself in fat codas of seismograms,
or codas with envelopes that decay slowly. This is a clear indication that there
is a lot of multiple scattering going on. Moreover, radiative transport would tend
to underestimate the size of the codas indicating that a different analytical the-
ory is needed. What is missing at present is a robust and effective criterion for
discriminating between these two situations.

2.5 Nonlinearity and randomness

Nonlinearity and randomness interact significantly only in very special situations,
as in soliton propagation in optical fibers or when high intensity laser beams
interact with material inhomogeneities. Nonlinearity is rarely an issue in seismic
wave propagation except very near sources. In one dimensional wave propagation
both nonlinearity and randomness are strongly felt and a long-standing problem is
the analysis of their interaction. Is there, for example, wave localization when we
have nonlinearities? This is a very difficult question that cannot be answered by a
yes or no. The phenomena depend sensitively on the exact setup of the problem:
the form of the nonlinearity, the various scales associated with the inhomogeneities
and the propagation phenomenon, and the form of the excitation [8, 9, 10, 11, 12,
13].

2.6 Numerical simulations

At the dawn of the 21st century, when computational power is doubling every
two years or so, and computational cost is dropping to the point where a good
laptop computer today is more powerful than the Cray I supercomputer of the
late seventies, why is anybody interested in analytical methods? We have the
computational power to simulate anything we want and we have the ability to
make detailed and extensive measurements, which in seismology result in huge
data sets. What could mathematical analysis contribute in this context?

Being skeptical about the utility of mathematical analysis and believing that
we can compute or simulate everything we need may appear naive to a mathe-
matician but it is increasingly the dominant view in many fields, in geophysical
wave propagation for example.

The fact is that if we want to understand the behavior of seismic codas we
cannot rely on direct numerical simulations. If the typical wavelength is of the
order of 3-5 km and we want to calculate a synthetic seismogram 1000 km from
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the source we need a spatial grid that has at least five points per wavelength, and
more if we want to simulate accurately random fluctuations in the parameters. In
a realistic three dimensional setup it is impossible to generate numerical solutions
that will yield a 3 second synthetic seismogram with millisecond resolution. What
is even more important to realize is that we should not really want to do this
because with radiative transport theory seismic coda envelopes can be calculated.
What is holding up realistic numerical computations is not computing power but
analysis: we do not have good enough transport theoretic boundary conditions
on the earth’s surface and at interfaces. The mean free path may be as large
as 20-30 km and Monte Carlo methods can give reasonably accurate solutions
using a high-end workstation. Transport theory does what is called ‘sub-grid’
modeling in computational fluid dynamics. We do not have to resolve the small
scale inhomogeneities if we can do some analysis, which is in fact difficult but
doable.

2.7 Parameter estimation and imaging

Imaging of the earth’s interior is a challenge that will be with us for a very long time
because the inhomogeneities are so strong. In exploration seismology, where seis-
mic probing can generate huge data sets, the issue is not so much good algorithms
for imaging but low complexity algorithms. Efficient compression of geophysical
data sets is perhaps the most urgent problem that exploration seismology faces at
present.

It appears at first that this has nothing to do with waves. Wavelets or other
tools for compression from signal processing come to mind, and they are being
used. If noise effects are ignored and if the typical wave length of a probing
pulse is 100-150 m (for shorter wavelengths dissipation effects are much stronger),
we cannot expect image resolution better that 25 m or so at a depth of a few
kilometers. And if noise and multiple scattering are to be taken into consideration
it is not at all clear what the achievable resolutions are without some compensation.
Noise reducing methods (stacking) that are used in imaging are not so effective.
Much more needs to be done analytically here. Imaging itself, without noise, is
based on variants of a backward wave propagation method (migration) that has
now a substantial theoretical basis [14, 15, 16].

The best compression method is to go from the seismic data to the image
itself, of course, so good compression has to be adapted to the specific data set
and its structure. But there must be interesting algorithms, yet to be found, that
are somewhere between know-nothing methods like wavelet decomposition and
thresholding, and know-all full imaging.

3 The transport regime

Radiative transport is a phenomenological theory that was introduced to describe
the propagation of light intensity through the Earth’s atmosphere. It has been
applied successfully to many other problems of wave propagation in a complex
medium. In its simplest form, let a(t,x,k) denote the angularly resolved energy
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density defined for all wave vectors k, position x and time t. Because of interaction
with the inhomogeneous medium through which it propagates, a wave with wave

vector k may be scattered into any other direction k̂′, where k̂ =
k

|k| . The

transport equation gives the energy balance

∂a(t,x,k)

∂t
+ ∇kω(x,k) · ∇xa(t,x,k)−∇xω(x,k) · ∇ka(t,x,k) (1)

=

∫

Rn

σ(x,k,k′)a(t,x,k′)dk′ − Σ(x,k)a(t,x,k).

