
Doc.Math. J.DMV 507

Huge Random Stru
tures and Mean Field Models

for Spin Glasses

Michel Talagrand

Abstract. To explain (at least qualitatively) the unconventional magnetic
behavior of certain materials, the physicists have been led to formulate and
to study simple mathematical models. The concepts and methods they de-
veloped in this process appear to apply to a number of important random
combinatorial optimization problems, for which they have proposed remark-
able formulas. Their discoveries point towards a new branch of probability
theory. Finding rigorous arguments to support their conjectures is a formi-
dable challenge and a long range program, some steps of which are described
in the present paper.

Introduction

The research presented in this paper has largely been influenced by the book of M.
Mézard, G. Parisi, M. A. Virosoro “Spin glass theory and beyond” [M-P-V]. This
book is remarkable in many respects, and first of all its topic, which is the study
of what are canonical, and even fundamental mathematical objects by physicist’s
methods. The book is an attempt by physicists to explain to other physicists the
new concepts they have discovered about “spin glasses” and their relevance to a
number of fundamental random structures. This could make difficult (and did in
the case of the author) for an unprepared mathematician to get any idea of what
this is all about. The book contains no rigorous results, and it is not obvious at
all to even give a precise mathematical content to many of the statements made
there. The existence of the topic of spin glasses appears to be known to quite
a few mathematicians (see e.g. the recent book [B-P]), but overall it has been
considered as an area where rigorous results are notoriously difficult to obtain. One
must keep in mind however that it is rather unreasonable to attempt to directly
attack the problems that the physicists (who use much less stringent methods) find
challenging themselves (see however [N-S 2, 3]). We believe that there is no chance
to make advances on the difficult issues until the easier ones have been clarified,
and that only a systematic program to investigate the entire circle of ideas can
lead to progress. The present paper reports the current status of this program.
Beside attempting to provide an introduction to the topic, its main objective is
to explain the author’s contributions and point of view, and it should be kept in
mind that some of the opinions expressed below are personal and might not be
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shared by others. All the results presented are fully rigorous; complete proofs can
be found in [T5] to [T13].

There seems to be no better way to introduce the topic than to mimic the
introduction of [M-P-V]. Consider a large population of individuals, numbered
from 1 to N . Consider independent identically distributed (i.i.d) random variables
(r.v.) (gij)1≤i<j≤N . (The choice of Gaussian distribution is the simplest one, and
is not believed to be essential). The variables gij represents the interaction of
individuals i < j (so, the larger gij , the more friendly i and j are towards each
other). The independence requirement implies that for many (actually about 1/2)
of the triples i, j, k, then gijgjkgik < 0, so that we have unpleasant situations
such as i friend of j and k (gij , gik > 0) but j and k enemies (gjk < 0). In
order to improve upon this tense situation, one tries to split the population in two
parts, putting as far as possible friends together and enemies apart. This is done
by assigning to each individual a number σi ∈ {−1, 1}, and each configuration
σσσ = (σi)i≤N defines a splitting of the population in two. How successful this
splitting is can be measured by the quantity

∑

1≤i<j≤N

gijσiσj .(1.1)

This adds the interactions between each pair of individuals in the same group,
and subtracts the interactions between different groups. We are interested in the
maximum of (1.1) over all σσσ.

The reason why this maximum is very hard to find is that, for a given typical
realization of the (gij), the function of σσσ given by (1.1) has apparently very many
“near maxima” at locations that are not simply related to each other. Computer
simulations seem to show that for large N

N−3/2 max
σσσ

∑

1≤i<j≤N

gijσiσj ≃ 0.7366(1.2)

with overwhelming probability. It is simple to prove that N3/2 is the correct
normalization factor and that the left hand side of (1.2) is essentially independent
of the realization of the randomness (more precisely has random fluctuations of
order N−1/2); but the proof of the existence of the limit as N → ∞, or its rigorous
computation are nowhere in sight.

