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1. Introduction The last decades have seen an explosive growth in biosciences,
and astonishing progress in the mathematical modelling of fields as diverse as
neurobiology, membrane formation, biomechanics, embryology, etc (see e.g. J.
Murray, 1990). The sequencing of biomolecules produces such a vast wealth of data
on proteins and polynucleotides that the mere handling of the stored information
becomes a computational challenge, let alone the analysis of phylogenetic trees
and functional networks which is the main task of bioinformatics.

The recent advances in our understanding of the chemical mechanisms de-
scribing the interactions of specific molecules – how virus, for example, use binding
proteins to attack and penetrate hosts cells – are spectacular, but do not suffice to
tackle basic problems like disease progression or the co-evolution of hosts and par-
asites. It is populations of virus particles, or immune cells, or hosts, that regulate
each other’s frequencies. The feedback loops of these ecosystems are too complex
to be understood by verbal arguments alone. The biological community has come
to accept that basic aspects of immunology and evolutionary ecology can only be
analysed by mathematical means.

This has not always been the case. The pioneering work in genetics due to
Fisher, Haldane, Wright, and Kimura, as well as the epidemiological models of
Kermack and McKendrick occupied a marginal position in biology for the most
part of this century, while at the same time motivating important mathematical
advances in statistics, stochastic processes and dynamical systems (Fisher (1918)
on correlation, Kolmogoroff (1937) on travelling waves in a gene pool, May (1976)
on chaos). The models of evolutionary biology cannot compete in mathematical
depth and sophistication with those of theoretical physics, but they offer a wide
range of questions of great intuitive appeal.

This lecture surveys mathematical models in ecology and evolution, empha-
sising the major feedback mechanisms regulating the population densities of the
interacting self-replicating units – be they genes, virus particles, immune cells or
host organisms. The great variety of biological examples made it necessary to
economise on mathematical diversity, by keeping to the framework of ordinary dif-
ferential equations. This is certainly not meant to imply that time delays, spatial
heterogeneities and stochastic fluctuations are secondary effects. In fact, they have
a major impact in many applications (see, e.g., the survey by Levin et al., 1997)
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2. Population ecology If we assume that n species live in an ecosystem, that
xi is the density of species i and that its per capita growth rate ẋi/xi depends on
the densities of the interacting populations, then we obtain the ecological equation

ẋi = xifi(x). (1)

The state space R
n
+ is invariant; so are its boundary faces, where one or several

of the densities are 0; and the restriction of (1) to a face is again an ecological
equation. If the fi are affine linear, we obtain – as simplest example – the Lotka-
Volterra equation

ẋi = xi(ri +
∑

aijxj) (2)

(i = 1, ..., n). It should be stated right at the outset that many ecological interac-
tions display more complex interaction terms; but often, (2) offers a first approx-
imation which is flexible enough to embody the main aspects of the community
structure (Hofbauer and Sigmund, 1998). For instance, if 1 is a prey species and
2 its predator, we obtain

ẋ1 = x1(a− bx2) (3)

ẋ2 = x2(−c+ dx1). (4)

where a, b, c, d > 0. In intR2
+ there exists a unique fixed point (c/d, a/b) which

is surrounded by periodic orbits. If we add a self-limitation of the prey, i.e. set
f1 = a − ex1 − bx2 in (3), we obtain damped oscillations around the fixed point,
or (if e > 0 is large) extinction of the predator (see fig. 1).

Fig. 1: Predator-prey equations

On the other hand, if 1 and 2 are species competing for the same resources,
we have to assume that the intrinsic growth rates satisfy ri > 0 and the interaction
terms aij < 0 (i, j ∈ {1, 2}). On each positive half-axis, there is one fixed point
Fi corresponding to equilibrium of species i in the absence of the other species.
Generically, there are three possible outcomes (see fig. 2):

(a) dominance: all orbits in intR2
+ converge to Fi; species i is said to dominate

the other species;
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(b) coexistence: there exists a fixed point F12 ∈ intR2
+ which is globally stable

(i.e. attracts all orbits in intR2
+);

(c) bistability: F12 is a saddle; almost all orbits in intR2
+ converge to F1 or

F2, depending on the initial condition.

Fig. 2: Competition equations

Because two-dimensional Lotka-Volterra equations admit no limit cycles, their
dynamics can be easily classified; for three or more species, this is no longer the
case. Systems with two competing species and one prey exhibit chaos and systems
with three competing species (which are monotonic and hence admit no chaos,
see Hirsch, 1988) have not been classified yet, in spite of impressive progress (van
den Driessche and Zeeman, 1998). One of the reasons is the existence of hete-
roclinic cycles, see fig. 3(a) (May and Leonard, 1975). If, in the absence of the
third species, species 1 dominates 2, 2 dominates 3 and 3, in turn, dominates 1,
then the boundary of R3

+ contains a heteroclinic cycle consisting of three saddle
points Fi (with only species i present) and three connecting orbits (orbit o1 has
F2 as α- and F1 as ω-limit etc). Depending on the products of the eigenvalues
in the stable and unstable directions, this heteroclinic cycle can attract or repel
the neighbouring orbits in intR3

+. Three competing species with heteroclinic cy-
cles have been found in laboratory populations. In higher dimensional ecological
models, heteroclinic cycles become common. Such cycles are non-generic features
for general dynamical systems, since saddle-connections can be destroyed by ar-
bitrarily small perturbations. Within the class of ecological equations, however,
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which leave the boundary faces of Rn
+ invariant, heteroclinic cycles and networks

(where several cycles issue from one saddle) are usually robust. Such attractors
offer a new brand of nonlinear dynamics: orbits approach saddle points ever more
closely, and remain there for increasingly long times; furthermore, the sequence of
saddles visited by an orbit can switch in arbitrary order from one cycle to another
(Chawanya, 1995).