Here n is the dimension of space (n = 2 or 3), ω(x,k) is the local frequency at
position x of the wave with wave vector k, the differential scattering cross-section
σ(x,k,k′) is the rate at which energy with wave vector k′ is converted to wave
energy with wave vector k at position x, and

∫

σ(x,k′,k)dk′ = Σ(x,k) (2)

is the total scattering cross-section. The function σ(x,k,k′) is nonnegative and
usually symmetric in k and k′. The left side of (1) is the total time derivative of
a(t,x,k) at a point moving along a trajectory in phase space (x,k) and may be
written as a Liouville equation

∂a

∂t
= {ω, a} , (3)

where {f, g} =
n
∑

i=1

(

∂f

∂xi

∂g

∂ki
− ∂f

∂ki

∂g

∂xi

)

is the Poisson bracket. The right side of

(1) represents the effects of scattering.
The transport equation (1) is conservative when (2) holds because then

∫ ∫

a(t,x,k)dxdk = const

independent of time. Absorption may be accounted for easily by letting the total
scattering cross-section be the sum of two terms

Σ(x,k) = Σsc(x,k) + Σab(x,k)

where Σsc(x,k) is the total scattering cross-section given by (2) and Σab(x,k) is
the absorption rate.

The radiative transport equation (1) was derived from the microscopic equa-
tions in the sixties and seventies by many authors (see [17] for references). A nice
overview of these methods and results is presented in a recent review [18]. We
have recently considered scattering of high frequency waves in a random medium
[17] and established validity of the radiative transport theory for scalar and vector
waves, including mode conversion and polarization in the following regime:

• Distances of propagation L are much larger than the wave length λ,
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• The medium parameters vary on the scale comparable to the wave length,

• The mismatch between the inhomogeneities and the background medium is
small,

• Absorption is small.

This regime arises in many physically important situations. In seismic wave prop-
agation, teleseismic events can be modeled by radiative transport equations [4, 5].

3.1 Waves to transport

Transport equations for the phase space wave energy densities are constructed
[17, 19, 20] as follows. We assume here that the space domain is R3 (n = 3) and
deal with acoustic waves. The acoustic equations for the velocity v and pressure
p are

ρ
∂v

∂t
+∇p = 0 (4)

κ
∂p

∂t
+∇ · v = 0.

This system may be written in a general form of a symmetric hyperbolic system
(with convention of summation over repeated indices):

A(x)
∂u

∂t
+Dj ∂u

∂xj
= 0, (5)

where u = (v, p), and x ∈ Rn. The matrix A(x) = diag(ρ, ρ, ρ, κ) is symmetric
and positive definite and the matrices Dj are symmetric and independent of x
and t. We consider high frequency solutions of (5). Physically this means that
the typical wave length λ of the initial data is much smaller than the overall

propagation distance L with ε =
λ

L
≪ 1. The spatial energy density for the

solutions of (5) is given by

E(t,x) = ρv2

2
+

κp2

2
=

1

2
(A(x)u(t,x) · u(t,x)) = 1

2
Aij(x)ui(t,x)ūj(t,x) (6)

and the flux F(x) by

F i(t,x) = pv =
1

2
(Diu(t,x) · u(t,x)). (7)

We have the energy conservation law

∂E
∂t

+∇ ·F = 0. (8)

and thus the total energy is conserved:

d

dt

∫

E(t,x)dx = 0. (9)
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The high frequency limit ε → 0 of the energy density E(t,x) is described in
terms of the Wigner transform, which is defined by

Wε(t,x,k) =

(

1

2π

)n ∫

eik·yuε(t,x− εy/2)u∗

ε(x+ εy/2)dy, (10)

where uε(t,x) is the solution of (5). The Wigner transform Wε is a 4× 4 Hermi-
tian matrix. Its limit as ε → 0 is called the Wigner distribution and is denoted
by W (t,x,k). The limit Wigner matrix is not only Hermitian but also positive
definite. The limit energy density and flux are expressed in terms of W (t,x,k) by

E(t,x) = 1

2

∫

Tr(A(x)W (t,x,k))dk

and

Fi(t,x,k) =
1

2

∫

Tr(DiW (t,x,k))dk.