Faced with a very difficult optimization problem such as (1.2), the answer of
statistical mechanics is to introduce a parameter T ≥ 0 called temperature, and
try to recover the case T = 0 as a limit case T → 0. We consider the Hamiltonian
(i.e. energy function)

HN (σσσ) = − 1√
N

∑

1≤i<j≤N

gijσiσj − h
∑

i≤N

σi.(1.3)

The factor
√
N is the correct normalization to ensure that HN/N remains

bounded; The minus sign follows physics convention (the system is attracted to
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Huge Random Structures 509

low energy configurations) and h is an “external field” that favors the choice σi = 1
over σi = −1. The previous optimization problem was the search (when h = 0) for
the ground state (configuration with lowest energy) of HN (σσσ), which is the Hamil-
tonian of the famous Sherrington-Kirkpatrick (SK) model for spin glasses. This
Hamiltonian was introduced to model disordered interaction between magnetic
impurities (“spins”) in metals. As a first approximation (mean field approxima-
tion), the geometric location of atoms is forgotten, and it is assumed that all pairs
interact in the same way. The disorder of the system is then modeled by the
random interactions gij . If the system is in thermal equilibrium at inverse tem-
perature β = 1/T , statistical mechanics asserts that the probability of observing
the system in configuration σσσ is given by Gibbs’ measure

GN (σσσ) =
1

ZN
exp−βHN (σσσ)(1.4)

where ZN is the normalization factor (called the partition function)

ZN = ZN (β, h) =
∑

exp−βHN (ρρρ)(1.5)

for a summation over all configurations. The problem is then to understand the
structure of Gibbs’ measure for the typical realization of the disorder (that is, of
the r.v. gij). The mathematical difficulty is that it is very unclear what is the
value of ZN , which is a sum of 2N quantities of wildly different orders of magnitude
(the more so at large β, i.e. low temperature). Of particular interest is the “free
energy”

FN = FN (β, h) = logZN(1.6)

(a physicist would rather use − 1
β logZN ) the importance of which can be under-

stood by the fact that its derivation with respect to the various parameters are
physically measurable quantities, e.g.

1

β

∂FN

∂h
= 〈

∑

i≤N

σi〉(1.7)

is the global magnetization. In (1.7), as well as in the rest of the paper 〈 · 〉 denotes
thermal average, that is integration with respect to Gibbs’ measure. Of course FN

is a random quantity (it depends of the disorder). However, it follows from general
principles (the “concentration of measure phenomenon” [I-S-T]) that the random
fluctuations of FN are of order N1/2, while FN is of order N , so that much of the
information about FN is captured by EFN . There and throughout the paper we
denote by E the average with respect to the disorder. The main difficulty is that
the typical value of ZN is very different from (and of course smaller than) EZN ,
and that the bound E logZN ≤ logEZN given by Jensen’s inequality is not an
equality in the interesting cases.

It was soon realized that the first attempt to study the SK model [S-K] had
serious flaws, and that the solution proposed there was correct only at high tem-
perature. After several trials G. Parisi has proposed a very intricate picture (“the
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Parisi solution”) that is believed to be correct. The remarkable objects invented
by Parisi start to draw attention from mathematicians [R], [B-S], [A-C1], [A-C2].
Unfortunately, the mathematical study of structures related to Parisi’s solution is
distinct from the more important issue as to whether these structures are really
relevant to the SK model, and at the present time there is very little rigorous evi-
dence that this is the case. It is of course fascinating that a simple and canonical
energy function such as (1.3) can give rise to such extreme subtlety. But, beside
the intrinsic interest of the SK model, the great discovery made by the physicists
is that the behavior exhibited by this system appears to be rather universal, and
to be present in a number of other situations involving random structures, several
typical examples of which will be considered here.

Let us now try to draw a very rough picture of the situation. A main feature of
the physicist’s prediction is that given h, above a certain temperature, the system
“ is in a pure state” while below this temperature it spontaneously decomposes in
many “pure states”. The later statement can intuitively be understood by saying
that if one studies the system at (extremely) long intervals, it looks like different
objects. As we work in a disordered mean field model, it is unfortunately not
obvious a priori how to formulate a meaningful definition of a pure state, and even
less how to decompose a system in pure states. In standard statistical mechanics,
say, on a finite subset SN of an infinite lattice S, this is done by taking “infinite
volume limit”, N → ∞. The set of configurations is then {−1, 1}S . The set
of Gibbs’ measures form a convex compact set, the extreme points of which are
the pure states. In the present case, if one selects a sequence (gi,j)i,j∈N, then
the structure of the Gibbs’ measure of the N -spin system defined using (gij)i,j≤N

