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L-Funtions

Peter Sarnak

Section 1. The Fundamental Conjectures

Since Hecke’s work [0], the theories of L-functions and of automorphic forms have
been closely interwoven. In this talk, we review some recent developments concern-
ing the analytic aspects of these topics. In the case of the Riemann Zeta Function
ζ(s) and Dirichlet’s L-functions L(s, χ) (that is “GL1 over Q” L-functions) de-
velopments during the 1960’s and 1970’s see [1,2] offer a large body of techniques
and results with many striking applications to classical number theory. Today the
same can be said about L-functions of modular forms on the upper half plane H

(that is “GL2 L-functions”) these being the main concern below. We begin how-
ever with the general L-function which in any case has important impact on GL2

L-functions.
Fix m ≥ 1 and let π be an automorphic cusp form (or representation) for

GLm(Q) (later in connection with Conjecture II below we also allow GLm(K),
where K is a number field). That is π is an irreducible unitary representation of
GLm(A) (which we assume has a unitary central character) which appears in its
regular representation on GLm(Q)\GLm(A), A being the adele ring of Q. Then
π ∼= ⊗πp, where πp is an irreducible unitary representation of GLm(Qp) if p < ∞
and of GLm(R) if p = ∞. Moreover, for all but a finite number of places p, πp

is unramified. The (standard) L-function, L(s, π) associated with such a π is an
Euler product of degree m:

L(s, π) =
∏

p<∞

L(s, πp) (1)

where

L(s, πp) =
m
∏

j=1

(1− αj,π(p)p
−s)−1 (2)

The numbers {αj,π(p)}mj=1 are determined from the local representation πp. At
the place ∞ the local factor L(s, π∞) is a product of Gamma functions which if
π∞ is unramified takes the form

L(s, π∞) =

m
∏

j=1

(

π−s/2 Γ

(

s− µj,π(∞)

2

))

(3)

As with ζ(s) and L(s, χ) the key analytic properties of L(s, π) are known [3]. These
being the analytic continuation and functional equation:

L(s, π∞)L(s, π) = ǫπq
s−1/2
π L(1− s, π̃∞)L(1− s, π̃) (4)
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where qπ ∈ N is the conductor of π, ǫπ is of modulus 1 and is the “sign” of the
functional equation and π̃ is the contragredient of π [4]. We let λπ be the quantity
(
∑m

j=1 |µj,π(∞)|2)1/2 and call it the archimedean size of π.
General philosophies and conjectures [5] (which among other things encom-

pass the Artin conjectures) assert that any L-function (from automorphic forms
on more general groups over number fields or from varieties defined over number
fields) are products of these L(s, π)’s. These are therefore the primitive objects in
the theory of L-functions. Undoubtedly the two central analytic problems in the
theory are:

I. The Grand Riemann Hypothesis (GRH), which asserts that the zeroes of the
completed L-function ξ(s, π) = L(s, π∞)L(s, π) all lie on Re(s) = 1/2.

II. The (generalized) Ramanujan conjectures [100]: if πp is unramified then

|αj,π(p)| = 1

while if π∞ is unramified

Re (µj,π(∞)) = 0.

There are no known direct relations between Conjectures I for these different
primitive L-functions and it is of course possible that the original RH [6] is true
for ζ(s) but that it fails for some general L(s, π). This however seems unlikely and
the theme of this report is the role played by families of L-functions which may
often be employed to analyze a given L(s, π).

Conjectures I and II have many far reaching implications. The most inter-
esting applications of Conjecture I follow from its use for a family of L-functions
rather than for a single function such as ζ(s). While these Conjectures remain
out of reach at present, the approximations to them, some of which are described
below, lead in many cases to the resolution of the problem at hand. Conjecture II
for m = 1 is trivial. For m = 2 there are some important special cases (including
Ramanujan’s original one) known [7,96,8] (interestingly, the proof in these cases
involves reducing Conjecture II to function field generalizations of Conjecture I).
The case when m = 2 for the place at ∞ is equivalent to the conjecture that the
first eigenvalue of the Laplacian on the hyperbolic quotient Γ(N)\H, Γ(N) being

the congruence subgroup

{

(

a b
c d

)

≡ I(N); a, b, c, d ∈ Z, ad − bc = 1

}

, is at

least 1/4 [9]. The local bounds towards II which use only that πp and π∞ are
generic [10] assert that

p−1/2 < |αj,π(p)| < p1/2

and
∣

∣Re (µj,π(∞))
∣

∣ < 1
2

(5)