The limit Wigner distribution may be decomposed over different wave modes
in a way that generalizes the plane wave decomposition in a homogeneous medium.
The dispersion matrix of the system (5) is defined by

L(x,k) = A−1(x)kiD
i =







0 0 0 k1/ρ
0 0 0 k2/ρ
0 0 0 k3/ρ

k1/κ k2/κ k3/κ 0






. (11)

It has one double eigenvalue ω1 = ω2 = 0 and two simple eigenvalues

ωf = v|k| , ωb = −v|k| , (12)

where |k| =
√

k21 + k22 + k23 and v is the sound speed

v =
1√
κρ

. (13)

The corresponding basis of eigenvectors is

b1 =
1√
ρ
(z(1)(k), 0)t, b2 =

1√
ρ
(z(2)(k), 0)t,

bf = (
k̂√
2ρ

,
1√
2κ

)t, bb = (
k̂√
2ρ

,− 1√
2κ

)t, (14)

where the vectors k̂, z(1)(k) and z(2)(k) form an orthonormal triplet. The eigen-
vectors b1(k) and b2(k) correspond to transverse advection modes, orthogonal to
the direction of propagation. These modes do not propagate because ω1,2 = 0.
The eigenvectors bf (k) and bb(k) represent forward and backward acoustic waves,
which are longitudinal , and which propagate with the sound speed v given by (13).
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The limit Wigner distribution matrix W (t,x,k) has the form [17]:

W (t,x,k) =

2
∑

τ=1

W τ
ij(t,x,k)b

i(k)bj∗(k)

+af (t,x,k)bf (k)b
∗

f (k) + ab(t,x,k)bb(k)b
∗

b(k). (15)

The first term corresponds to the non-propagating modes and may be set to zero
here without any loss of generality. The last two terms correspond to forward
and backward propagating sound waves. The scalar functions af,b are related by
af (t,x,k) = ab(t,x,−k), and af satisfies the Liouville equation

∂a

∂t
+∇kω · ∇xa−∇xω · ∇ka = 0. (16)

They may be interpreted as phase space energy densities since they are non-
negative (because the matrix W (t,x,k) is non-negative) and

E(x) = 1

2

∫

dk[af (t,x,k) + ab(t,x,k)] =

∫

dkaf (t,x,k).

The flux is given by

F =
v

2

∫

dk[k̂af (t,x,k)− k̂ab(t,x,k)] = v

∫

dkk̂af (t,x,k). (17)

The radiative transport equation (1) arises when the density ρ and compress-
ibility κ are random and oscillating on the scale of the wave length, so we assume
they have the form

ρ → ρ(1 +
√
ερ1(

x

ε
)), κ → κ(1 +

√
εκ1(

x

ε
)).

The random processes ρ1 and κ1 are mean zero space homogeneous with power
spectral densities R̂ρρ, R̂κκ, and cross spectral density R̂κρ. The limit ε → 0 is the
high frequency limit since the parameter ε is the ratio of wave length to propagation
distance. In (3.1) we take the ratio of correlation length to propagation distance
to be of order ε also, and we take the standard deviation of the fluctuations to be
of order

√
ε. It is in this scaled limit that radiative transport theory emerges. The

radiative transport equation for a(t,x,k) = af (t,x,k) is

∂a

∂t
+vk̂ · ∇xa− |k|∇xv · ∇ka =

πv2|k|2
2

∫

δ(v|k| − v|k′|)[a(k′)− a(k)]

·
{

(k̂ · k̂′)2R̂ρρ(k− k′) + 2(k̂ · k̂′)R̂ρκ(k− k′) + R̂κκ(k− k′)
}

dk′. (18)

This equation is of the form (1). The mean free path is a typical value of the
ratio v

Σ , the speed over the total scattering cross-section. It can be thought of
as the distance over which scattering by the inhomogeneities is effective. It is a
length scale that can be estimated from seismic data while correlation lengths and
standard deviations of parameter fluctuations are usually not observable.
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The radiative transport equation (1) has been derived from equations gov-
erning particular wave motions by various authors, such as Stott [21], Watson
et.al. [22], [23], [24], Barabanenkov et.al. [25], Besieris and Tappert [26], Howe
[27], Ishimaru [3] and Besieris et. al. [28] with a recent survey presented in [29].
These derivations also determine the functions ω(x,k) and σ(x,k,k′) and show
how a is related to the wave field. In [17], (1) and these functions are derived as a
special case of a more general theory using the Wigner distribution and symmetric
hyperbolic systems.

There is not a lot of mathematical work on the wave-to-transport limit, and
most of it is for the Schrödinger equation with random potential. We cite here the
work of Martin and Emch [30], of Spohn [31], of Dell’Antonio [32] and the recent
extensive study of Ho, Landau and Wilkins [33] as well as [34]. They treat only
spatially homogeneous problems but it is known how to extend the analysis to the
spatially inhomogeneous case (slow x-dependent initial data and potential) [35].
A really satisfactory mathematical treatment of radiative transport asymptotics
from random wave equations is lacking at present.

