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Quantum Computing

Peter W. Shor

Abstract. The Church-Turing thesis says that a digital computer is a
universal computational device; that is, it is able to simulate any physi-
cally realizable computational device. It has generally been believed that
this simulation can be made efficient so that it entails at most a poly-
nomial increase in computation time. This may not be true if quantum
mechanics is taken into consideration. A quantum computer is a hy-
pothetical machine based on quantum mechanics. We explain quantum
computing, and give an algorithm for prime factorization on a quantum
computer that runs asymptotically much faster than the best known al-
gorithm on a digital computer. It is not clear whether it will ever be
possible to build large-scale quantum computers. One of the main diffi-
culties is in manipulating coherent quantum states without introducing
errors or losing coherence. We discuss quantum error-correcting codes
and fault-tolerant quantum computing, which can guarantee highly re-
liable quantum computation, given only moderately reliable quantum
computing hardware.
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1 Introduction.

Quantum computers are hypothetical machines that use principles of quantum
mechanics for their basic operations. They will be very difficult to build; currently
experimental physicists are working on two- and three-bit quantum computers, and
useful quantum computers would require hundreds to thousands of bits. However,
there seem to be no fundamental physical laws that would preclude their construc-
tion. In 1994, I showed that a quantum computer could factor large numbers in
time polynomial in the length of the numbers, a nearly exponential speed-up over
classical algorithms. This factoring result was surprising for a number of different
reasons. First, the connection of quantum mechanics with number theory was it-
self surprising. For cryptographers, the result was surprising because the difficulty
of factoring is the basis of the RSA cryptosystem [27], and nobody had anticipated
the possibility of an attack via quantum physics. For many theoretical computer

Documenta Mathematica · Extra Volume ICM 1998 · I · 467–486



468 Peter W. Shor

scientists, it was surprising because they had more or less convinced themselves
that no type of computing machine could offer this large a speed-up over a clas-
sical digital computer. In retrospect, several results [7, 30] should have led them
to question this; however, not much attention was paid to these results until they
led to the development of the factoring algorithm,

A question that has generated much discussion is where the extra power of
quantum computers comes from. There are a number of differences between quan-
tum and classical computers, and most appear to be required for the extra power.
In particular, quantum interference is needed; one high-level way to describe the
quantum factoring algorithm is that the computation is arranged so that compu-
tational paths giving the wrong answer interfere to cancel each other out, leaving
a high probability of obtaining the right answer. Another property of quantum
systems that plays a crucial role is entanglement, or non-classical correlation,
between quantum systems. Many non-quantum physical systems such as waves
exhibit interference, but none of these systems exhibits entanglement, and they do
not appear usable for quantum computation. Finally, a third property required
is the high dimensionality of quantum systems; the dimension of the joint quan-
tum state space of n objects grows exponentially with n, whereas classically the
dimension of the joint state space of n objects only grows linearly. The factoring
algorithm makes critical use of this extra dimensionality.

In the rest of the paper, I describe these results in more detail. In section 2, I
start by discussing Church’s thesis, which still appears to hold, and an extension
of it, to which quantum computers now appear to be a counterexample. In the
following section, I describe the quantum circuit model for quantum computation.
This is not laid out particularly well anywhere else, so I spend a reasonable amount
of space on it. In section 4, I describe the differences between the quantum circuit
model and possible physical realizations of quantum computers, and say a little
about why the model appears to give the right definition of what is efficiently
computable using quantum mechanics. Section 5 describes the factoring algorithm.
Section 6 discusses error-correcting codes and fault-tolerant quantum computing.
In the final section, I mention some related results.

2 The Polynomial Church’s Thesis.

Church’s thesis says that any computable function can be computed on a Turing
machine, which is essentially a mathematical abstraction of a digital computer.
This thesis arose in the 1930’s, and was motivated by the realization that three
apparently quite distinct definitions of computable functions were all equivalent.
It is well known that Church’s thesis is not a theorem, because it does not specify
a rigorous mathematical definition of “computable”; specifying such a definition
would lead to a provable theorem (and in many cases has), but would also detract
from the generality of the thesis. What is somewhat less commonly realized is
that this thesis can be viewed as a statement about the laws of physics, simply
by interpreting computable to mean computable in the physical world. For this
interpretation, if the laws of physics are computable by a Turing machine, then
Church’s thesis is true.

Documenta Mathematica · Extra Volume ICM 1998 · I · 467–486



Quantum Computing 469

The development of digital computers rendered the distinction between com-
putable and uncomputable functions too coarse in practice, as it does not take
into account the time required for computation. What was needed for the the-
ory of computation was some characterization of efficiently computable functions.
In the early 1970’s, theoretical computer scientists reached a good compromise
between theory and practice with the definition of polynomial-time computable
functions. These are functions whose value can be computed in a number of steps
polynomial in the input size. The corresponding set of languages—functions whose
range is {0, 1}—is known as P (or PTIME). While nobody claims that a function
computable in time n100 is efficiently computable in practice, the set of polyno-
mial time computable functions is structurally nice enough to use in proofs, and
for functions arising in practice it appears to include most of the efficiently com-
putable ones and exclude most of those not efficiently computable. This definition
naturally gave rise to a “folk thesis,” the polynomial Church’s thesis, which says
that any function physically computable in time t on some machine X can be
computed on a Turing machine in time p(t), where p is a polynomial depending
only on the machine X.