Fig. 3: Heteroclinic orbits and networks

3. Permanence If the orbit of an ecosystem reaches the neighborhood of a
heteroclinic attractor on the boundary, some species are doomed. The ecosystem,
in that case, is unstable: this notion of stability has nothing to do, however, with
the usual asymptotic stability of a fixed point, which is a local notion. A more
suitable stability notion in this context is that of permanence: (1) is said to be
permanent if the boundary (including infinity) is a repellor, i.e. if there exists a
compact set K ⊂ intRn

+ such that whenever initially x ∈ intRn
+, then x(t) ∈ K for

t sufficiently large. (After a transient phase, all densities are uniformly bounded
away from 0). This notion has been extensively explored (see the survey by Hutson
and Schmitt, 1992). Permanence implies the existence of a fixed point in intRn

+,
but this point need not be locally stable; and indeed ecologists view an ecosystem
as stable even if it exhibits violent oscillations, as long as its species remain safe
from extinction.

For a dissipative system (all orbits uniformly bounded from above), the most
useful sufficient condition for permanence is the existence of an average Lyapunov
function. This is a function P vanishing on the boundary and positive on the
interior such that the continuous extension Ψ of the logarithmic derivative of P
has the property that for every ω-limit point x on bdRn

+ there is a T > 0 with

∫ T

0

Ψ(x(t))dt > 0. (5)
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Then P grows (in the long run) along every interior orbit sufficiently close to the
boundary. In particular (2) is permanent if all orbits are uniformly bounded and
the set

N := {x ∈ R
n
+ : ri +

∑

aijxj < 0, i = 1, ..., n} (6)

is disjoint from the convex hull of the fixed points on the boundary. The condition
is not necessary for permanence if n > 3. But if (2) is permanent, then there
is a unique equilibrium x̂ with all species present, and it is the limit of all time-
averages of orbits in the interior of the state-space. If D is the Jacobian at x̂, then
(−1)n detD > 0, and trace D < 0. Furthermore, (−1)n detA > 0, where A is the
matrix of the interaction terms aij (Hofbauer and Sigmund, 1998).

4. Invasion Many studies have considered the assembly of ecological communities
by sequential invasion (i.e. adding one species at a time). Will species n + 1
grow when introduced in small numbers? If the resident system is in equilibrium
z = (z1, ..., zn), this simply means to check whether the growth rate fn+1(z, 0)
is positive. If the competition between two species is bistable, for instance, none
can invade the other. If there is coexistence, each can invade, etc. Invasion is
a question of transversal stability, which, if the resident system admits a chaotic
attractor, offers subtle ergodic twists involving riddled basins of attraction etc
(Ferriere and Gatto, 1995, Ashwin et al, 1996).

If the resident species obey a permanent Lotka-Volterra equation with fixed
point z ∈ intSn, the condition fn+1(z, 0) > 0 implies that the lim sup of the in-
vading species’ density is positive, but tells nothing about the lim inf. The new
attractor need not be close to the former one; the invading species can drive others
to extinction, and even ultimately itself. Hofbauer (1998) has found conditions in
terms of spatial or temporal averages of the initial growth rate which guarantee
that the invasion of a permanent Lotka-Volterra community succeeds. His bifur-
cation analysis allows to decide whether, if a parameter changes so that invasion
becomes possible, the new attractor is contained in a neighborhood of the resident
attractor or not. The invasion of a heteroclinic cycle is a particularly arduous
problem.

Evidence from field studies and numerical simulations suggest that ecosys-
tems become increasingly harder to invade as time goes on, and that there is an
upper limit to how ‘closely packed’ species can be; but so far, this has only been
demonstrated under restrictive assumptions. Interestingly, predators can stabilise
ecosystems: if a ‘keystone’ predator is removed from a permanent system, the
remaining system is no longer permanent. For instance, if species 1 dominates
species 2, or if the competition between species 1, 2 and 3 results in a heteroclinic
attractor, then a suitable predator can mediate co-existence; Schreiber (1998) has
produced systems with n competing prey, each with its specialised predator, such
that removal of any predator species results in only one prey species surviving.
Such ecosystems cannot be obtained by simply adding one species at a time; se-
quential assembly has to proceed in a more roundabout way, using species that
are later eliminated like a scaffolding. These results agree well with the current
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emphasis of biologists on the role of contingency and history dependence in real
ecological succession chronicles, and highlight the fact that a successful invasion
can initiate a surprising sequence of changes in the ecosystem (see Mylius et al,
1998).