varies wildly with N , the chaotic size dependence of [N-S1]. Despite the many
statements of [M-P-V] starting by “in the thermodynamical limit...”, it is not clear
how to define a useful limit of the system as N → ∞, that is, a satisfactory set of
Gibbs’ measures on {−1, 1}N . (See [AW],[N-S2] for the most interesting tentatives
towards infinite volume limits in the lattice case. These attempts unfortunately
still require taking subsequences, an operation that goes somewhat against the
very goal of the theory, which is the ability to describe finite samples of matter.)
This absence of infinite volume limit makes the topic of spin glasses distinctively
different from main stream classical statistical mechanics. In Section 2, we will
present a set of equivalent conditions that mean that the system is in a pure state,
and for all the systems that we shall study we will define the high temperature
region as the set of parameters where these conditions hold. (By definition the low
temperature region consists of the other values.) The high temperature region is
much simpler than the low temperature region and thereby is the natural starting
point of a rigorous investigation. The results of Section 3 to 6 of the present
paper assert that for four rather different models, the physicists magic formulas
are indeed correct at high enough temperature, and a look at these formulas (such
as (3.11)) should convince the reader that non trivial phenomenon occur there.

The author is keenly aware that it is a very risky endeavor to attempt rigorous
proofs of results that are “known” by another community, in particular when most
of his results bear on situations considered easy (if not trivial) by the physicists. It
is thereby necessary to say a few words about the physicists methods, even though
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this might spoil some of the excitement the reader might otherwise have felt when
discovering them in [M-P-V]. These methods are extremely creative and brilliant,
but their purpose is very different from ours. It is not to provide proofs, but
rather to discover what happens with reasonable certainty. The favorite method,
the replica method, attempts to compute directly the limiting expected free energy
density lim

N→∞
N−1EFN , which, as we mentioned, captures much information about

FN . The annoying logarithm is disposed of by the formula

log x = lim
n→0

xn − 1

n
(1.8)

and the issue is then to compute EZn
N , which can be done for n integer using

n copies (“replicas”) of the system. One then makes an analytic continuation at
n → 0. Besides a few lesser problems, the computation of EZn

N in the case of the
SK model is done by a saddle point method requiring to minimize a function of
n(n− 1)/2 variables. To quote [M-P-V], p. 12, “n(n− 1)/2 becomes negative for
0 < n < 1, and it is not clear how to give a precise definition of the minimum of a
function which depends on a negative number of variables”. As G. Parisi so nicely
puts it “the replica method is yet to be put on firm mathematical ground”.

The computations using the replica method involve a tricky issue (the real
meaning of which is not clear to me) as to whether the n (0 < n < 1) replicas
involved can be assumed to be equivalent (“replica-symmetry”, the easiest case) or
not (“replica symmetry breaking”). It seems that the case where the system is in
a pure state (as defined in Section 2) corresponds to the case of replica-symmetry.
The physicists seem to have absolute faith in the replica method, at least in the
replica symmetric case. Typing the words “replica symmetry” on a data base such
as INSPEC brings in dozens of papers that rely upon this method. More often
than not, these papers “solve” a problem by writing down formulas provided by
the replica method (sometimes using Parisi’s scheme of replica-symmetry break-
ing) and optimizing over the various parameters. These theoretical results are then
supplemented by computer studies for large N , where (due to extreme computa-
tional difficulties), “large” means typically of order 100. But despite the fact that
it is not clear what the replica method really does (even in the replica symmetric
case) it is an amazing tool to discover complicated formulas in a very compact
way.

As the mathematical and even the physical contents of the replica method
are obscure, physicists have developed an alternative method, the cavity method,
which is essentially induction uponN . (This is the method we will use, even though
our computations are very different). A possible reason why the physicists find the
high temperature case easy is that they assume from the start “on natural physical
grounds” that at high temperature the system is in a pure state (see eg. [M]). At
the philosophical level, it requires some faith to believe that a mathematical object
such as (1.3), that has very little claim to be a realistic model for matter will obey
physical principles. At the mathematical level, once one assumes that the system
is in a pure state, the magical formula (2.9) below allows all kinds of computations
that readily lead to a rather complete picture of the system. On the other hand
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the mathematician, when faced with the system with no a priori information has
at first great difficulties to prove anything at all.

Even though the high temperature phase of disordered systems is considered
easy in physics, it still has some interest even at this level, in particular because
in some important cases (such as that of Section 4) the high temperature region is
believed to extend all the way to zero temperature. The real long term challenge
is however the low temperature region. The very complicated structure of the
predicted low temperature behavior of the SK model does not make it a good
place to start from, so we have rather considered the p-spin interaction model, a
model closely related to the SK model and for which the predicted low temperature
behavior is much simpler (and, actually the simplest possible). We did succeed in
this case to prove (at the “edge” of the low temperature region) the main feature
of the Parisi’s prediction, the spontaneous decomposition of the system in pure
states “far from each other”. This is the content of Section 7.
Acknowledgment The author will be forever grateful to Erwin Bolthausen for
having introduced him to such an immensely enjoyable topic. The author thanks
G. Choquet, M. Mézard and many others for useful comments.