To go beyond this basic bound one uses global methods. In particular, the use of
families of L-functions as described below lead to the best known results.
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Associated with π as above are other L-functions which have conjectured
analytic continuations and functional equations. First and foremost is L(s, π⊗ π̃)
[11], [12], [13] whose analytic properties are completely understood [14], [15]. The
local factor L(s, πp ⊗ π̃p) at a prime p at which π is unramified is given by

L(s, πp ⊗ π̃p) =
∏

j,k

(

1− αj,π(p) αk,π(p) p
−s

)−1

(6)

There are other important cases which are partially understood such as
L(s, sym2π) where sym2π is the symmetric square representation [16], [17]. In
fact, for π on GL2 the analytic theory of the symmetric square L-function is com-
plete [18], [19] and recently the same has been achieved for the symmetric cube [20].
For a survey of these techniques, results and their limitations see [21], [22],[23].
We note that establishing the expected analytic properties of L(s, symkπ) for all
k would lead to a proof of Conjecture II, as well as the conjecture about the
distribution of the {αj,π(p)}mj=1 as p → ∞.

The basic result towards I, which in the case of ζ(s) is the key ingredient in
the proof of the prime number theorem and is based on the non-negativity of the
coefficients of associated Dirichlet series, is that L(s, π) 6= 0 for Re(s) = 1. This
general result may be proven by this 100 year old technique together with the
analytic properties of L(s, π ⊗ π̃) (or one may use the Eisenstein series directly
[24] which yields the same zero-free region). The quality of the lower bound for
L(1+ it, π) (or equivalently a zero-free region) in terms of the parameters t, λπ, qπ
is more or less the same in all cases except for one major (and tantalizing) lacuna
- the possible “Landau-Siegel Zero.” That is in the case that χ is a quadratic
(χ2 = 1) Dirichlet character, then instead of an effective lower bound for L(1, χ)
of the form ≫ (log qχ)

−1 which is established for the other χ’s, only the lower

bounds of (log qχ)/
√
qχ when χ(−1) = 1 [25] and of

log qχ√
qχ

∏

p\qχ
p6=qχ

(

1− [2
√
p]

p+ 1

)

when

χ(−1) = −1 [26], [27], are known (the latter has striking applications to class
numbers of imaginary quadratic fields and is a prime example of an application
of GL2 theory to GL1). Put another way, there may be an L(s, χ) with a real
zero very close to 1 (in terms of the conductor), which we call a Landau-Siegel
Zero [28], [29]. Interestingly, it appears that only such a χ (χ2 = 1) can have such
an extreme violation of I. In [30] and [32] it is shown (using the positivity of the
coefficients of an appropriate Dirichlet series) that for any GL2 form π as well as
its symmetric square (if it is not of “CM” type) there are no Landau-Siegel zeroes.
The last is technically very useful especially when applying the Petersson formula
[31] and its generalization [33], see for example [34].

Section 2. Sub-convexity

A consequence of Conjectures I and II which is used in many of their applications
is the “Lindelof Hypothesis” which asserts that for any π on GLm (m fixed) and
ǫ > 0 there is Cǫ < ∞ such that

∣

∣

∣

∣

L

(

1

2
+ it, π

) ∣

∣

∣

∣

≤ Cǫ ((|t|+ 1)m (λπ + 1) qπ)
ǫ

(7)
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The functional equation (4) together with II and a standard convexity argument
in complex analysis imply that

∣

∣

∣

∣

L

(

1

2
+ it, π

) ∣

∣

∣

∣

≤ Cǫ ((|t|+ 1)m (λπ + 1) qπ)
1/4+ǫ

(8)

Some of the most interesting applications of (7), (for example, to estimation of
Fourier coefficients of 1/2-integral weight modular forms [35] or to problems in
Quantum Chaos [36]) require only a sub-convexity bound in (8) - that is, in one
of the t, λ or q aspects an exponent δ < 1/4 in (8). In GL1 the first such bound
is essentially due to Weyl [37] in the t-aspect while [38] is still the best known in
the q-aspect. For GL2, the series of papers [39], [40], [41], [42], [43] establish sub-
convexity bounds in each of the λ, q and t-aspects. An application of this in the
t-aspect to quantum unique ergodicity is given in [34] while when applied in the q-
aspect to L( 12 , π⊗χq), χ

2
q = 1 (π fixed), it yields a solution (albeit ineffective due to

the possible Landau-Siegel zero) of the long standing problem of determining which
large integers are represented by a positive definite integral ternary quadratic form
[44]. The novel technique leading to the sub-convexity estimate is “amplification”
which proceeds by embedding L(s, π) in a suitable family F of L-functions. See
[45] for a description of the method and [46] and [47] for some other instances of
its use. An interesting and basic problem is to develop sub-convexity bounds in
the various aspects for π’s on GLm, m ≥ 3.