Is this folk thesis valid? One good place to start looking for counterexamples
is with physical systems which seem to require large amounts of computer time to
simulate. Two obvious such candidates are turbulence and quantum mechanics. I
will have nothing further to say about turbulence, except that I think the compu-
tational complexity of turbulence is a question worthy of serious study. Richard
Feynman, in 1982, was the first to consider the case of quantum mechanics [16].
He gave arguments for why quantum mechanical systems should inherently re-
quire an exponential overhead to simulate on digital computers. In a lengthy
“side remark,” he proposed using quantum computers, operating on quantum me-
chanical principles, to circumvent this problem. David Deutsch [15] followed up on
Feynman’s proposal by defining quantum Turing machines, and suggesting that
if quantum computers could solve quantum mechanical problems more quickly
than digital computers, they might also solve classical problems more quickly. It
currently appears that this is indeed the case. One piece of evidence for this is
that quantum computers can solve certain “oracle problems” faster than classical
computers [7, 30]; here an oracle problem is one where the computer is given a
subroutine (oracle) which must be treated as a black box. The behavior of com-
putational complexity with respect to oracles, however, has not proved a reliable
guide to its true behavior. Another piece of evidence that quantum computers
are a counterexample to the polynomial Church’s thesis is that they can factor
integers and find discrete logarithms in polynomial time, something which it is
not known how to do on classical computers despite many years of study. The
factorization algorithm is discussed later in this paper.

3 The Quantum Circuit Model.

In this section we discuss the quantum circuit model [32] for quantum computation.
This is a rigorous mathematical model for a quantum computer. It is not the only
mathematical model for quantum computation; there are also the quantum Turing
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machine model [7, 32] and the quantum cellular automata model. All these models
result in the same class of polynomial-time quantum computable functions. Of
these, the quantum circuit model is possibly the simplest to describe. It is also
easier to connect with possible physical implementations of quantum computers
than the quantum Turing machine model. The disadvantage of this model is that
it is not naturally a uniform model. Uniformity is a technical condition arising
in complexity theory, and to make the quantum circuit model uniform, additional
constraints must be imposed on it. This issue is discussed later in this section.

In analogy with a classical bit, a two-state quantum system is called a qubit,

or quantum bit. Mathematically, a qubit takes a value in the vector space C2. We
single out two orthogonal basis vectors in this space, and label these V0 and V1.
In “ket” notation, which is commonly used in this field, these are represented as
|0〉 and |1〉. More precisely, quantum states are invariant under multiplication by
scalars, so a qubit lives in two-dimensional complex projective space; for simplicity,
we work in complex Euclidean space C

2. To conform with physics usage, we treat
qubits as column vectors and operate on them by left multiplication.

One of the fundamental principles of quantum mechanics is that the joint
quantum state space of two systems is the tensor product of their individual quan-
tum state spaces. Thus, the quantum state space of n qubits is the space C2n . The
basis vectors of this space are parameterized by binary strings of length n. We
make extensive use of the tensor decomposition of this space into n copies of C2,
where Vb1b2···bn = Vb1 ⊗ Vb2 ⊗ . . .⊗ Vbn . Generally, we use position to distinguish
the n different qubits. Occasionally we need some other notation for distinguishing
them, in which case we denote the i’th qubit by V [i]. Since quantum states are
invariant under multiplication by scalars, they can be normalized to be unit length
vectors; except where otherwise noted, quantum states in this paper are normal-
ized. Quantum computation takes place in the quantum state space of n qubits
C

2n , and obtains extra computational power from its exponential dimensionality.

In a usable computer, we need some means of giving it the problem we want
solved (input), some means of extracting the answer from it (output), and some
means of manipulating the state of the computer to transform the input into the
desired output (computation). We next briefly describe input and output for the
quantum circuit model. We then take a brief detour to describe the classical circuit
model; this will motivate the rules for performing the computation on a quantum
computer.

Since we are comparing quantum computers to classical computers, the input
to a quantum computer will be classical information. It can thus can be expressed
as a binary string S of some length k. We need to encode this in the initial
quantum state of the computer, which must be a vector in C

2n . The way we do
this is to concatenate the bit string S with n− k 0’s to obtain the length n string
S0 . . . 0. We then initialize the quantum computer in the state VS0...0. Note that
the number of qubits is in general larger than the input. These extra qubits are
often required as workspace in implementing quantum algorithms.

At the end of a computation, the quantum computer is in a state which is a
unit vector in C

2n . This state can be written explicitly as W =
∑

s αsVs where

s ranges over binary strings of length n, αs ∈ C, and
∑

s |αs|2 = 1. These αs
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Figure 1: Construction of a Toffoli gate using the classical gates AND, OR and
NOT. The input is on the left and the output on the right.

are called probability amplitudes, and we say that W is a superposition of basis
vectors Vs. In quantum mechanics, the Heisenberg uncertainty principle tells us
that we cannot measure the complete quantum state of this system. There are a
large number of permissible measurements; for example, any orthogonal basis of
C

2n defines a measurement whose possible outcomes are the elements of this basis.
However, we assume that the output is obtained by projecting each qubit onto the
basis {V0, V1}. When applied to a state

∑

s αsVs, this projection produces the
string s with probability |αs|2. The quantum measurement process is inherently
probabilistic. Thus we do not require that the computation gives the right answer
all the time; but that we obtain the right answer at least 2/3 of the time. Here, the
probability 2/3 can be replaced by any number strictly between 1/2 and 1 without
altering what can be computed in polynomial time by quantum computers—if the
probability of obtaining the right answer is strictly larger than 1/2, it can be
amplified by running the computation several times and taking the majority vote
of the results of these separate computations.