2. Systems in a pure state

We denote throughout the paper the set {−1, 1}N of all configurations by ΣN .
Since (ΣN , GN ) is a probability space it is natural to consider powers of it,
(Σm

N , G⊗m
N ) (often m ≤ 4). These are called replicas. The word “replicas” sim-

ply means that we consider several copies of (ΣN , GN ). Then copies are taken
for the same realization of the disorder. A generic point in Σm

N is denoted by
(σσσ1, · · · ,σσσm). These replicas are often called in physics “real replicas” to distin-
guish them for the n replicas (n → 0) of the replica formalism (would these be
unreal?) and needless to say that we will use only “real” replicas. Replicas are
very useful to transform product of integrals for the Gibbs measure into multiple
integrals, such as in the formula

〈f1(σσσ)〉〈f2(σσσ)〉 = 〈f1(σσσ1)f2(σσσ
2)〉.

There, as well as in the rest of the paper, 〈 · 〉 denotes thermal average in Σn
N as

well as in ΣN , so that the bracket on the right is a double integral with respect to
Gibbs measure.

The overlap between two configurations σσσ1,σσσ2 is defined by

1

N
σσσ1 · σσσ2 =

1

N

∑

i≤N

σ1
i σ

2
i ,(2.1)

a good measure of their distance. The simplest (although not the most intuitive)
way to define a system in a pure state is to say that the function σσσ1,σσσ2 → 1

Nσσσ1 ·σσσ2

is nearly constant on Σ2
N , as is formalized in (2.2) below. This idea is apparent in

[M-V-P]. It is likely that, at least at the intuitive level, many other ideas of this
section can also be found there, but of course the point was to identify precise
statements that are amenable to proof.
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Consider a sequence (GN )N≥1, where GN is an exchangeable random proba-
bility measure on ΣN , that is, such that its distribution is invariant under any
permutation of the coordinates (a crucial assumption). Typically (GN ) will be a
sequence of Gibbs’ measures such as (1.4), at a given value of the parameters β, h,
so it should be self evident what we mean by 〈 · 〉, replicas, etc. Of course E will
denote expectation with respect to the randomness of GN . In the next theorem,
all brackets 〈 · 〉 are for GN . This seemingly complicated statement is a result of
the author’s (unreasonable?) attempt not only to give a description of the results,
but also some ideas of what are the obstacles to reach them. The reader who is
interested only in getting an overview of the results should only read conditions
(2.2), (2.7), (2.8). After reading the comments next to Definition 2.2, he should
then skip the sketch of proof of Theorem 2.1.

Theorem 2.1. For a sequence GN of exchangeable random probability measures
the following properties are equivalent.

lim
N→∞

E〈 1
N

|σσσ1 · σσσ2 − 〈σσσ1 · σσσ2〉|〉 = 0(2.2)

lim
N→∞

E〈( 1
N

(σσσ1 − σσσ2) · (σσσ3 − σσσ4))2〉 = 0(2.3)

lim
N→∞

E〈( 1
N

(σσσ1 − σσσ2) · σσσ3)2〉 = 0(2.4)

lim
N→∞

E(〈σ1σ2〉 − 〈σ1〉〈σ2〉)2 = 0(2.5)

lim
N→∞

E〈(σ1
1 − σ2

1)(σ
1
2 − σ2

2)〉〈σ3
1σ

3
2〉 = 0(2.6)

∀n, lim
N→∞

E(〈σ1 · · ·σn〉 − 〈σ1〉 · · · 〈σn〉)2 = 0(2.7)

(2.8) For each n, the expected total variation distance of the law of (σ1, · · · , σn)
under GN to the set of a product measures on {−1, 1}n goes to zero.
(2.9) For any continuous bounded function f on R

n×m, independent N(0, 1) vari-

ables (ξji )i≤N,j≤n, (h
jℓ)j≤n,ℓ≤m that are independent of the variables gij, we have

lim
N→∞

E|〈f((ξξξ
j · σσσℓ

√
N

)j≤n
ℓ≤m

)〉 − Ehf((
ξξξj · bbb√

N
+ hjℓ

√

1− ‖bbb‖2/N)j≤n
ℓ≤m

)| = 0

where ξξξj · σσσℓ =
∑

i≤N

ξji σ
ℓ
i , bbb = (〈σi〉)i≤N = (〈σℓ

i 〉)i≤N ; and where Eh denotes expec-

tation in (hjℓ)j≤n
ℓ≤m

only.