Section 3. Local Distribution of Zeroes

The asymptotics of the number of zeroes ρπ of ξ(s, π) is well known. As T → ∞

#{ρπ|0 ≤ Im (ρπ) ≤ T} ∼ mT log T

2π
(9)

For GL1 L-functions, it is shown in [48] that a positive proportion of these zeroes
are on the line, Re(s) = 1/2. The proof is based on a technique called “mollifica-
tion” and it has been used to establish a similar result for GL2 L-functions [49].
Another approach to this type of result was introduced in [50]. It has the advan-
tage of producing simple zeroes and in [51] this method was developed further to
show that at least 40% of the zeroes of ζ(s) are on Re(s) = 1/2 and are simple.

For the rest of this section we will assume Conjecture I and discuss the fine
structure of the distribution of the zeroes. This is of interest both in arithmetic
applications as well as giving insight into the nature (eg spectral) of the zeroes.
Write the zeroes ρπ as 1

2 + iγπ and order them:

. . . ≤ γ(−2)
π ≤ γ(−1)

π ≤ 0 ≤ γ(1)
π ≤ γ(2)

π . . . (10)

In view of (9), in order to examine the distribution of the local spacings between the

zeroes we re-normalize and consider the numbers γ̂
(j)
π = (mγ

(j)
π log γ

(j)
π )

/

2π, j ≥
1. Their consecutive spacings are the numbers γ̂

(j+1)
π − γ̂

(j)
π . The pair correlation

is the local density of the numbers γ̂
(j)
π − γ̂

(k)
π , j 6= k ≤ N (as N → ∞). The

k-th (k ≥ 2) consecutive spacings and n ≥ 3 correlations are defined similarly
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[58]. For the zeroes of ζ(s) it was shown in [52] that for a restricted class of test

functions the pair-correlation density approaches the density
(

1−
(

sinπx
πx

)2
)

dx, as

N → ∞. It was further noted there that this density is the same as the known [53]
pair-correlation density for the eigenvalues of a typical (for Haar measure) large
unitary matrix [54]. This ensemble of random matrices has been much studied
by Physicists [55] (for example in connection with models for the spectral lines
of heavy nuclii) and goes by the name the Circular Unitary Ensemble, (CUE).
All the local spacing statistics for the eigenvalues of a random matrix in this
ensemble are the same as for the related Gaussian Unitary Ensemble (GUE) [54].
In [56] a detailed numerical investigation of the hypothesis that the local spacing
distributions of the high zeroes of ζ(s) follow CUE laws, has been carried out.
In particular, the local spacing distributions for the 70 million zeroes near the
1020−th zero follow the CUE predictions (almost perfectly!). In [57], the n = 3 and
in [58] all the n-level correlations are determined analytically (again in restricted
ranges). The results being precisely the CUE n-level correlation densities. At the
phenomenological level, this CUE feature is perhaps the most interesting discovery
about ζ(s) since Riemann’s Conjecture I and it points to the spectral nature of the
zeroes. In [58] the n ≥ 2 correlations are determined for any L(s, π) and are found
to be universally CUE. Numerical experiments for various π’s in GL1 [59] and
GL2 [60] strongly confirm this CUE phenomenon. Thus, unlike the distributions
of the {αj,π(p)}mj=1 as p → ∞, which depend on the symmetry type of π, the local
distributions of the high zeroes of any L(s, π) appear to be universally CUE.

The function field analogues of ζ(s) offer much insight into the above. Re-
placing the rational numbers Q by a finite extension k of Fq(t), Fq being a finite
field with q-elements, one obtains an analogue of ζ(s) due to Artin [61]. If C is a
curve over Fq with function field k then the associated zeta function ζ(T,C/Fq)
is a rational function with 2g zeroes, where g is the genus of C. The analogue of
Conjecture I in this setting has been known for over 50 years [97]. The Frobenius
morphism on C is intimately related to ζ(T,C/Fq) and is crucial in the proofs of
I. In [62] the local spacings between the zeroes of ζ(T,C/Fq) is examined. It is
shown that as q and g(C) go to infinity the zeroes of the typical (but not every!)
ζ(T,C/Fq) obey the CUE spacing laws. The sources of this law are clearly identi-
fied as: (A) The monodromy of the representation of π1 of the family of curves of
genus g on H1 of a given curve is “big,” it being Sp(2g). (B) The equidistribution
of the Frobenius conjugacy classes in the monodromy [8]. (C) The (universal) law
for the eigenvalue spacings for the typical matrix in any large compact classical
group being CUE [62].