In order to motivate the rules for state manipulation in a quantum circuit,
we now take a brief detour and describe the classical circuit model. Recall that
a classical circuit can always be written solely with the three gates AND (∧),
OR (∨) and NOT (¬). These three gates are thus said to form a universal set of
gates. Figure 1 gives an example circuit for a computation called a Toffoli gate

using these three types of gates. Besides these three gates, note that we also need
elements which duplicate the values on wires. These duplicating “gates” are not
possible in the domain of quantum computing.

A quantum circuit is similarly built out of logical quantum wires carrying
qubits, and quantum gates acting on these qubits. Each wire corresponds to one
of the n qubits. We assume each gate acts on either one or two wires. The possible
physical transformations of a quantum system are unitary transformations, so each
quantum gate can be described by a unitary matrix. A quantum gate on one
qubit is then described by a 2× 2 matrix, and a quantum gate on two qubits by a
4× 4 matrix. Note that since unitary matrices are invertible, the computation is
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reversible; thus starting with the output and working backwards one obtains the
input. Further note that for quantum gates, the dimension of the output space is
equal to that of the input space, so at all times during the computation we have
n qubits carried on n quantum wires. Figure 2 contains an example of a quantum
circuit for computing a Toffoli gate.

Quantum gates acting on one or two qubits (C2 or C
4) naturally induce a

transformation on the state space of the entire quantum computer (C2n). For
example, if A is a 4× 4 matrix acting on qubits i and j, the induced action on a
basis vector of C2n is

A[i,j] Vb1b2···bn =

1
∑

s=0

1
∑

t=0

Abibj st Vb1b2···bi−1sbi+1···bj−1tbj+1···bn . (1)

This is a tensor product of A (acting on qubits i and j) with the identity matrix
(acting on the remaining qubits). When we multiply a general vector by a quantum
gate, it can have negative and positive coefficients which cancel out, leading to
quantum interference.

As there are for classical circuits, there are also universal sets of gates for
quantum circuits; such a universal set of gates is sufficient to build circuits for any
quantum computation. One particularly useful universal set of gates is the set of
all one-bit gates and a specific two-bit gate called the Controlled NOT (CNOT).
These gates can efficiently simulate any quantum circuits whose gates act on only
a constant number of qubits [2]. On basis vectors, the CNOT gate negates the
second (target) qubit if and only if the first (control) qubit is 1. In other words,
it takes VXY to VXZ where Z = X + Y (mod 2). This corresponds to the unitary
matrix









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









(2)

Note that the CNOT is a classical reversible gate. To obtain a universal set
of classical reversible gates, you need at least one reversible three-bit gate, such
as a Toffoli gate; otherwise you can only perform linear Boolean computations.
A Toffoli gate is a doubly controlled NOT, which negates the 3rd bit if and only
if the first two are both 1. By itself the Toffoli gate is universal for reversible
classical computation, as it can simulate both AND and NOT gates [17]. Thus, if
you can make a Toffoli gate, you can perform any reversible classical computation.
Further, as long as the input is not erased, any classical computation can be
efficiently performed reversibly [3], and thus implemented efficiently by Toffoli
gates.

Because of the extra possibilities allowed by quantum interference, for quan-
tum circuits the CNOT together with all quantum one-bit gates forms a universal
set of gates. Figure 2 gives a construction of a Toffoli gate out of CNOT gates and
one-bit gates [2], showing that this set is at least universal for classical computa-
tion. This particular construction does not result in a Toffoli gate with all positive
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Figure 2: Construction of a Toffoli gate using quantum gates. The gates repre-
sented by ⊕ are CNOT’s, where the circle identifies the target qubit. The gate R

is

(

cos θ sin θ

− sin θ cos θ

)

, and R† is the Hermitian transpose of R. In this construction,

the phase on V101 is −1, and all the other phases are +1; the phases can all be
made +1 by a somewhat more complicated quantum circuit.

phases—multiplying the corresponding matrices in Figure 2 produces the matrix
























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

























(3)

which is the classical Toffoli gate with a phase of −1 on one of its outcomes.
This still acts classically as a Toffoli gate, since phases are irrelevant to classical
computation. In quantum computation, however, we must keep careful track of
phases. A more complicated circuit can be constructed which eliminates this phase
of −1 [2].