3.2 Transport for electromagnetic and elastic waves

Transport theory for electromagnetic and elastic waves is interesting because of
wave polarization. This is important in astrophysics and is analyzed in great detail
in Chandrasekhar’s treatise [36]. Coherence of polarized light persists and must
be tracked, leading to a system of transport equations for the Stokes parameters
that fix the state of polarization. The derivation of this system from Maxwell’s
equations was first done in the early seventies, and using symmetric hyperbolic
systems and Wigner distributions in [17], where the earlier papers are cited.

The main reason we wanted a general derivation of transport equations for
general waves was so that we could deal with elastic waves. One can, of course,
write down phenomenological equations for the transport of elastic wave energy
and this was done often in the last 10-15 years [5]. The problem is that shear waves
were treated like acoustic waves and the role of polarization was not accounted
for correctly in the geophysics literature, even though the similarity with electro-
magnetic waves (Chandrasekhar’s work) should be clear. In [17] it is shown that
elastic wave transport is like E&M for shear and like acoustics for compressional
waves, and the two wave modes are coupled.

A simple but interesting consequence of the general derivation is the symme-
try (self-adjointness) of the transport equations. This implies immediately that
the only equilibrium phase space energy densities are the uniform ones (over the
support of the energy surface). The spatial energy densities for the compressional
P waves and the shear S waves must be in a fixed ratio to each other, which turns
out to be

EP =
v3S
2v3P

ES

Here vS is the shear speed (about 3km/sec) and vP is the compressional speed
(about 5km/sec). This makes the P wave energy about one tenth of the S wave
energy deep in the coda of seismograms, assuming surface effects are not important
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so that the free space theory can be used. This is independent of what the source
is and of the details of the scattering medium, as long as there is effective scat-
tering. The asymptotic energy law is well known empirically but it did not have
an explanation from first principles so we presented it in detail and related it to
the seismological literature in [37]. It turns out that this kind of long time P-to-S
energy equilibrium was known in connection with remote sensing with ultrasound
[41].

3.3 Boundary conditions

Finding appropriate transport theoretic boundary conditions for wave propaga-
tion in the transport regime is perhaps the most pressing issue both theoretically
and for the applications, in geophysics, in electromagnetics, in ultrasound and
elsewhere. The problems are analytically difficult as can be seen from [20] where
the relatively simple case of inhomogeneous, slowly varying deterministic media
with a flat interface is considered and transport theoretic boundary conditions are
derived in the high frequency limit.

There is a lot of physical and applied literature on scattering form random
rough surfaces [38, 39]. The issue is to determine what is appropriate as a bound-
ary or interface condition for radiative transport equations. As with polarization,
interfaces are a source of coherence in an otherwise incoherent scattering process.
So they must be treated carefully to avoid oversimplifications. In [40] we con-
sider acoustic reflection and transmission by a flat interface and derive transport
theoretic boundary conditions, but a lot more has to be done here, including the
derivation of boundary conditions for E&M and elastic wave transport.

3.4 The diffusive regime

It is well known, primarily from studies that originated in neutron scattering and
reactor theory, that when the propagation distance in the transport regime is
large compared to the mean free path a simpler diffusion theory emerges. In some
seismic propagation problems the mean free path is 20-30 km but propagation is
over 1000 km and more. So it is quite clear that a diffusion approximation for
the transport equations is called for. We know how to do this when there are no
boundaries present [17], even with polarization for E&M and elastic waves.

The problem is that the crustal wave guide is 30-40 km deep and it is not
clear how to use the diffusion approximation, or even how to decide if it should be
used at all. But the mathematical problem of finding asymptotic boundary and
interface conditions in the diffusive regime is interesting, quite delicate analytically
and potentially very useful [42]. In radar scattering from clutter, the diffusive
transport theory is very likely the most appropriate one to use for wavelengths in
the 10 cm to 1 m range, for example.

3.5 Parameter identification and inverse problems

Parameter identification for radiative transport has received relatively little atten-
tion in geophysics [5]. In light propagation through the atmosphere the situation
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is, of course, very different if only because the measurements that can be made
are very different. The recent activity in diffusive tomography [43] should eventu-
ally find applications in geophysics as well, but there are many difficult problems
that must be settled along the way, such as getting the right transport theoretic
boundary conditions.

4 The localization regime

I will review briefly reflection of acoustic plane wave pulses normally incident
on a randomly layered half space, z < 0, with z the direction of the layering
[45, 46]. A good reference for deterministic wave propagation in layered media is
Brekhovskikh’s book [44]. It is in randomly layered media that wave localization
is dominant. I will describe it in the time domain, for pulses, because this is the
most interesting case in geophysical wave propagation, in reflection seismology and
elsewhere. It is also not treated much in the mathematical or physical literature
specialized to localization problems, and the simple intuition that most specialists
have for time harmonic, one dimensional wave localization is not quite adequate
for pulses. This was pointed out some time ago [50].