In this function field setting, one can also determine the distributions of the
zeroes near the point of symmetry (for the functional equation), for a family of zeta
or L-functions. Again, this follows from the calculation of these distributions for
the scaling limits of the monodromy groups of the family and unlike the universality
above, these are found to be sensitive to the symmetry of the family [62]. The
analogous questions in the rational number case, for various families F of L(s, π)’s,
has been investigated recently [63]. Ordering the π ∈ F by their conductors qπ one
examines the distribution of the (scaled) low-lying zeroes. That is, for j ≥ 1 fixed,
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the distribution in [0,∞) of the numbers (γ
(j)
π log qπ)/2π, as π varies over F 1, and

the densities of the numbers (γπ log qπ)/2π again as π varies over F . It is found
[63], [64] that these follow the distributions predicted by the symmetry of the
family F , when the latter can be determined from the function field analogue.
For example, for the family FI of L(s, χ)’s where χ is a quadratic (χ2 = 1)
Dirichlet character, the distribution of the low-lying zeroes follows the symplectic

Sp(∞) scaling distributions [62]. This is convincingly confirmed by numerical
experiments [60] for qχ’s of size 10

12. Further confirmation is given by the analytic
determination (in restricted ranges) of the densities of the low-lying zeroes for this
family [65], [63], [60]. Another example is the family FII of holomorphic cusp
forms π of weight 2 for the congruence subgroups Γ0(N) of the modular group.
The symmetry type of FII is orthogonal ie O(∞), at least as far as the analytic
computations of the densities of the low-lying zeroes [64].

The above densities of the low-lying zeroes in a family determine in particular
the percentages of π ∈ F for which L(1/2, π) = 0 (or it’s derivative if L(1/2, π) = 0
for the trivial reason of the sign of the functional equation). For certain families
such as FII above this together with the Birch and Swinnerton-Dyer Conjectures
[94] give information about the ranks of the group of rational points on elliptic
curves and abelian varieties over Q. In particular, for FII above one obtains from
the analytic results on the densities [66], [67], [64], sharp estimations for the ranks
of the Jacobian J0(N)/Q of the curves X0(N)/Q (which analytically is Γ0(N)\H)
as well as for the dimension of largest quotient M0(N)/Q ([68], [69]) of J0(N)
which is of rank zero.

While for the above families F as well as for numerous others [63], [64] the
proposed symmetry “G(F)” is compelling, it is premature to guess whether it is
appropriate for all families. The reason being, that numerical experiments (for
moderate size conductors) with certain families of elliptic curves [70], [71] indicate
that their ranks are persistently larger than the symmetry (as well as the func-
tion field) predicts. Whether this “excess rank” is a consequence of too small a
range of computation or whether it is truly there, is a fascinating question whose
understanding will no doubt be very instructive.

Section 4. Non-vanishing for Families

The question of the number of π’s in F (ordered by conductor) for which L(s, π)
is non-zero at a special point arises in a number of contexts. In the basic problem
of existence of cusp forms for general subgroups of SL2(R) [72], in the correspon-
dence between forms of 1/2-integral weight and integral weight [73], [74] and in
connection with the Birch and Swinnerton-Dyer Conjecture. There are many re-
sults asserting that infinitely many π ∈ F have their L-function not zero at a
specific point and in some cases even good lower bounds for the number of such
π’s. For example, for the family π1 ⊗ π with π1 fixed on GL2 and π varying (with
fixed conductor) by increasing λπ, non-vanishing at special points on the critical
line are established in [75], [76]. These have applications to the problem of ex-
istence of cusp forms mentioned above. For the family of quadratic twists χ of

1We apologize for the bad notation and hope the reader does not get too confused between π

the number and π the representation.
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a given (modular) elliptic curve E/Q it is shown in [77] and [78] that infinitely
many of the values L( 12 , E⊗χ) are not zero and also infinitely many of the values
L′( 12 , E ⊗ χ) are not zero for χ’s with ǫE⊗χ = −1. This, when combined with [79]
has applications to the B-S conjecture for elliptic curves. A challenging unsolved
problem which as yet is at the limit of the analytic methods [80] is to show that
a positive proportion of the values L( 12 , E ⊗ χ) are not zero. The results on the
densities of low-lying zeroes for this family (of Section 3) imply this, however, they
appeal to Conjecture I. For special E’s a positive proportion of non-vanishing has
been established by algebraic methods [81], [82]. In the “vertical” case of twisting
such L-functions by χ’s of high order, non-vanishing results are proven in [91].