We now define the complexity class BQP, which stands for bounded-error
quantum polynomial time. This is the class of languages which can be computed
on a quantum computer in polynomial time, with the computer giving the correct
answer at least 2/3 of the time. To give a rigorous definition of this complexity
class using quantum circuits, we need to consider uniformity conditions. Any
specific quantum circuit can only compute a function whose domain (input) is
binary strings of a specific length. To use the quantum circuit model to implement
functions taking arbitrary length binary strings as input, we take a family of
quantum circuits, containing one circuit for inputs of each length. Without any
further conditions on the family of circuits, the designer of this circuit family could
hide an uncomputable function in the design of the circuits for each input length.
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This definition would thus result in the unfortunate inclusion of uncomputable
functions in the complexity class BQP. To exclude this possibility, we require
uniformity conditions on the circuit family. The easiest way of doing this is to
require a classical Turing machine that on input n outputs a description of the
circuit for length n inputs, and which runs in time polynomial in n. For quantum
computing, we need an additional uniformity condition on the circuits. It would
be possible for the circuit designer to hide uncomputable (or hard-to-compute)
information in the unitary matrices corresponding to quantum gates. We thus
require that the k’th digit of the entries of these matrices can be computed by a
second Turing machine in time polynomial in k. Although we do not have space
to discuss this fully, the power of the machines designing the circuit family can
actually be varied over a wide range; this helps us convince ourselves that we have
the right definition of BQP.

The definition of polynomial time computable functions on a quantum com-
puter is thus those functions computable by a uniform family of circuits whose
size (number of gates) is polynomial in the length of the input, and which for any
input gives the right answer at least 2/3 of the time. The corresponding set of
languages (functions with values in {0, 1}) is called BQP.

4 Relation of the Model to Quantum Physics.

The quantum circuit model of the previous section is much simplified from the
realities of quantum physics. There are operations possible in physical quantum
systems which do not correspond to any simple operation allowable in the quantum
circuit model, and complexities that occur when performing experiments that are
not reflected in the quantum circuit model. This section contains a brief discussion
of these issues, some of which are discussed more thoroughly in [7].

In everyday life, objects behave very classically, and on large scales we do
not see any quantum mechanical behavior. This is due to a phenomenon called
decoherence, which makes superpositions of states decay, and makes large-scale
superpositions of states decay very quickly. A thorough discussion of decoherence
can be found in [35]; one reason it occurs is that we are dealing with open systems
rather than closed ones. Although closed systems quantum mechanically undergo
unitary evolution, open systems need not. They are subsystems of systems under-
going unitary evolution, and the process of taking subsystems does not preserve
unitarity.

However hard we may try to isolate quantum computers from the environ-
ment, they will still undergo some decoherence and errors. We need to know that
these processes do not fundamentally change their behavior. Using no error cor-
rection, if each gate results in an amount of decoherence and error of order 1/t,
then O(t) operations can be performed before the quantum state becomes so noisy
as to usually give the wrong answer [7]. Active error correction can improve this
situation substantially, and is discussed in section 6.

In some proposed physical architectures for quantum computers, there are
restrictions that are more severe than the quantum computing model. Many of
these restrictions do not change the class BQP. For example, it could easily be
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the case that a gate could only be applied to a pair of adjacent qubits. We can
still operate on a pair of arbitrary qubits: by repeatedly exchanging one of these
qubits with a neighbor we can bring this pair together. If there are n qubits in the
computer, this can only increase the computation time by a factor of n, preserving
the complexity class BQP.

The quantum circuit model described in the previous section postpones all
measurements to the end, and assumes that we are not allowed to use probabilistic
steps. Both of these possibilities are allowed in general by quantum mechanics, but
neither possibility makes the complexity class BQP larger [7]. For fault-tolerant
quantum computing, however, it is very useful to permit measurements in the
middle of the computation, in order to measure and correct errors.

The quantum circuit model also assumes that we only operate on a constant
number of qubits at a time. In general quantum systems, all the qubits evolve
simultaneously according to some Hamiltonian describing the system. This si-
multaneous evolution of many qubits cannot be described by a single gate in our
model, which only operates on two qubits at once. In a realistic model of quantum
computation, we cannot allow general Hamiltonians, since they are not experimen-
tally realizable. Some Hamiltonians that act on all the qubits at once, however,
are experimentally realizable. It would be nice to know that even though these
Hamiltonians cannot be directly described by our model, they cannot be used to
compute functions not in BQP in polynomial time. This could be accomplished
by showing that systems with such Hamiltonians can be efficiently simulated by
a quantum computer. Some work has been done on simulating Hamiltonians on
quantum computers [1, 24, 33], but I do not believe this question has been com-
pletely addressed yet.

An important aspect of quantum mechanics not used in the quantum circuit
model is that identical particles are indistinguishable; in general they must obey
either Fermi-Dirac or Einstein-Bose statistics when they are interchanged. Particle
statistics do not appear to add any power to the quantum computing model, but
I do not believe this has been rigorously proved.

From the view of the current state of experimental physics, quantum com-
puters appear to be extremely difficult to build, but do not seem to violate any
fundamental physical laws. As qubits, we need to use quantum systems which are
relatively stable, which interact strongly with each other (to carry out quantum
gates quickly), but which interact weakly with everything else (to avoid errors
caused by interaction with the environment). Since the discovery of the factor-
ing algorithm, a variety of proposals for experimental implementation of quantum
computers have been made. One of these proposals is to use the electronic states
of ions in an electromagnetic ion trap as the qubits, to manipulate them using
lasers, and to communicate between different ions using a vibrational mode of
the ions, or phonon [12]. Another is to use nuclear spins of atoms in a complex
molecule as the qubits, and to manipulate them using nuclear magnetic resonance
spectroscopy [14, 18]. A quite recent proposal is to use nuclear spins of impurities
embedded in a silicon chip as the qubits, and to manipulate them using electronics
on the same chip [23]. None of these proposals has been experimentally realized
for more than a handful of qubits, but they all have proponents who believe that
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they may be scaled up to obtain much larger working quantum computers.