Radiative transport theory is not, of course, valid for randomly layered media.
This was also considered long ago in connection with wave guides and optical fibers
[47]. But it is not well understood in applied fields, even today, and papers appear
occasionally that attempt to ‘derive’ radiative transport equations for propagation
in layered media. I do not mean here three dimensional radiative transport in
plane parallel structures. I mean random layering. If radiative transport were
valid in this case, then the differential scattering cross-section would be singular,
concentrated in only two (in the simplest case) directions, up and down or forwards
and backwards propagation.

In the long paper [48] we deal in detail with the point source case, that is,
the propagation of an acoustic pulse generated by a point source over a layered
random medium. Here I will describe only the reflection of acoustic plane wave
pulses.

4.1 Pulse reflection from randomly layered media

The acoustic pressure p(t, z) and velocity u(t, z) satisfy the continuity and mo-
mentum equations

1

K
pt + uz = 0

ρut + pz = 0 (19)

Here ρ is the material density and K the bulk modulus. As in [48] we assume for
simplicity that the density has no random variation

ρ(z) =

{

ρ0, z > 0,
ρ1, z < 0

(20)
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with ρ0 and ρ1 constants. For the bulk modulus we assume that

K−1(z) =

{

K−1
0 , z > 0,

K−1
1 (z)

(

1 + ν( z
ε2 )

)

, z < 0
(21)

withK0 a constant, K1(z) a smooth deterministic function of z and ν(s) a bounded
stationary random function with mean zero, representing the fluctuations in K−1.
Note that they vary on the scale ǫ2, where ǫ is a small parameter. If z is measured
in kilometers and the fluctuations vary on the scale of a few meters then a value of
ǫ around 0.05 captures the scale separation we wish to model. We assume that the
random function ν(s) has a correlation length of order one so that the correlation
length of ν(z/ǫ2) is of order ǫ2 in kilometers (about 2.5 meters for ǫ = 0.05). The
mean sound speed c is given by

c(z) =







c0 =
√

K0

ρ0

, z > 0

c̄(z) =
√

K1(z)
ρ1

, z < 0
(22)

Note that the fluctuations in the sound speed are not assumed to be small. The es-
timation of the vertical correlation length of the inhomogeneities in the lithosphere
from well-log data is considered in [51]. They found that 2-3 m is a reasonable
estimate of the correlation length of the fluctuations in sound speed.

For t < 0 a normally incident plane wave solution in z > 0 has the form

u(t, z) =
1√
ǫ

1√
ρ0c0

f

(

t+ z/c0
ǫ

)

p(t, z) = − 1√
ǫ

√
ρ0c0f

(

t+ z/c0
ǫ

)

(23)

Here f is the pulse shape function which is assumed to vanish for negative
arguments and to have support that is of order one in the macroscopic t units that
are seconds. With ǫ = 0.05, the pulse width is about 50 msec or, with a speed
of 3 km/sec, 150 meters. The multiplicative factor 1/

√
ǫ in (23) makes the total

energy of the incident plane wave pulse independent of ǫ. Continuity of p and u
at the interface z = 0 makes (19) and (23) a complete problem. We are interested
in p(t, 0) or u(t, 0) for t > 0, the pressure or velocity at the interface, and this
involves the solution of a complicated random scattering problem because of the
form (21) of K−1.

4.2 Scale separation

The scaling that we have chosen, and the asymptotic limit ε → 0 that we will
consider, models well problems in reflection seismology and is quite different from
transport theoretic scaling. The main differences are that the fluctuations are not
assumed to be small and the typical wavelength of the probing pulse (150 m) is
small with respect to the probing depth (5 km, say) but large compared to the
correlation length (2-3 m). The parameter ε is then the ratio of the (typical) wave
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length to propagation depth, as well as the ratio of correlation length to wave
length. This is a particularly interesting scaling limit mathematically because it is
a high frequency limit with respect to the large scale variations of the medium that
we want to detect, but it is a low frequency limit with respect to the fluctuations,
whose effect acquires a canonical form independent of details.

Is this model realistic and can it be used effectively? One argument that
can be made against it is this: There is no real scale separation in sound speed
fluctuations, as one can see from well-logs [52], so this neat way of dealing with
fluctuations, background and probing pulse cannot possibly be right, even if it can
handle large fluctuations. Another is that perfectly layered random media are an
unacceptable idealization.

Regarding scale separation, it is fair to say that the scope of the analytical
theory that has been developed, and is described briefly here, is well beyond any-
thing that could be expected from any theory that deals with strong fluctuations
in a serious way. Radiative transport theory is more robust because the fluctua-
tions are assumed to be small, and then it is not necessary to have scale separation
(correlation lengths and wave lengths are comparable). Moreover, the analytical
tools that emerge from the asymptotic scale separation theory are far more flexible
and robust than the crude thinking with scales implies. Discontinuities and imper-
fections that are comparable to the pulse width can be handled by the theory and
do not make it unusable. The problem is that the theory is not easy to follow, it
is analytically difficult to implement and not nearly enough has been done to test
it in situations that push against the scale separation assumptions. The statistical
analysis of well-log data that was done in [51], that produced the estimate of 2-3
m for the correlation length of the sound speed fluctuations, is quite thorough, but
perhaps more can be done here also.