For the family FII of Section 3, it is shown in [83] that at least 50% of the
L( 12 , π)’s are non-zero, where π varies over cusp forms of (say) weight 2 for Γ0(N)
and with ǫπ = 1, asN → ∞. (Based on numerical calculations [66] it is conjectured
that 100% of these should be non-zero). This result when combined with [79]
implies that the dimension of M0(N) is at least 1/4 of the dimension of J0(N), as
N → ∞. The number 50% above is of fundamental significance (for this as well as
for a number of other families [83]) since any improvement of the percentage (in
the quantitative form in which the 50% is established) would lead to a proof that
there are no Landau-Siegel zeroes! This type of relation, that the distribution of
the low-lying zeroes of a family are controlled by the zeroes of other L-functions,
is not surprising from the function field analysis mentioned in Section 3, see [62].
The proof of this 50% result uses amongst many things an appropriate method of
mollification. The proof of the implication to Landau-Siegel zeroes makes use of
the following result which is proven either using forms of 1/2-integral weight or
the relative trace formula [74], [84]: Let π be a (self-dual) cusp form with trivial
central character for GL2/K,K a number field, then L( 12 , π) ≥ 0. Note that since
L(s, π) is real for s ∈ R this inequality is an immediate consequence of Conjecture I
for L(s, π). That it can be proven unconditionally is quite striking especially since
the GL1 analogue - that is L( 12 , χ) ≥ 0, χ quadratic, is not known. Returning
J0(N), in [85] and [86] non-vanishing results are established which together with
[27] imply that the rank of J0(N) is at least 7/16 of dim J0(N).

The non-vanishing in a family is also a very powerful tool in attacking Con-
jecture II. The approach via the family of L-functions, L(s, π⊗ π̃⊗ χ) as χ varies
over Dirichlet characters was initiated in [87]. It was convincingly applied in [88]
to give estimates for απ(p), p finite, where π is a Maass cusp form on GL2/Q. In
[89] a general approach via non-vanishing of partial L-functions at special points
in such a family, was introduced. It leads to the best known bounds towards Con-
jecture II [90]. If π is an automorphic cusp form for GLm(K) and π is unramified
at a place v of K, then

∣

∣

∣

∣

logN(v) |αj,π(v)|
∣

∣

∣

∣

≤ 1

2
− 1

m2 + 1
, if v is finite and N(v) its norm (11)

∣

∣

∣

∣

Re(µj,π(v))

∣

∣

∣

∣

≤ 1

2
− 1

m2 + 1
for v archimedean (12)

This result for GL3 combined with the symmetric square correspondence from
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GL2 → GL3 [19] leads to the bounds on GL2:

∣

∣

∣

∣

logN(v) |αj,π(v)|
∣

∣

∣

∣

≤ 1

5
, if v is finite (13)

∣

∣

∣

∣

Re(µj,π(v))

∣

∣

∣

∣

≤ 1

5
, v archimedean (14)

Interestingly (13) was derived earlier in [92] by special use of the exceptional
group F4. (14) implies a lower bound of 21/100 for the first eigenvalue of the
Laplacian on Γ0(N)\H. This goes beyond the 3/16 bound [9] which was based on
estimating sums of Kloosterman sums using [93]. Thus (14) provides for the first
time cancellations in sums of Kloosterman sums on arithmetic progressions [89].

Section 5. Final Comments

We note that numerical experimentation played a key role in the discoveries and
(or) confirmations of Conjecture I by Riemann, of Conjecture II by Ramanujan,
of the Conjecture of Artin [61] and that of Birch and Swinnerton-Dyer [94].

While we may still have to wait for some time for the complete resolutions
of Conjectures I and II, these like other fundamental problems have generated
marvellous mathematics. Various things are falling into place. The function field
analogues are very suggestive and the evidence for there being a natural spectral
interpretation of the zeroes 2 as well as a symmetry group for families is rather
convincing. The last bodes well since in the function field the proof of the general
cases of Conjecture I make essential use of monodromy of families [8]. Similarly
at the present time the most powerful techniques (in the number field case) have
emerged from considerations of families. Averaging over families in GL2 theory is
usually achieved by the trace formula [95] but often and more profitably, it can be
gotten from the older Petersson formula [31]. The approximations to Conjectures
I and II that have been established are good enough in many instances to resolve
completely some classical problems.
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