5 The Factoring Algorithm.

For factoring an L-bit number N , the best classical algorithm known is the
number field sieve, which asymptotically takes time O(exp(cL1/3 log2/3 L)). On
a quantum computer, the quantum factoring algorithm takes asymptotically
O(L2 logL log logL) steps. The key idea of the quantum factoring algorithm is
the use of a Fourier transform to find the period of the sequence ui = xi (mod N),
from which period a factorization of N can be obtained. The period of this se-
quence is exponential in L, so this approach is not practical on a digital computer.
On a quantum computer, however, we can find the period in polynomial time
by exploiting the 22L-dimensional state space of 2L qubits, and taking a Fourier
transform over this space. The exponential dimensionality of this space permits us
to take the Fourier transform of an exponential length sequence. How this works
should be clearer from the following sketch of the algorithm, the full details of
which are in [28], along with a quantum algorithm for finding discrete logarithms.

The idea behind all the fast factoring algorithms (classical or quantum) is
fairly simple. To factor N , find two residues mod N such that

s2 ≡ t2 (mod N) (4)

but s 6≡ ±t (mod N). We now have

(s+ t)(s− t) ≡ 0 (mod N) (5)

and neither of these two factors is 0 (mod N). Thus, s + t must contain one
factor of N (and s− t another). We can extract this factor by finding the greatest
common divisor of s+ t and N ; this computation can be done in polynomial time
using Euclid’s algorithm.

In the quantum factoring algorithm, we find the multiplicative period r of
a residue x (mod N). This period r satisfies xr ≡ 1 (mod N); if we are lucky
then r is even, so both sides of this congruence are squares, and we can try the
above factorization method. If we have just a little bit more luck, then xr/2 6≡
−1 (mod N), so we obtain a factor by computing gcd(xr/2 + 1, N). It is a fairly
simple exercise in number theory to show that for large N with two or more prime
factors, at least half the residues x (mod N) produce prime factors using this
technique, and that for most large N , the fraction of good residues x is much
higher; thus, if we try several different values for x, we have to be particularly
unlucky not to obtain a factorization using this method.

We now need to explain what the quantum Fourier transform is. The quantum
Fourier transform on k qubits maps the state Va, where a is considered as an integer
between 0 and 2k − 1, to a superposition of the states Vb as follows:

Va → 1

2k/2

2k−1
∑

b=0

exp(2πiab/2k)Vb (6)
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It is easy to check that this transformation defines a unitary matrix. It is not
as straightforward to implement this Fourier transform as a sequence of one- and
two-bit quantum gates. However, an adaption of the Cooley-Tukey algorithm
decomposes this transformation into a sequence of k(k − 1)/2 one- and two-bit
gates. More generally, the discrete Fourier transform over any product Q of small
primes (of size at most logQ) can be performed in polynomial time on a quantum
computer.

We are now ready to give the quantum algorithm for factoring. What we do
is design a polynomial-size circuit which starts in the quantum state V00...0 and
whose output, with reasonable probability, lets us factor an L-bit number N in
polynomial time using a digital computer. This circuit has two main registers, the
first of which is composed of 2L qubits and the second of L qubits. It also requires
a few extra qubits of work space, which we do not mention in the summary below
but which are required for implementing the step (8) below.

We start by putting the computer into the state representing the superposition
of all possible values of the first register:

1

2L

22L−1
∑

a=0

Va ⊗ V0. (7)

This can easily be done using 2L gates by putting each of the qubits in the first
register into the state 1√

2
(V0 + V1).

We next use the value of a in the first register to compute the value
xa (mod N) in the second register. This can be done using a reversible classi-
cal circuit for computing xa (mod N) from a. Computing xa (mod N) using re-
peated squaring takes asymptotically O(L3) quantum gates using the grade school
multiplication algorithm, and O(L2 logL log logL) gates using fast integer multi-
plication (which is actually faster only for relatively large values of L). This leaves
the computer in the state

1

2L

22L−1
∑

a=0

Va ⊗ Vxa(mod N). (8)

The next step is to take the discrete Fourier transform of the first register, as
in Equation (6). This puts the computer into the state

1

22L

22L−1
∑

a=0

22L−1
∑

b=0

exp(2πiab/22L)Vb ⊗ Vxa(mod N). (9)

Finally, we measure the state. This will give the output Vb ⊗ Vxj(mod N) with
probability equal to the square of the coefficient on this vector in the sum (9).
Since many values of xa (mod N) are equal, many terms in this sum contribute
to each coefficient. Explicitly, this probability is:

1

24L

∣

∣

∣

∣

∣

∣

∣

∑

a≡j(mod r)

0≤a<22L

22L−1
∑

b=0

exp(2πiab/22L)

∣

∣

∣

∣

∣

∣

∣

2

. (10)
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This is a geometric sum, and it is straightforward to check that this sum is very
small except when

rb ≈ d22L (11)

for some integer d. We thus are likely to observe only values of b satisfying (11).
Rewriting this equation, we obtain

b

22L
≈ d

r
. (12)

We know b and 22L, and we want to find r. We chose 2L as the size of the
first register in order to make d/r likely to be the closest fraction to b/22L with
denominator at most N . Thus, all we need do to find r is to round b/22L to a
fraction with denominator less than N . This can be done in polynomial time using
a continued fraction expansion.