5. Replicator Dynamics Competition between conspecifics drives natural se-
lection. The basic mechanism is simple: an inheritable trait which allows for a
higher reproductive success spreads in the population. This can lead to extraordi-
nary feats of adaptation due to relentless optimisation under constraint. In fact,
some computational approaches to optimisation problems are mimicking the mas-
sively parallel algorithm of Darwinian evolution. Within ‘populations’ of possible
solutions to a given problem (for instance in aerodynamics), those which perform
better are allowed to multiply at the expense of the others. Occasionally, some
‘offspring’ is randomly altered, corresponding to the mutation or recombination of
existing solutions. Such genetic algorithms allow to explore the space of solutions
and often to home in on some optima (Forrest, 1993).

But in biology, it is the population itself that is often the problem. The
efficiency of a wing shape may be independent on what the other birds are doing,
but the success of a sex ratio or of a given degree of aggressivity is not. In a
population with a surplus of males, it pays to produce females; it pays to escalate
a conflict if the others are unlikely to escalate, but otherwise it is better to avoid
escalating, etc. Game theory, rather than optimisation, is appropriate to deal with
problems where the success depends on what the others are doing.

Assume that xi is the frequency of the individuals using strategy i (i =
1, ..., n). A strategy, in this context, is simply a trait (behavioural, physiologi-
cal, morphological) whose payoff, i.e. average reproductive success, depends on
the frequencies x of the competing types. If the traits are inherited, the frequen-
cies will evolve in time, depending on their success. If individuals breed true, the
per capita rate of increase ẋi/xi is given by the difference fi − f̄ , where fi(x) is
the average payoff for using i if the population is in state x, and f̄ =

∑

xjfj is
the average success in the population. This yields the replicator equation

ẋi = xi(fi(x)− f̄) i = 1, ..., n (7)

on the simplex Sn = {x ∈ R
n
+ :

∑

xi = 1}. This simplex is invariant, and so are
its faces. The replicator equation is closely related to the ecological equation (1),
of course. It introduces an ecological viewpoint into game theory.

Let us consider a conflict between pairs of individuals, for instance some
contest over a resource, and assume that the strategies i correspond to different
types of fighting behaviour, and that aij is the average payoff for using i if the
co-player uses j. Then the payoff matrix A = (aij) determines the average pay-
off (Ax)i = ai1x1 + ... + ainxn for strategy i in the population (assuming that
individuals meet randomly) and (7) turns into

ẋi = xi((Ax)i − xTAx). (8)

Documenta Mathematica · Extra Volume ICM 1998 · I · 487–506



The Population Dynamics of Conflict and Cooperation 493

This equation is not only similar, but actually equivalent to a Lotka-Volterra
equation for n − 1 species: a diffeomorphism from Sn (minus one face) to Rn−1

+

maps orbits of one dynamical system onto the other, and vice versa. For n = 2, we
obtain the same generic behaviour as for two competitors: dominance, coexistence
or bistability. For n = 3, heteroclinic cycles show up (not just as a theoretic
possibility: the mate guarding strategies of male lizards form a rock-scissors-paper
cycle). With n > 3, limit cycles and chaotic attractors occur. (8) is permanent if
there exists a p = (p1, ..., pn) with pi > 0 for all i such that for every equilibrium
z on the boundary,

pTAz > zTAz (9)

(a conditions that can easily be checked by linear programming), etc.
Frequency-dependent selection will not optimise, in general. Only for very

special interaction do replicator equations become gradients: if the game is
symmetric, for instance (A = AT ) or more generally if the partial derivatives
fi,j = ∂fi/∂xj obey

fi,j + fj,k + fk,l = fl,k + fk,j + fj,i (10)

for all i, j, k (one has to use a suitable Riemannian metric on Sn, cf. Hofbauer and
Sigmund, 1998).

6. Other Game Dynamics Among higher animals, and in particular humans,
strategies can also spread by learning and imitation. Depending on the details of
transmission, this leads to a large number of game dynamics for the frequencies xi,
often based on underlying stochastic processes. Again, the replicator dynamics is
a kind of benchmark. Another example is the best reply dynamics (a differential
inclusion)

ẋi ∈ β(x)− xi (11)

where β(x) is the set of strategies whose payoff (in a population where strategy i
occurs with frequency xi) is maximal. The idea is that in every short time interval,
a small fraction of the players updates their strategy: these players know how to
optimise, but do not anticipate that others will also update. The orbits of (11)
are piecewise linear. Intriguingly, their asymptotic behaviour is often that of the
time averages of the solutions of the replicator equation (8).

This brings one closer to classical game theory. Let us consider a game with
payoff matrix A and assume that points p ∈ Sn are mixed strategies (pi being the
probability for a player to use strategy i). Then p is a best reply to q ∈ Sn if
pTAq ≥ xTAq for all x ∈ Sn. A point p is a (symmetric) Nash equilibrium if it is
a best reply against itself. A Nash equilibrium is a fixed point for (8) (and every
other decent game dynamics), but the converse need not hold. In fact, the Nash
equilibria are precisely the fixed points of (8) which are saturated – missing pure
strategies have no selective advantage. Every game with finitely many strategies
has a Nash equilibrium, but there are games such that almost no solution, under
any reasonable adjustment dynamics, converges to a Nash equilibrium.