Definition 2.2. We say that the sequence GN of random measures is in a pure
state if the equivalent conditions of Theorem 2.1 hold.

Conditions (2.2) to (2.4) are global “geometric” conditions. The idea of (2.3)
and (2.4) is that the centering in (2.2) is better replaced by symmetrization. The
reason for considering these two similar but different expressions will be apparent
when we try to prove them. Conditions (2.5) and (2.6) are “local” reformulations
of (2.3), (2.4) respectively, that involve only two spins, and are better adapted to
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induction over N . The least expected, and the most useful fact is (2.9), which

means that in practice integral 〈f
(

ξξξj ·σσσℓ

√
N

)

〉 depends upon GN only through bbb, a fact

that is at the root of the magic formulas of Sections 3 to 5.
Theorem 2.1 provides conceptual clarification, and is very easy to prove, because

we do not relate the rates at which the various quantities go to zero and need only
“soft” estimates. This is why, when a physicist assumes “on physical grounds”
that, say (2.5) holds, he then correctly feels that the problem is easy. On the
other hand, proving that the conditions of Theorem 2.1 hold require much more
precise estimates.

To sketch the proof of Theorem 2.1 let us set ai = (σ1
i − σ2

i )(σ
3
i − σ4

i ) so
|ai| ≤ 4, and (2.3) means that E(〈(N−1

∑

ai)
2〉) → 0, which, by symmetry among

the coordinates, is equivalent to E〈a1a2〉 → 0. Now, by independence of the
replicas

〈a1a2〉 = 〈(σ1
1 − σ2

1)(σ
1
2 − σ2

2)〉2(2.10)

= 4(〈σ1σ2〉 − 〈σ1〉〈σ2〉)2,

which proves the equivalence of (2.3) and (2.5). The equivalence of (2.4) and
(2.6) is similar. It is obvious that (2.4)⇒(2.3) and (2.5)⇒(2.6), using (2.10) and
Cauchy-Schwarz. The equivalence of (2.2) and (2.4) is easy, since |(σσσ1 − σσσ2) ·
σσσ3| ≤ 2N . It is obvious that (2.6)⇒(2.8)⇒(2.5). To prove the more surprising
fact that (2.5)⇒(2.7), we observe that, since | ∑

i≤N

ai| ≤ 4N , then (2.5) implies

E〈(N−1
∑

i≤N ai)
n〉 → 0, and proceeding as before lim

N→∞
E〈a1 · · · an〉 → 0, which

means lim
N→∞

E〈∏
i≤n

(σ1
i − σ2

i )〉2 = 0, from which (2.7) follows easily. Thus we have

the equivalence of (2.2) to (2.8). We will not use that (2.9) implies the other
conditions, so we just prove that it is a consequence of (2.2). Setting

X = 〈f((ξξξ
j · σσσℓ

√
N

))〉;Y = Ehf((
ξξξj · bbb√

N
+ hjℓ

√

1− ‖bbb‖2/N)),

the proof consists of showing that E(X−Y )2 → 0, by showing that EX2−EY 2 →
0 and EXY −EY 2 → 0. We will (to avoid complicated notations) prove only that
EX − EY → 0. The argument to prove that (2.2) implies (2.9) is the same.
If (wjℓ) is a jointly gaussian family, the quantity Ef((wjℓ)) is determined by

the joint law of (wjℓ), that is by the numbers E(wjℓwj′ℓ′), and this dependence
is of course continuous. Denoting by Eξ expectation in the variables ξξξj only,

Eξξξf((
ξξξj ·σσσℓ

√
N

)) depends only upon the numbers E(ξξξ
j ·σσσℓ

√
N

ξξξj
′ ·σσσℓ′

√
N

) = δjj′(σσσ
ℓ · σσσℓ′/N).