The modifications to the theory that are needed to account for imperfect
layering are far more important than anything missed by scale separation asymp-
totics. This goes back to the localization-delocalization transition that I have
mentioned several times already. It remains a big gap in our understanding of
wave propagation in random media.

4.3 Localization regime asymptotics

We will consider the reflected pressure prefl(t, 0), at z = 0 and t > 0, which is
the total pressure minus the incident pressure (23). After a time of order ǫ, the
duration of the incident pulse, the two are the same. Of particular interest is the
two-time reflected average pressure intensity.

I(t, t̄) =
1

ρ0c0
< prefl(t+

ǫt̄

2
, 0)prefl(t−

ǫt̄

2
, 0) > (24)

with the angular brackets denoting statistical average. The factor 1/ρ0c0 is a
normalization.

For simplicity, we will assume in the sequel that there is no macroscopic
discontinuity at z = 0 so that ρ0 = ρ1 and K−1

0 = K−1
1 (0).
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Note that the time offset in (24) is proportional to the pulse width ǫ. The
reason for this is that for time offsets of more than a few pulse widths the reflected
signals are essentially uncorrelated. Moreover, in the absence of discontinuities in
the medium, < prefl(t, 0) > is essentially zero except for a time of order ǫ near
t = 0 when the reflection from the interface z = 0 is felt.
That is, there is no coherent backscattering. We formulated a scattering problem
where the quantity of interest is as directly related to the medium fluctuations as
is possible.

Fix a t > 0, not close to zero, and a small ǫ. Since I(t, t̄) is essentially zero
for large t̄ we can introduce its (essentially local) Fourier transform

Λ(t, ω)|f̂(ω)|2 =

∫

eiωt̄I(t, t̄)dt̄ (25)

in which Λ is the normalized local power spectral density. The normalization is
|f̂(ω)|2 with f̂(ω) the Fourier transform of the pulse shape function f(t). The
two-time intensity function can be written as

I(t, t̄) =
1

2π

∫

|f̂(ω)|2Λ(t, ω) e−iωt̄dω (26)

The main thrust of our theoretical work in [45, 48, 46] is that in the limit
ǫ → 0 the local power spectral density can be calculated by solving a system of
partial differential equations where

Λ(t, ω) = W 1(0, t, ω) (27)

and the WN (z, t, ω), N ≥ 0 satisfy the equations

∂WN

∂z
+

2N

c̄(z)

∂WN

∂t
− 2αω2N2

c̄2(z)

{

WN+1 − 2WN +WN−1
}

= 0 (28)

for −L < z ≤ 0, with

WN (−L, t, ω) = δ(t)δN,0 (29)

Here the mean sound speed c̄(z) is given by (22) and α > 0 is the noise intensity
level of the fluctuations

α =
1

4

∫

∞

0

< ν(s)ν(0) > ds (30)

The length L is arbitrary, provided that for any given t > 0 for which we want to
calculate Λ(t, ω) it satisfies

L > cmax
t

2
(31)

with cmax the maximum speed c̄(z) in z ≤ 0. Because of the hyperbolic nature
of the equations (28) it is easy to see (and explained in the references) that the
choice of L satisfying (31) does not affect Λ(t, ω) given by (27).
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4.4 Time domain localization

There is no quick and simple way to explain the result (27)-(31) that relates the
local power spectral density Λ(t, ω; c̄(.)), the mean sound speed profile c̄(z) and
the noise intensity level α. But we will now make several remarks that will help
explain the nature of this relationship.

From the definition (24) and (25) it is clear that Λ(t, ω) is a local Fourier
transform but it is not necessarily positive as it would have to be if prefl(t, 0), the
reflected pressure, were a stationary process in t so that I(t, t̄) were independent
of t. However, in the limit ǫ → 0, and hence when ǫ is small, Λ(t, ω) given by (27)-
(31) is indeed positive. For a general profile c̄(z) it cannot be computed explicitly
but for c̄(z) = c̄, a constant, it has the form

Λ(t, ω) =
αω2

c̄
(

1 + αω2

c̄ t
)2 (32)

In terms of the localization length [49] at frequency ω

l(ω) =
c̄2

2αω2
(33)

we can write (32) in the form

Λ(t, ω) =
1

2

c̄l(ω)
(

l(ω) + c̄t
2

)2 (34)

As shown in [49] and the many references cited there, the localization length
at frequency ω is a measure of the depth of penetration of a time harmonic wave
with this frequency into a randomly layered medium with uniform sound speed
c̄ and noise level α for the fluctuations. Wave energy does not penetrate much
below this length. If T (L, ω) is the time harmonic transmission coefficient for a
randomly layered medium of width L, with ω the frequency of the incident plane
wave, then

lim
L→∞

1

L
log |T (L, ω)| = −1

l(ω)

with probability one. This defines the localization length l(ω) > 0, which is always
positive for a large class of random media. It cannot be computed explicitly but in
the low frequency limit it has the form (33). The lower the frequency the deeper
the penetration of the waves into the randomly layered medium.