Documenta Mathematica · Extra Volume ICM 1998 · I · 487–506



494 Karl Sigmund

Evolutionary game theory has originated with the concept of evolutionarily
stable strategies (ESS). Intuititively, a strategy q is said to be an ESS if, whenever
all members of the population adopt it, an invading (and sufficiently small) minor-
ity using a different strategy has no selective advantage (Maynard Smith, 1982).
This means that q is Nash, and that whenever p is an alternative best reply to q,
then qTAp > pTAp. Equivalently, q is an ESS if

qTAx > xTAx (12)

for all x 6= q in a neighborhood of q. Not every game has an ESS. The connexion
with the replicator equation is given by the following characterisation: q ∈ Sn is
an ESS if and only if, whenever q is a convex combination of the (possibly mixed)
strategies p1, ...,pm, the mean population strategy

∑

xip
i converges (under the

replicator dynamics) towards q if initially it was close to q (Cressman, 1992). The
idea that evolution always results in an ESS is not justified, however. There exist
considerably more complex outcomes, as captured in the notion of an evolutionarily
stable attractor, for instance (Rand et al, 1994).

7. Long-term Evolution So far we have assumed that offspring are clones of
their parent: ‘like begets like’. The machinery of Mendelian inheritance is much
more complex, and we have to follow the frequencies of genes in the gene pool of the
population. As long as the instruction is contained in one genetic locus (an address
in the genome, housing two genes – one from the father and the other from the
mother), the corresponding dynamics for the gene frequencies in the population
is still of replicator type (7). But in general, the trait depends on several genetic
loci, which can be recombined during reproduction, and the dynamics becomes
challenging.

The state x of the gene pool determines the frequencies of the different types
of individuals, who use different (pure or mixed) strategies. This determines the
frequencies p(x) of the strategies in the population, and hence the reproductive
success of each type, and therefore the rate of change in the gene frequencies x.
If the trait is determined by one genetic locus only, and if there are at most two
pure strategies, or three types of genes which can occur on that locus, then an
ESS q which is feasible is strategically stable in the sense that if a state x̂ of
the gene pool satisfies p(x̂) = q, then every near-by state x remains close to x̂

and p(x) converges back to q (Cressman et al 1996). For more complex genetic
mechanisms, the relation between evolutionary stability and long-term stability
(i.e. strategic stability against every invasion attempt) remains unclear, and offers
a wealth of problems on normal forms and center manifold theory. The replicator
dynamics can be used as a first approximation in the absence of more specific
information on the genetic background. That kind of information is likely to be
provided soon, and will act as a motivational booster for the population genetics
of frequency-dependent selection.

At the present state, the best prospects for studying long-term evolution are
offered by adaptive dynamics. It is based on the assumption that replication is
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only almost exact, and that occasional mistakes – mutations – occur so rarely
that the fate of one mutation (its extinction or fixation under selection) is settled
before the next mutation occurs (Metz et al, 1996). The population is thereby
assumed to consist of one type only, which can be substituted by another type
etc. This describes a dynamics in trait space which seems utterly remote from the
description of population frequencies given by replicator dynamics but which, in
important cases, reduces to it. In particular, if the trait space is a simplex (for
instance, probabilities for certain types of behaviour) with a suitable Riemannian
metric, one obtains (7) again. But this should not obscure the fact that replicator
dynamics and adaptive dynamics adress fundamentally different processes operat-
ing on distinct time-scales. One describes short-term evolution – the population
dynamics of the frequencies of a given set of genes, or traits; the other describes
long-term evolution, the repeated introduction of new mutations (Eshel, 1996).

If the invader’s reproductive success is a linear function of its trait, then an
ESS is locally stable for each adaptive dynamics; but for many examples, this
assumption does not hold, and the evolution in trait space may well lead away

from an ESS.

Often, two players engaged in a biological ‘game’ belong to different popula-
tions, with different sets of strategies. Most of the previous results carry over to
such two-role games, but the general tendency is that there is still less stability: for
instance, no mixed strategy can be an ESS; there exists an incompressible volume
form; heteroclinic cycles become more frequent, etc.

The interacting populations can be different species – for instance, predators
and their prey – and in this case adaptive dynamics leads to models of co-evolution.
A typical question in this context is whether co-evolution may lead to interaction
parameters such that the population numbers oscillate chaotically – a question
on which the jury is still out. The interacting populations can also belong to the
same species: males and females have conflicting interests about their amount of
parental investment, owners and intruders about territorial issues, etc. In that
case, role-specific strategies are likely to evolve, for example ‘if owner, be prepared
to fight to the end; if intruder, avoid escalation’.

Before turning to some applications, it should be emphasised again that es-
sential aspects can change completely if supplementary effects are included, for
instance spatial distribution (Takeuchi, 1996), genetic or physiological heterogene-
ity, stochastic fluctuations (Durrett, 1991) or time lags (Gopalsamy, 1992).