For the generic point σσσ1, · · · ,σσσm of the m-replica, (2.2) says that all products

σσσℓ · σσσℓ′/N(ℓ 6= ℓ′) are about 〈σσσℓ · σσσℓ′〉/N = ‖bbb‖2/N (and 1 if ℓ = ℓ′). Now if we

set wjℓ = ξξξj ·bbb√
N

+ hjℓ
√

1− ‖bbb‖2/N we see that this jointly gaussian family of r.v.

satisfies E(wjℓwj′ℓ′) = δjj′‖bbb‖2/N for ℓ 6= ℓ′ and δjj′ for ℓ = ℓ′. Thus, for the

generic point σσσ1, · · · ,σσσm we have Eξf((
ξξξj ·σσσℓ

√
N

)) ≃ EξY , and the result follows. �
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The reader has observed that Theorem 2.1 does not say that “GN resembles
GN+1” or that quantities such as E〈σσσ1 ·σσσ2〉/N converge as N → ∞. Proving this
is a different question.

In the situation of Theorem 2.1, since the law of (σ1, · · · , σn) under Gibbs’
measure is asymptotically close to a product measure, it is close to the product
measure ν on {−1, 1}n such that

∫

σidν(σ1, · · · , σn) = 〈σi〉. In the cases we will
consider, the quantities 〈σi〉 are asymptotically i.i.d. r.v. (and converge in law),
thereby providing a precise picture of the finite projections of Gibbs’ measure.

3. The Sherrington-Kirkpatrick model

The most studied case is when h = 0. It was proved in [A-L-R] that the system
is in a pure state if β < 1. An easy consequence of the result of [C] is that there
exists values of β > 1, arbitrarily close to one, for which this is not the case (one
expects that this is never the case if β > 1). There is a very special phenomenon
happening in the case β < 1, namely that

lim
N→∞

E
1

N
logZN = lim

N→∞

1

N
logEZN (=

β2

4
)(3.1)

(by Jensen’s inequality there is always inequality ≤). This apparently makes things
much simpler. There are several very interesting methods (such as use of stochastic
calculus to prove central limit theorems [C-N]) that seem to work for this case only.
Even though some nagging questions remain, there is a rather complete picture of
this case ([T5 Section 2]). Unfortunately, a behavior such as (3.1) is exceptional
and we will concentrate upon the more challenging case h > 0. The formula
corresponding to (3.1) is then given by (3.13) below, and is remarkable enough to
make one wonder how such a formula is possible, and moreover can be proved. It
turns out that the proof of (3.13) for small β is rather easy. This proof is also
very instructive because the other cases considered in Theorem 3.1 below, as well
as the results of Sections 4 to 6, although technically very much more involved
do follow the same global strategy, so we will outline the main steps. The central
issue is always to prove that the system is in a pure state (after which use of (2.9)
allows all kinds of computations). In the present case at high enough temperature,
that was actually done in [F-Z] as a special case of a powerful (and complicated)
approach that handles much more general cases (such as finite range interactions),
but it is very instructive to give here a simple direct argument.

We start with the inequality (implicitly proved in Section 2 by expansion of
(σ̃σσ · σσσ∗)2)

CN = CN (β, h) := E〈( 1
N
σ̃σσ · σσσ∗)2)〉 ≤ 4

N
+ E〈σ̃Nσ∗

N σ̃N−1σ
∗
N−1〉

where σ̃σσ = σσσ1 − σσσ2,σσσ∗ = σσσ3 − σσσ4. To compute the last term we use the cavity
method; we compute the bracket by regrouping in the Hamiltonian the terms not
containing σN or σN−1 and we find

E〈σ̃Nσ∗
N σ̃N−1σ

∗
N−1〉 ≈ E

1

Z
〈Avσ̃Nσ∗

N σ̃N−1σ
∗
N−1E〉N−2.(3.2)
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There 〈 · 〉N−2 denotes Gibbs measure for an (N − 2) spin system at inverse

temperature β′ = β
√

1− 2/N , external field h′ = h(1 − 2/N)−1/2, and Av the

average over all values of σℓ
N , σℓ

N−1(ℓ ≤ 4) = ±1,

E = expβ
∑

ℓ≤4

∑

0≤j≤1

σℓ
N−j

( 1√
N

∑

i≤N−2

σℓ
igi,N−j + h

)

and Z = 〈AvE〉N−2. The formidable looking formula (3.2) is actually almost an
algebraic identity, except that we have neglected the lower order interaction terms
between σℓ