More details of this algorithm can be found in [28]. Recently, Zalka [34] has
analyzed the resources required by this algorithm much more thoroughly, improv-
ing upon their original values in many respects. For example, he shows that you
can use only 3L + o(L) qubits, whereas the original algorithm required 2L extra
qubits for workspace, giving a total of 5L qubits. He also shows how to efficiently
parallelize the algorithm to run on a parallel quantum computer.

6 Quantum Error Correcting Codes.

One of the reactions to the quantum factoring paper was that quantum computers
would be impossible to build because it would be impossible to reduce decoher-
ence and errors to levels low enough to ensure reliable quantum computation.
Indeed, without error correction, it would probably be an impossible task to build
quantum computers large enough to factor 100-digit numbers—factoring such a
number requires billions of steps, so each step would need to be accurate to bet-
ter than one part in a billion, a virtually impossible challenge in experimental
physics. Fortunately, it is possible to design fault-tolerant circuits for quantum
computers, which allow computations of arbitrary length to be performed with
gates having accuracy of only some constant c. Current estimates using known
methods for constructing fault-tolerant quantum circuits put this constant in the
range of 10−4 [25]; improved techniques could increase this value.

For some time after the factoring algorithm was discovered, however, it was
believed that making quantum computers fault-tolerant was impossible. There
were a number of plausible arguments for why this should be true. One argument
for the impossibility of quantum error correction was based on the theorem, related
to the Heisenberg uncertainty principle, that an unknown quantum state cannot
be duplicated. The argument was that since you cannot duplicate quantum infor-
mation, you cannot have more than one copy of a qubit around at any given time,
and thus that it was impossible to protect a qubit from errors. Indeed, the simplest
classical error correcting code is the 3-repetition code, which triplicates each bit,
and other classical error correcting codes also appear to be based on repetition.
Despite this pessimistic argument, quantum error correcting codes do exist, and
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are generalizations of classical error-correcting codes. The codes protect quantum
information from error and decoherence not by duplicating it, but by hiding it in
subspaces of C2n which are affected very little by decoherence and errors that act
on only one qubit, or only a small number of qubits.

Before we discuss quantum error correcting codes in detail, we need to say
more about the measurement process. For every set of orthogonal subspaces of C2n

which span the entire space, there is a measurement which outputs one of these
subspaces as classical data, and which projects the original quantum state onto

this subspace. For example, if our quantum state is
∑2n−1

s=0 αsVs and we measure
the first qubit, we obtain the (not normalized) quantum state

2n−1−1
∑

s′=0

α0s′V0s′ with probability

2n−1−1
∑

s′=0

|α0s′ |2, (13)

and the state

2n−1−1
∑

s′=0

α1s′V1s′ with probability
2n−1−1
∑

s′=0

|α1s′ |2. (14)

This measurement corresponds to the partition of C
2n into the two subspaces

generated by {V0s′} and by {V1s′}.
To illustrate how quantum error correcting codes work, we first explain what

goes wrong when we try to extend the straightforward repetition code to the
quantum realm. The obvious thing to do is to take

V0 → V000 (15)

V1 → V111

This indeed does protect against value errors in our qubits. Suppose we apply the

error transformation

(

0 1

1 0

)

to the first qubit. Then the encodings of V0 and V1

get taken to the states V100 and V011, respectively. The subspace generated by these
two quantum states is orthogonal to that generated by the original codewords V000

and V111. We can thus make a measurement which reveals that there was an bit flip
in the first qubit without measuring (and thus disturbing) the encoded quantum
state. It is easily seen that bit flips applied to each of the three qubits create
subspaces that are orthogonal to each other, so there is a quantum measurement
which identifies on which qubit a bit flip error occurred without disturbing the
encoded state. It is then straightforward to fix the bit flip error by applying a
quantum gate to the qubit in error.

However, a phase error on one the qubits is disastrous in this code. What

happens when the error transformation

(

1 0

0 e
iφ

)

is applied to one of the qubit

is that it takes an encoded V0 to an encoded V0, and takes an encoded V1 to an
encoded eiφV1. Thus, a phase error an any of the three qubits translates to a
phase error on the encoded qubit, making the encoding three times as vulnerable
to phase errors.

Documenta Mathematica · Extra Volume ICM 1998 · I · 467–486



480 Peter W. Shor

We now explain the above difficulty another way which illuminates the con-
struction of quantum error-correcting codes. We consider phase flip errors, which
are phase errors with φ = π. There is a transformation that takes phase flips to
bit flips and vice versa. This is the Hadamard transform, which is

1√
2

(

1 1
1 −1

)

. (16)

When this is applied to all the qubits in the code above, as well as the encoded
qubits, we get the code

V0 → 1

2
(V000 + V110 + V101 + V011) (17)

V1 → 1

2
(V111 + V001 + V010 + V100)

Notice that for this code, a single bit flip interchanges V0 and V1, so this code
cannot correct bit flips, again showing that code (15) cannot correct phase flips.