8. Population Dynamics of Infectious Diseases Applications of mathe-
matical modelling to epidemiology, immunology and virology are of increasing
biomedical relevance. They help to understand the course of infectious diseases
both within organisms and within populations, and suggest guidelines for treat-
ment and vaccination.

Within a population, the interactions of infected, susceptible and immune
organisms lead to endemic or epidemic spread of the disease. In a commonly used
epidemiological model (Anderson and May, 1991), if frequencies of uninfected and
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infected hosts are denoted by x and y, this becomes

ẋ = k − dx+ cy − βxy (13)

ẏ = y(βx− d− v − c) (14)

where k is a constant birth (or immigration) term, d the mortality of uninfected,
v the extra mortality due to the infection, i.e. the virulence, and c the rate
of recovery (which in this simple model does not confer immunity). The model
assumes that new infections occur through random contacts between infected and
susceptibles. An infection can only spread if the frequency x of uninfected exceeds
(d + c + v)/β. This threshold principle, a cornerstone of epidemiology, holds
for most of the variants of the model (including immunity, other transmission
mechanisms, periodic oscillations in susceptiblity, other birth and death rates,
etc). For many diseases, one has to consider several classes of hosts (different risk
groups, for instance, in the case of AIDS, see Dietz and Hadeler, 1986). Some of
these extensions lead to chaotic dynamics (Grenfell and Dobson, 1995, Olsen and
Schaffer, 1990).

Infections are caused by pathogens (virus, bacteria, protozoa), which can all
be subsumed as parasites. In (13-14), the pathogen can invade only if the disease-
free equilibrium x = k/d is not saturated, i.e. if the basic reproductive rate

R0 =
kβ

d(d+ v + c)
(15)

(the number of secondary infections produced by an infected in a population of
susceptibles) exceeds 1.

The population dynamics of disease-carrying parasites, and their impact on
the population dynamics of the host, is an area of rapid growth. Even the simplest
models display oscillations. The relation between parasites and their host resem-
bles that between predators and prey, of course: parasites can mediate permanent
co-existence between competing strains of hosts, etc. Heteroclinic cycles are likely
to occur, for instance when two strains of a host engaged in a bistable competition
are beset by two suitably specialised strains of parasites: a resident population of
host 1 can be invaded by parasite 1, the resulting equilibrium can be invaded by
host 2 (eliminating hosts and parasites of type 1), which in turn allows parasite 2
to invade, etc.

The dynamics described so far deal with the course of an infection within a

population. Its development within an individual host is no less dramatic, and con-
stitutes a new chapter in biomathematics, dealing with the population dynamics
and evolution of the ‘biosphere’ beneath the skin of the host organism. These eco-
logical systems are ideally suited for modelling, since they involve huge populations
and short generations, and are subject of intensive clinical tests.

HIV offers the most studied example. As is well-known, the full-blown symp-
toms of AIDS develop only after a latency period of some ten years. But this
quietness is misleading. Clinial tests based on simple dynamical models have re-
vealed a fierce battle between the virus and the immune system of the HIV-infected
patient. The average rate of HIV production exceeds 1010 particles a day. Free
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virus particles are cleared within a few hours. Virus infected cells live on average
two days.

HIV needs human cells (the ‘target cells’) to reproduce. In doing so, it kills
these cells. Hence virus and target cells interact in much the same way as preda-
tors and their prey. But HIV is not only a predator, it is also a prey. The immune
system contains a vast repertoire of possible responses (different types of antibod-
ies, killer cells, etc), whose production is stimulated by specific pathogens. The
immune responses attack and destroy the pathogens. Thus killer cells and virus
also interact like predators and prey. Much clinical research has recently gone into
finding out which role – prey or predator – has more relevance for HIV dynamics.
At present, it appears that target cell limitation and immune control are of the
same magnitude. This leads to prey-predator-superpredator systems which, as
known from ecology (e.g. Hastings and Powell, 1991), exhibit complex dynamics.
In our case, the simplest model reduces to

ẋ = k − dx− βxv

ẏ = βxv − ay − pyz

v̇ = ry − sv (16)

ż = cyz − bz

Here x (resp. y) are the frequencies of uninfected (resp. infected) cells, v that
of free virus particles and z the abundance of the killer cells produced by the
immune response (Nowak and Bangham 1996, DeBoer and Perelson 1998). There
is a minimum threshold of infected cells to activate an immune response (y >
b/c). The frequencies oscillate around an equilibrium value which can be stable
or unstable, i.e. subject to a Hopf bifurcation. The model shows that increasing
the responsiveness c of the immune system decreases the abundance y of infected
cells, but not necessarily the density z of the killer cells; in other words, there is no
simple correlation between virus load and the magnitude of the immune response.

9. The Evolution of Virulence Most pathogens evolve very quickly, due to
their short generation time, their high mutation rate and the intensive selection
pressure acting on them. HIV, for instance, spends on average 1500 generations
within the body of a patient. During this time, its genetic diversity increases
relentlessly, due to copying errors, so that the immune system is faced with ever
new challenges.