N and σℓ
N−1 (hence the small error acknowledged by the ≈). The slight

change of parameters β, h into β′, h′ turns out to be a secondary detail, and will
be ignored from now on. The difficulty with the cavity method is that we do not
know more about 〈 · 〉N−2 than about 〈 · 〉, so that it is hard to use (3.2). An
easy way out is provided by the observation that Z ≥ 1 by Jensen’s inequality and
that 〈Avσ̃Nσ∗

N σ̃2
N−1σ

∗
N−1E〉N−2 ≥ 0, because it can be written (using thermal

independence of the variables with a ∗ from those with a )̃ as a square. Then
the right hand side of (3.2) can be bounded by E〈Avσ̃nσ

∗
N σ̃N−1σ̃

∗
N−1E〉0. (This

argument to dispose of the denominator will be referred to later as the positivity
argument). This later quantity is much easier to evaluate. Integrating first in
the gi,N−j(j = 0, 1) one obtains after a few lines of straightforward estimates
a bound β2L(β)CN−2(β

′, h′), where L(β) remains bounded with β. This yields
the relation CN (β, h) ≤ 1

2CN−2(β
′, h′) + o(1) if β is small enough, which implies

lim
N→∞

CN (β, h) = 0.

The positivity argument used above does not take advantage of the fact that
often the denominator is much larger than 1, and as the result of this loss of a
constant factor, we cannot expect to reach this way the entire high temperature
region. The merit of the positivity argument is that it is the simplest approach we
know, and thus it is particularly useful in complicated situations. Unfortunately
this argument itself often runs into a serious difficulty (which does not exist in the
case of the SK model) namely that the estimation of CN usually involves DN−2 (at
slightly different parameters), where DN = E〈( 1

N σ̃σσ · σσσ3)2〉. It seems a posteriori
true that CN and DN are of the same order, but unfortunately we do not see a
priori how to prove better than CN ≤ √

DN (almost proved in Section 2), and

this leads to useless relations such as CN ≤ θ
√

CN−2+ o(1) where θ < 1. Because
of this a priori difficulty in relating CN and DN , one sees that a better strategy
is to study DN . But then, in the right hand side of (3.2) the numerator has to
be replaced by 〈Avσ̃N σ̃N−1σ

3
Nσ3

N−1E〉N−2 which has no reason to be positive,
and the positivity argument does not work. This unfortunate state of affairs is
largely responsible for the great technicality of many proofs, even at a very high
temperature.

Now that we have proved that for small β the system is in a pure state, we
observe that brackets involving E resemble the brackets of (2.9). The requirement
there that f was bounded was made only to avoid a technical statement; reason-
able growth suffices. This means that we can now use (2.9) to make all sorts of
computations, of which we now give a typical example. Proceeding as in 3.2, we
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have

〈σN 〉 = 1

Z
〈AvσNE〉N−1

where Z = 〈AvE〉N−1 and E = expβσN (N−1/2
∑

i≤N−1

σigi,N + h). It follows from

(2.9) (used for m = n = 1, f(x) = expβσNx) that

〈σN 〉 ≃ thβ
(

N−1/2
∑

i≤N−1

gi,N 〈σi〉N−1 + h
)

.(3.3)

If we set rN−1 = N−1
∑

i≤N−1

〈σi〉2N−1, we then have

ErN ≃ E〈σN 〉2 ≃ E th2 β(g
√
rN−1 + h)(3.4)

where g is standard normal independent of rN−1.
To make full use of this, it would be very nice to know that rN is essentially

non random, which amounts to show that (E〈σN 〉2)2 ≃ E〈σN 〉2〈σN−1〉2. The
right-hand side can be estimated as in (3.4) using cavity and (2.9), and only a
few lines of computations are required to get a relation of the type Var rN ≤
β2L(β)Var rN−2 + o(1), so that for small β we have Var rN → 0, and (3.4) leads
to qN ≃ E th2 β(g

√
qN−1+h) where qN = E〈σN 〉2 and to qN → q where q satisfies

(3.10) below. To calculate FN , we fix hβ = h′ and we write

∂Fn

∂β
=

1√
N

∑

i<j

gij〈σiσj〉.(3.5)

We then (following [A-L-R]) apply the (extremely useful) integration by parts
formula