What we need to make a good quantum error correcting code is a code having
the property that bit flips can be corrected both before and after the application
of the Hadamard transformation. Such a code can be found by generalizing the
codes (15) and (17), and it was discovered independently by two groups [11, 31].
It is based on the classical 7-bit Hamming code, and is defined as follows:

V0 → 1√
8

(

V0000000 + V1110100 + V0111010 + V0011101

+V1001110 + V0100111 + V1010011 + V1101001

)

(18)

V1 → 1√
8

(

V1111111 + V0001011 + V1000101 + V1100010

+V0110001 + V1011000 + V0101100 + V0010110

)

.

The indices of the basis vectors in the support of the encoded states are exactly the
classical 7-bit Hamming code. The fact that the classical Hamming code corrects
one error means this code can correct one bit flip. This quantum code is taken to
itself under the application of the Hadamard transform (16) both to the encoded
qubit and to each encoding qubit, showing that it is also able to correct one phase
flip. In fact, it can correct a simultaneous bit flip and phase flip.

We now have a seven bit code that can corrects a phase and/or a bit flip
applied to one of its qubits. This is by no means the complete set of possible
quantum mechanical errors on one qubit; this set is parameterized by several con-
tinuous variables. However, the ability of a quantum code to correct the following
set of four one-bit errors confers on it the ability to correct any possible one-bit
quantum error:

1 =

(

1 0
0 1

)

, σx =

(

0 1
1 0

)

, σz =

(

1 0
0 −1

)

, σy =

(

0 −i
i 0

)

. (19)

These four errors correspond to no error, a bit flip, a phase flip, and a simultaneous
bit and phase flip, respectively. We do not have enough space to explain this in
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detail, but the fact that these form a basis for the set of 2× 2 matrices is enough
to imply they can correct any one-bit quantum error. The rigorous details of this
implication are in [11]; a more intuitive explanation is in [6].

This quantum Hamming code is the smallest nontrivial example of a set of
codes based on linear binary codes named CSS codes after their discoverers [11, 31],
and which contains codes that are much more efficient than this first one. For fault
tolerance, which will be discussed next, we only need to use CSS codes. However,
a more general framework that includes these codes was discovered simultaneously
by two groups [19, 20, 10]. Substantial work on quantum error correcting codes
has occurred since their discovery, much of it referenced in [10].

In classical computers, error correcting codes have been found to be very
useful for storing and transmitting information, but not for providing fault-tolerant
computing. It is difficult to perform gates on encoded qubits, and once the qubits
have been decoded, they are no longer protected from error. Theoretically, the best
way to provide high levels of fault tolerance for classical circuits was discovered by
von Neumann, who discovered it after reasoning that some means of protection
from error had to exist in biological systems. This method involves the use of
massive redundancy. If you plan to run your computer for t steps, you make c log t
copies of every bit, and during the computation, you continually compare them in
order to catch any errors you have made. The drawback of this method is that
it requires c log t overhead, which is too expensive for use in practice, given the
remarkably low levels of error obtainable by current computer hardware. On the
other hand, it can be shown that if you must use unreliable gates, O(log t) overhead
is required to achieve reliable computation, so von Neumann’s construction is up
to a constant factor best possible.

As in classical computers, quantum error correcting codes should work well
for protecting qubits while they are being stored and transmitted. However, be-
cause quantum data cannot be cloned, fault tolerance using massive redundancy
cannot work in quantum computers. We thus need another method. The methods
currently known for providing fault tolerance in quantum computers are based on
quantum error correcting codes [25, 29]. To use quantum error correcting codes
for reliable computation, we need to show how to do two additional things with
them, neither of which is at first glance obviously possible. These are:

1. correct errors using noisy gates so that errors are corrected faster than new
errors are introduced;

2. perform quantum gates on encoded bits without decoding them, while mak-
ing sure that any errors cannot propagate too widely during the computation.

We do not have much space to discuss how to accomplish these tasks, so we say
nothing about the first task, and give only a very broad sketch of how the second
task can be accomplished.

In order to compute on encoded qubits without decoding, we need fault-
tolerant implementations of a universal set of quantum gates on the encoded
qubits. What we need are circuits having the property that if errors occur in
only a few quantum gates, or are present in a few of the inputs, these errors can-
not affect too many of the qubits in the output of the gate (otherwise, there will
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Figure 3: Implementation of a CNOT gate on qubits encoded using the quantum
Hamming code (18). This circuit can be used in fault-tolerant quantum circuits,
since an error in the i’th wire of an encoded qubit (or in the i’th gate) can only
propagate to the i’th wire of each of the output qubits. Gates that are imple-
mentable on encoded qubits in this fashion are called transversal gates.

be more errors than the quantum error-correcting codes we are using can correct).
It turns out that certain gates are easy to implement this way. Figure 3 shows
how to perform a CNOT on two encoded qubits by performing it on each pair of
encoding wires. Similarly, if a Hadamard gate (16) is applied to each quantum
wire, a Hadamard gate is performed on the encoded qubit. Implementations of
this type are called transversal gates, and these do not form a universal set of
quantum gates. We need to supplement the set of transversal gates with an extra
gate implemented using another method. It was shown how to perform the Toffoli
gate fault-tolerantly on encoded qubits in [29], and the set of transversal gates
augmented by this gate is a universal set of gates.