Mathematical models of the interaction between virus replication and immune
response led to completely new interpretations of disease progression in HIV in-
fection (Nowak et al., 1991). HIV evolution can shift the steady state within an
infected individual, and lead to escape from immune responses. Such immune
responses are triggered by specific parts (so-called epitopes) of the virus. In the
simplest model, the virus has two epitopes with two variants each, yielding an
eight-dimensional predator-prey equation:

v̇ij = vij(rij − xi − yj)
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ẋi = xi(ci(vi1 + vi2)− b) (17)

ẏj = yj(kj(v1j + v2j)− b)

where vij is the concentration of the virus with sequence i at the first and j at the
second epitope (1 ≤ i, j ≤ 2), and xi and yj are the concentrations of antibodies
directed at sequence i of the first resp. j of the second epitope. Generically, one
or two of the four viral species and the same number of antibody species have to
vanish, and the remaining densities oscillate (Nowak et al, 1995). A homogenous
virus population induces an ‘immunodominant’ response against a single epitope,
but a new variant at this epitope can cause the immune response to shift to the
other epitope. Heterogenous virus population stimulate complicated fluctuating
responses.

This dynamic picture of HIV infection was confirmed by detailed analysis of
virus decay slopes in drug treated patients. Again mathematical models were at
the core of this newly developing demography of virus infection.

The extreme mutability of HIV explains also why drug-resistant forms emerge
so rapidly. Resistance against combinations of drugs requires several mutations.
Mathematical models help in devising optimum treatment schedules based on com-
bination therapy.

This is one chapter of a ‘Darwinian medicine’ grounded in evolutionary biol-
ogy. In this domain, the evolution of virulence (i.e. the parasite-induced mortality
of host organisms) is of particular importance (Levin and Pimentel, 1981, Frank,
1996). Pathogens use the bodies of their hosts both as resource and as vehicle.
Textbook knowledge presumed that parasites would always evolve towards de-
creased virulence, since it is better to milk the host rather than butcher it. If
parasites become too virulent, they face extinction by depleting their reservoir of
susceptibles. It was concluded that successful parasites all become benign. The
most impressive example of such an evolution towards harmlessness is the myx-
oma virus, released in Australia to kill rabbits: within few years, the death rate
of infected rabbits dropped from more than 99 percent to less than 25 percent.
Similar trends have been observed in many human diseases. Adaptive dynamics
shows that evolution can actually turn parasites into mutualists necessary for the
survival of their hosts (Law and Dieckmann, 1998).

But not all parasites become harmless. Selection for a higher basic repro-
ductive rate R0 often leads to conflicting demands on infectivity and long-term
exploitation. If in (15), for instance, the virulence v is an increasing function of
the transmission rate β, then R0 need not necessarily decrease in v. And in the
case of super-infection, i.e. when several strains compete within a host, selection
on parasites does not optimise R0. Roughly speaking, more virulent strains will
have a selective advantage in the intra-host competition, and less virulent in the
inter-host competition. Parasites face a so-called tragedy of the commons: the
need to outgrow their rivals forces them to over-exploit the host, thus possibly
driving their common resource to extinction. Game theoretical arguments help in
analysing such situations. In general, there will be no evolutionarily stable strain
(Nowak and May, 1994).

Of particular interest is the adaptive dynamics of viral particles which can
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spread either by horizontal transmission, i.e. by infecting of new hosts, or by ver-
tical transmission, in the form of provirus integrated into the host’s genome. Even
if we assume that two strains cannot co-exist within one host (no superinfection),
they can coexist within the population if one is favoured by vertical and the other
by horizontal transmission (Lipsitch et al, 1996).

10. From the Red Queen to the Major Transitions The parasite’s ecol-
ogy is further complicated by countermeasures of the hosts which tend to reduce
virulence. Due to their short generation time, parasites can quickly adapt to pre-
vailing host defenses, but sexual reproduction allows host organisms to recombine
their genes and thus to present shifting targets to the pathogens trying to enter
the cells.

Many evolutionary biologists view this as the main reason for the prevalence
of sexual reproduction (Hamilton, 1980). Indeed, the host faces a peculiar prob-
lem of frequency dependent selection. Gene combinations for successful immune
systems tend to spread, but if they become too widespread, they cannot remain
successful, since parasites will adapt. Sexual host species keep reshuffling their
gene combinations, thus providing them with the advantage of being rare.

This is the so-called Red Queen theory of sex, named after a figure from the
sequel of Alice in Wonderland in whose realm ‘you have to run with all your speed’
just to stay in place – a familiar feature in co-evolution. A species can never stop
adapting since the other species do not stop either. Mathematical models for the
resulting arms races display a profusion of limit cycles, irregular oscillations and
heteroclinic attractors.