In the time domain, the normalized local power spectral density of the re-
flected signal at a fixed time t, Λ(t, ω) in (34), has a maximum ωmax = ωmax(t)
that depends on time. From (34) the maximum is calculated to be

ωmax =

√

c̄

αt
(35)

In a more physical way [49] we can say that the maximum of the local power
spectral density at time t occurs for that ω = ωmax for which

l(ωmax) =
c̄t

2
(36)

Documenta Mathematica · Extra Volume ICM 1998 · I · 403–427



Mathematical Problems in Geophysical Wave Propagation 421

Thus, for the frequency for which the localization length equals the mean distance
traveled into the medium, we have the maximum contribution to the noise spec-
trum of the reflected signal. This is a stochastic resonance relation that identifies
precisely the main source of noise in the reflected signals.

It is because of wave localization and its manifestations in the time domain
described above that signals reflected by randomly layered media are so noisy.
From (32) we find, by integrating over ω, that the envelope of the root mean
square of the reflected pulse is of the form constant× t−3/4. Thus, the fluctuations
in the reflected signal decay very slowly, indicating that a great deal of multiple
scattering is taking place and that wave localization is dominant.

We can interpret (28) as a hierarchy of equations for moments associated with
the scattering problem [48]. The infinite hierarchy (N ≥ 0 in (28)) indicates that
the second moment that we are interested in (I of (24) or Λ of (25)) cannot be
computed separately from all higher moments (the WN , N > 2 in (28)). This is
another manifestation of localization.

When we use the parameters of section 4.2 that are typical in reflection seis-
mology we find that the minimum localization length occurs in the 20-30 Hz regime
and is about 15-20 km [51]. This means that random inhomogeneities will effec-
tively prevent probing below this depth because all the wave energy is reflected to
the surface by multiple scattering.

What is missing at present is a more general theory that allows us to compute
the changes in the one dimensional theory that occur when small three dimensional
inhomogeneities are introduced into the model. We need a more general theory
that lets us go from localization to transport as the random layering is reduced
and isotropic inhomogeneities replace it.

4.5 Statistical inverse problems

I will describe briefly how the mean sound speed profile c̄(z) can be estimated
from observations of prefl(t, 0) or

Rf (t) =
1√
ρ0c0

prefl(t, 0) (37)

in which dependence of the pulse shape function f is indicated. The inversion
strategy is based on one more fact about the reflected signal Rf (t), in addition
to (27)-(31). It is that as ǫ tends to zero Rf (t) becomes approximately a Gaus-
sian process. It has not been possible to prove this so far but there are some
good heuristic indications that it is true [45] and extensive numerical simulations
corroborate it very well [48]. From the Gaussian property of Rf (t) we conclude
that

1

|f̂(ω)|2

∫

eiωt̄Rf

(

t+
ǫt̄

2

)

Rf

(

t− ǫt̄

2

)

dt̄ = Λ̂(t, ω) (38)

is approximately, when ǫ is small, an exponential random variable with mean
Λ(t, ω) given by (27)-(31), when c̄(z) is known. Moreover, for distinct 0 < t1 <
t2 < ... < tNt

and 0 < ω1 < ω2 < ... < ωNf
, where Nt and Nf are integers,
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the random variables
{

Λ̂(tj , ωl)
}

are independent with exponential distribution

having mean {Λ(tj , ωl)} .
The inversion strategy is now this: Depending on the available data, fix a

set of time points {tj} and frequencies points {ωl} as above. For each realization

of Rf (t) that is available, estimate Λ̂(tj , ωl) from (38). This is actually a very
delicate step that must be done carefully as we discuss in [48], Appendix E. Then
form

O(c̄) =
∏

realiz

Nt
∏

j=1

Nf
∏

l=1

e−Λ̂(tj ,ωl)/Λ(tj ,ωl;c̄(.))

Λ(tj , ωl; c̄(.))
(39)

where the first product is over different independent realizations. This is the
likelihood functional for the estimates Λ̂, given a known mean speed profile c̄(z).
We now choose c̄(z) in order to maximize this functional. This is a rather usual
maximum likelihood estimation except that now the maximization must be done
over the profiles c̄(.) which in turn determine Λ(t, ω; c̄(.)) in (39) via the partial
differential equations (28)-(29) and the relation (27).