To implement a circuit of size t fault-tolerantly, the techniques of [29] required
gates with error rate at most O(1/(log t)c). To obtain fault tolerance using gates
with constant error rate requires a further idea: the use of concatenated codes.
These are nested codes, where each layer catches most of the errors missed by the
previous layer. Judicious use of concatenated codes and careful analysis shows that
gates with some constant error rate are able to produce fault-tolerant quantum
circuits; this constant is currently estimated at around 10−4. For more details, see
the excellent survey of fault-tolerance in quantum computing [25].

7 Other Work.

This section discusses areas related to quantum computing; it is not intended to
be a complete survey, but a somewhat idiosyncratic view of some results I find in-
teresting. I have tried to mention survey articles when they exist, so the interested
reader can find pointers to the literature. One excellent resource is the quant-ph
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preprint archive, at http://xxx.lanl.gov/, containing preprints of many recent
research articles in this field. John Preskill, at Caltech, recently taught a course
on quantum computing and quantum information, and his excellent set of lecture
notes is available on the web [26].

As Feynman suggested, it appears that quantum computing is good at com-
puting simulations of quantum mechanical dynamics. Some work has already
appeared showing this [1, 24, 33], but much remains to be done.

A significant algorithm in quantum computing is L. K. Grover’s search algo-
rithm, which searches an unordered list of N items (or the range of an efficiently
computable function) for a specific item in time O(

√
N), an improvement on the

optimal classical algorithm, which must look at N/2 items on average before find-
ing a specific item [21]. The technique used in this algorithm can be applied to a
number of other problems to also obtain a square root speed-up [22].

One of the earliest applications of quantum mechanics to areas related to
computing is quantum cryptography, more specifically quantum key distribution.
Consider two people trying to share some secret information which they can then
use as a key for a cryptosystem. If they can only communicate over a phone
line possibly open to eavesdroppers, they have no choice but to use public key
cryptography [27], which may be open to attack by a quantum computer or (say)
discovery of a fast factoring algorithm on a classical computer. However, if they in
addition have access to an optical fiber which they can use to transmit quantum
states, they can use quantum cryptography [4]. One of them (the sender) transmits
states chosen at random from a set of non-orthogonal quantum states (e.g. V0,
V1,

1√
2
(V0 + V1),

1√
2
(V0 − V1)) The receiver then reads the states in either the

basis {V0, V1} or { 1√
2
(V0 ± V1)}, again chosen at random. Communicating over

a classical channel using a special protocol, they can figure out the states for
which they agree on the measurement basis; they should agree on about half the
states, each of which supplies a bit towards a secret key. If an eavesdropper was
listening, she cannot have gained too much information—since she does not know
in which basis the states were transmitted, any information she gains must cause
a disturbance in the states, which the sender and receiver can detect by measuring
some of their states instead of using them for the secret key. They can also
further sacrifice some of their bits to ensure that the eavesdropper gains virtually
no information about the remaining bits of their key, and that they agree on all
the bits of this key. Since the original quantum cryptography papers, there have
been many articles either proposing other schemes or working towards rigorous
proofs that the scheme is secure against all possible quantum attacks (i.e., when
the eavesdropper has access to a quantum computer). A good bibliography on
quantum cryptography is [8].

Quantum cryptography is but one aspect of a rapidly burgeoning subject,
quantum information theory. A startling result in this field, the interest in which
helped contribute to its recent rapid growth, was the discovery of quantum tele-
portation [5]. It is not possible to transmit an unknown quantum state using only
classical information (say, over a telephone line). However, if two people share
an EPR pair, such as the quantum state 1√

2
(V01 − V10), with the sender holding
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the first qubit and the receiver holding the second, then they can transmit an
unknown quantum bit using a classical channel. The sender performs a combined
measurement on the unknown state and the EPR pair, and transmits the classical
two-bit outcome to the receiver, who then uses this information to reconstruct
the unknown state from his half of the EPR pair. The act of teleportation thus
uses up the resource of entanglement between the sender and the receiver, which
is present in the EPR pair. One research direction in quantum information theory
is quantifying the amount of entanglement in a quantum state. Another direc-
tion is measuring the classical and the quantum capacities of a quantum channel.
More information on quantum information theory can be found in Preskill’s course
notes [26] and in the survey article [6].

Another recent development is the study of quantum communication com-
plexity. If two people share quantum entanglement, as well as a classical commu-
nications channel, this permits them to send each other qubits, but does not reduce
the number of bits required for transmission of classical information. However, if
they both have some classical data, and they wish to compute some classical func-
tion of this data, shared quantum entanglement may help reduce the amount of
purely classical communication required to compute this function. This was first
shown by Cleve and Burhman [13]. More results on communication complexity
have since been shown, and some of these were recently used to give lower bounds
on the power of quantum computers in the black-box (oracle) model [9].

There has been a substantial amount of recent work on both quantum error
correcting codes and quantum fault tolerance. Many results on quantum error
correcting codes are reviewed in [10], and Preskill has written an excellent survey
of fault tolerant quantum computing [25].
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