The Red Queen metapher makes evolution look like a treadmill rather than
a ladder to progress. Nevertheless, evolution has come up with increasingly com-
plex structures, through a sequence of major transitions (Maynard Smith and
Szathmary, 1996). Cell differentiation, immune systems, or neural networks are
examples of breakthrough inventions. Understanding these major transitions nec-
essarily requires thought experiments and mathematical modelling. A major issue
for evolutionary biology is sex – a cooperative activity causing an endless series of
conflicts. In the wake of the primary question – why should an organism transmit
only half of its genes to its offspring? – many other problems surface: Why do
sexually reproducing species have two sexes, rather than three, or one? Why are
their roles asymmetrical (males producing tiny sperm cells and females large egg
cells)? Why is the sex ratio close to one? Why are males fighting for females, and
why are females choosier than males? And, since this is biology: why are there
exceptions to all these rules? All these questions have been adressed by evolution-
ary game theory (see e.g. Hutson and Law, 1993, Karlin and Lessard, 1986, or
Iwasa and Sasaki, 1987).

Some of the major transitions in evolution led to new levels of organisation, for
instance self-replicating molecules, chromosomes, cells, multi-cellular organisms,
colonies and societies. In most cases, this emergence of nested hierarchies was due
to the fusion of formerly independent units into entities of higher order. These
remain threatened by exploitation through mutinies of ’selfish’ elements improving

Documenta Mathematica · Extra Volume ICM 1998 · I · 487–506



500 Karl Sigmund

their own propagation at a heavy cost to the larger unit. Cancer cells grow without
restraint; within a genome, so-called ‘outlaw genes’ subvert the segregation of
chromosomes in a cell division; etc. Each instance of cooperation is riddled with
internal conflicts.

Selfishness may have been an issue since the dawn of life, when several types of
self-replicating RNA molecules must have ‘ganged up’ in order to code for chemical
functions. How could they co-exist? As one possible solution, Eigen and Schuster
(1975) suggested the ‘hypercycle’, a closed feedback loop of chemical kinetics, with
RNA of type Mi catalysing the replication of RNA of type Mi+1 (counting the
indices i mod n). The equation for the relative densities xi of Mi is given by
the replicator equation (7), with fi = xi−1Fi(x) and Fi > 0 for all i. (If the Fi

are constants, there exists a globally stable fixed point in intSn for n < 5, and a
stable periodic orbit for n ≥ 5, see Hofbauer et al, 1991.) This dynamics is always
permanent, so that hypercyclic coupling does indeed guarantee the coexistence of
all RNA types. But if there occurs an RNA type M which profits from Mi more
than Mi+1 does, then M will displace Mi+1, even if it confers no catalytic benefits
to the other RNA; such a molecular parasite destroys the whole cycle.

11. The Evolution of Cooperation Evolutionary history began with molec-
ular networks and led to tightly-knit societies acting as coherently as single or-
ganisms do. Bee hives and termite states furnish striking examples. Their ex-
traordinary degree of cooperation is due to the close kinship between all members
of a society: a gene for helping one’s sister is helping copies of itself. The close
relatedness within a bee hive is due to the fact that only very few of its members
reproduce. This type of cooperation can be explained by kinship theory. It is
based on the rule that an altruistic act costing c to the donor (in terms of repro-
ductive success) and benefitting b to the recipient has a selective advantage if the
relatedness between donor and recipient exceeds the cost-to-benefit ratio c/b.

In human societies, kinship accounts only for a small part of the cooperation:
the larger part is due to economic rather than genetic factors. The simplest mech-
anism is direct reciprocation: as long as c < b it pays to help others if they will
return the help. This creates new opportunities for parasitism, by not returning
help. Game theory provides a ready-made model succintely capturing this aspect.
The Prisoner’s Dilemma (PD) is a symmetric game between two players who can
opt between the moves C (to cooperate) and D (to defect). The payoff matrix is

C D

C

D

(

R S
T P

)

(18)

with

T > R > P > S and 2R > T + S (19)

(the first condition means that the reward R for mutual cooperation is larger than
the punishment P for mutual defection, but that the temptation T for unilateral
defection is still larger, and the sucker’s payoff S for being exploited ranks lowest.
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In our case, R = b − c, P = 0, T = b and S = −c). Obviously, it is best to play
D, no matter what the other is doing.

This changes if we assume that there is always a probability w for a further
round, which is larger than (T − R)/(T − P ), i.e. c/b. The iterated PD game
has a random number of rounds with mean (1 − w)−1 and admits a huge set
of strategies. This model led to a vast amount of investigations, often based on
computer tournaments simulating populations of players meeting randomly and
engaging in an iterated PD game. In Axelrod’s first tournaments, (see Axelrod
and Hamilton, 1981) the Tit For Tat strategy TFT (play C in the first round
and from then on repeat the co-player’s previous move) performed extremely well,
despite its simplicity. But TFT is not evolutionarily stable: indeed, the strategy
of always cooperating can spread by neutral drift in a population of TFT players,
and defectors can subsequently invade. Moreover, errors between TFT players
lead to costly runs of alternating defections.

To analyse the iterated PD under noise (i.e. with a small probability of genetic
or strategic errors), let us first considermemory-one strategies only. Such strategies
are given by the probability to play C in the first round, and a quadruple p =
(pR, pS , pT , pP ), where pi denotes the player’s propensity for move C after having
experienced outcome i ∈ {R,S, T, P} in the previous round. Due to ocasional
mistakes, the initial move plays almost no role in long interactions (w close to
1). The dynamics becomes extremely complex: for instance, restriction to the
following four strategies leads to a heteroclinic network as attractor (see fig. 3b):
(1) Tit For Tat (1, 0, 1, 0), (2) the more tolerant Firm But Fair (1, 0, 1, 1) which
forgives an opponent’s defection if it was matched by an own defection, (3) the
parasitic Bully (0, 0, 0, 1) which cooperates only after punishment and (4) the
strategy (0, 0, 0, 0) which always defects.