The most convenient way to solve the maximization problem for (39), and thus
estimate c̄(z), is to assume that it is piece-wise linear over a few macroscopically
large layers and then maximize O over a finite set of speeds c̄1, c̄2, ..., c̄Nz . These
speeds are approximations of c̄(z) at successively larger depths numbered from 1
to Nz. Moreover, because of the hyperbolic nature of (28)-(29) the maximization
can be done one layer at a time with increasing depth. This avoids the difficult
problem of finding the maximum of a complicated function of several variables.
Physically this layer peeling process makes sense because there is a direct relation
between the sound speed profile up to a certain depth and the smallest time before
which the rest of the medium is not felt in the reflected signal Rf (t).

Of course we need a lot of independent realizations to get reasonable results
and this is unrealistic in a geophysical context. But it is important in principle to
make this strategy work and amazingly enough it does [50], [48]). It is amazing
because we are trying to determine the smooth, mean speed profile from the re-
flected signals that are swamped by fluctuations due to multiple scattering. The
computational and other implementation details are described in [48]).

Could we do this kind of inversion from extremely noisy reflections if we only
had one realization? Yes, if we have reflection measurements at different offsets
(distances from the source) on the interface, generated by a point source over a
randomly layered medium [53]. This is a very difficult problem that requires a
great deal of numerical computation. The inversion is not as good as in the plane
wave case (with many realizations) but it is reasonably good and, in any case, it
shows that the strategy does work. But improving the results requires very careful
attention to a host of implementation issues that can be settled only empirically,
by trial and adjustment, at present.

An interesting discussion of reflections from time reversed reflections, their
statistical properties and their relation in turn to the hierarchy of moments equa-
tions (28) is given by Clouet and Fouque [54]. This work should have important
applications in statistical inverse problems of geophysical interest.
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Another application of time domain localization asymptotics is to surface
water waves over a rough bottom [55].

4.6 Reflection and transmission of time harmonic plane elastic

waves

We have described a variety of results for acoustic pulse reflection from randomly
layered media, emphasizing time domain effects. For geophysical applications
we must also consider elastic waves in randomly layered media. The analytical
difficulties in extending the theory that we briefly described above to the elastic
case are enormous, mainly because there are two wave modes, P and S waves,
that are coupled by the inhomogeneities. In [56] we extended the scale-separation
asymptotic theory to time harmonic, obliquely incident elastic plane waves. We
calculate in detail mode coupling in reflection and transmission, with various kinds
of interfacial discontinuities. It is surprising that so many things can be calculated
analytically and in such detail, given the complexity of the problem.

However, despite considerable efforts we have not been able to extend the
results to the time domain. The hierarchy of moment equations that we used in
the analysis of acoustic pulse reflection does not seem to work for elastic wave
pulse reflection. The analysis of reflections for elastic wave pulses generated by
a point source, the analog of the analysis carried out in [48] for acoustic waves,
seems to be out of reach at present.

4.7 Pulse stabilization and imaging

We have focused mostly on reflection in the time domain because the bulk of the
measurements that can be made in geophysics, in nondestructive testing with ul-
trasound and elsewhere are surface measurements. However, transmission is also
important as is the analysis of reflections from imbedded discontinuities in a ran-
domly layered medium. The vicinity of the front of the pulse, or the vicinity of
first arrival from the discontinuity, has an interesting structure that can be ana-
lyzed in considerable detail. This is called the O’Doherty-Anstey theory because
it was first discussed by these two geophysicists in the early seventies [57]. The
main point is that if the fluctuations are weak and the pulse is followed with its
random speed, then it will appear to stabilize (not fluctuate) and become broader
as it advances into the medium. This is discussed in detail in [48] where many
other papers are cited.

What if the fluctuations are not weak, and we have scale separation as de-
scribed above? Do we have an O’Doherty-Anstey theory? This question was
answered in [58, 59] by overcoming what was the main obstacle before: finding
the right random speed with which to center the advancing pulse. The fact that
the advancing pulse spreads and loses energy (to fluctuations in its coda) is not so
surprising and is true for general random media, not only layered media, although
the fluctuations must be weak. What is surprising, and not generally known or
anticipated in the geophysics literature, is that in the case of large fluctuations
the centering speed is not the local random speed but a function of it, and the
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centered pulse stabilizes with probability one with minimal spreading (relative to
other centerings).

In [60], Solna shows how this theory can be used to improve the resolution of
discontinuity identification in a random medium. He also extends the O’Doherty-
Anstey theory to a class of locally layered random media, that is, he allows for
slow horizontal variations.
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