But if we introduce occasional mutants, then long-term evolution leads (for
2R > T+P , i.e. b > 2c) to the so-called Pavlov strategy (1, 0, 0, 1) which coperates
only if the co-player, in the previous round, acted like oneself (Nowak and Sigmund,
1993). This strategy embodies the simplest learning rule, called ‘win-stay, lose-
shift’ by experimental psychologists. It consists in repeating the previous move
if the payoff was high (R or T ) and in switching to the other option if it was
low (P or S). Pavlov players cooperate with each other; an erroneous defection
leads in the next round to both players defecting, and then to a resumption of
mutual cooperation. Furthermore, Pavlov populations cannot be invaded by other
strategies, and in particular not by indiscriminate cooperators who pave the way
for defectors. On the other hand, Pavlov cannot invade a strategy of defectors:
this needs a small cluster of strongly retaliatory strategies like TFT, who eliminate
unconditional defectors and then yield to Pavlov.
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Fig. 4: Dynamics of indirect reciprocity

What about strategies with longer memory, or yet more general finite-state
automata? Such strategies are defined by a finite set Ω of inner states, some
(possibly stochastic) rule specifying which move to play when in state ω, and a
rule specifying the transition to the next state as a function of the previous state
and of the outcome of the current round (R,S, T or P ). Together with the initial
state, this defines a strategy for the iterated PD. An example is given by the
following table.

R S T P
1 1 2 3 1
2 1 2 1 2
3 1 1 3 3

It is easy to check that this example satisfies a variant of evolutionary stability: if
all co-players use that strategy, it is best, at every stage of the game, to follow the
same strategy. This defines a social norm. There are many such norms (including
Pavlov, if 2R > T+P ), and it is not easy to decide which will get selected. But this
example seems particularly successful, and it has an intuitive appeal, if we interpret
state 2 as ‘provoked’ and state 3 as ‘contrite’: indeed, an erroneous defection by one
player makes that player feel contrite, and the co-player provoked: the retaliation
redresses the balance. Such inner states may correspond to emotions, which are
increasingly seen as tools for handling the complexities of social life.

Indirect Reciprocity Obviously, the iterated PD captures only a part of the
cooperative interactions in human societies. There is another, indirect reciprocity,
whereby an altruistic act is returned, not by the recipient (as with direct reci-
procity), but by someone else. Indirect reciprocity involves reputation. A simple
model assumes that a score is attached to each player, which increases (or de-
creases) whenever the player provides (or witholds) help. Players help whenever
the score of the potential recipient exceeds some threshold. This threshold is sub-
ject to selection. Punishing a low-scorer is costly, as it decreases one’s own score;
but if defectors are not punished, they take over. Assuming that each player is
engaged in a few rounds, both as potential donor and recipient (but never meeting
the same co-player twice), one finds that mutation-selection chronicles lead toward
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cooperation, provided players know their co-players’ score sufficiently well (Nowak
and Sigmund, 1998).

Occasionally, waves of defection sweep through the population: they are pro-
voked by an excessive frequency of indiscriminate altruists (who are too ready to
help low-scorers). Cooperation is more robust if the society is challenged more
frequently by invasion attempts of defectors (an intriguing parallel to immune sys-
tems). This can be nicely captured by an even simpler model involving only three
types of players, with frequencies x1, x2, x3, namely (a) indiscriminate altruists,
(b) defectors, and (c) discriminate altruists who help except if the co-player with-
eld help. If we assume two rounds per player, for instance, both as a donor and
as a recipient, the payoffs are

f1 = 2(b− c− bx2)

f2 = 2bx1 + bx3 (20)

f3 = 2(b− c)− cx2.

If discriminating altruists are too rare, i.e. if x3 < c/(b − c), defectors take over.
But all orbits with x3 > c/(b − c) lead from the edge x2=0 (no defectors) back
to itself. A mixture of altruists gets established. We may expect that random
drift makes the state fluctuate along this edge, which consists of fixed points only,
and that occasionally, mutation introduces a small quantity x2 of defectors. What
happens? If x3 > 2c/b, defectors cannot invade. If

2c

b
> x3 >

c

b− c
, (21)

the invading defectors thrive at first, but are subsequently eliminated by discrim-
inating altruists. After such an abortive invasion, the ratio of discriminators is so
large that defectors can no longer invade. Only when random fluctuations cross
the interval given by (21), will defectors take over. But this takes time. If defectors
try too often to invade, they will not succeed (see fig. 4).

Such models show how cooperation emerges through the selection of learning
rules, moralistic emotions, social norms and reputation. Thus evolutionary models
explain the ceaseless give and take prevailing in human societies, and lead game
theory back towards its original economic motivation.
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