E(gf(g)) = Ef ′(g)(3.6)

valid when g is standard normal and f smooth enough, to obtain

E
1

N

∂FN

∂β
= β

N − 1

2N
(1− E〈σNσN−1〉2) ≃

β

2
(1− q2N )(3.7)

where we use that E〈σNσN−1〉2 ≃ E〈σN 〉2〈σN−1〉2 ≃ (E〈σN 〉2)2 = q2N .
To prove (3.13), one simply checks that it is true for β = 0, and the (miraculous)

fact that ∂SK
∂β = β

2 (1− q2). Concerning the structure of the r.v. 〈σi〉, we proceed

as in (3.3) to obtain that, for any fixed n, as N → ∞, for 0 ≤ k ≤ n− 1

〈σN−k〉 ≃ thβ(gk
√
qN−n + h)

where (gk)k≤n−1 are i.i.d. N(0, 1), so that (3.12) below is obvious.
To go beyond this first round of results, that is to be able to handle cases where

the positivity argument does not work, and to perform the previous computations
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with a better control of the error terms, we need to develop another technique to
estimate EU/Z, when Z is a quantity such as in (3.2). The basic procedure is to

replace Z by the quantity Ẑ provided by (2.9) (even when we have not yet proved
that the system is in a pure state) and to write

U

Z
=

2U

Ẑ
− UZ

Ẑ2
+

U(Z − Ẑ)2

ZẐ2
.(3.8)

The idea is that the last term has a tendency to be small because of the factor
(Z − Ẑ)2, factor which is not affected when one takes bounds and uses absolute
values. On the other hand, the first two terms on the right have a denominator
where the dependence in the gggj is only through gggj ·bbb, so that they can be evaluated
by conditioning upon these. Carrying out that program results in extremely long
computations but once the arguments are properly organized these allow to gain
a very precise picture of the model. The largest domain in which we know how to
control the model is

D = {(β, h) : either β < β0, or h ≥ h1(β) or 0 < β < 1 and h ≤ h2(β)}(3.9)

where h1(β), h2(β) are certain specific positive functions. We consider q = q(β, h),
the root of the equation

q = E th2 β(g
√
q + h)(3.10)

(that is well defined on D) and the function

SK(β, h) =
β2

4
(1− q)2 + E log chβ(g

√
q + h).(3.11)

In the following statement, K denotes a number depending upon β, h only.

Theorem 3.1. If (β, h) belongs to D, the following occurs

E〈exp 1

KN
(σσσ1 · σσσ2 − q)2〉 ≤ K(3.12)

lim
N→∞

N−1EFN = SK(β, h)(3.13)

(3.14) Given any n, the r.v. 〈σ1〉, · · · , 〈σn〉 are asymptotically i.i.d., and their
limiting law is the law of thβ(g

√
q + h) where g is N(0, 1)

(3.15) Given replicas σσσ1, · · · ,σσσp, for any expression f that is the product of k

quantities of the type σσσℓ · σσσℓ′ − E〈σσσ1 · σσσ2〉(ℓ 6= ℓ′) then lim
N→∞

N−k/2E〈f〉 exists.

Comment 1. The validity of (3.13) was also investigated by M. Shcherbina. In
her remarkable recent paper [Sh2] she proves in particular that it holds whenever
β < 1.
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Comment 2. Condition (3.12) is a very precise improvement of (2.1) and moreover
it contains the information that 〈σσσ1 · σσσ2〉 is nearly q. In the case h = 0, (β < 1)
it is much easier to prove [T5, Section 2]. We feel that the greatest importance
of exponential equalities such as (3.12) is that they carry information that can be
transferred (with loss) to different (but close) values of the parameters. Specifi-
cally, one can show that given ǫ > 0, if β′, h′ are close enough (depending upon
ǫ) of β, h, then, if (3.12) holds at β, h, then at β′, h′ the overlap N−1σσσ1 · σσσ2 will
essentially take values only in an interval of length ≤ ǫ. This is shown in [T10],
and this is how the part 0 < β < 1 and h < h(β) of D is controlled, building upon
the case 0 < β < 1, h = 0 that is obtained through special arguments. We believe
that such a “transfer principle” has to be a part of a proof that would extend
Theorem 3.1 to the entire region (3.12).

Comment 3. The limits of (3.15) contain in principle all the information on the
(random) joint law under Gibb’s measure of the maps (σσσ1, · · · ,σσσp) → N−1/2(σσσℓ ·
σσσℓ′−E〈σσσ1 ·σσσ2〉), and (3.15) is obtained by an explicit method, allowing in principle
computation of the limits. We did check that asymptotically, the law under Gibbs
measure of the “symmetrized overlaps” N−1/2(σσσ1−σσσ2)·(σσσ3−σσσ4) is asymptotically
gaussian (independent of the disorder) of variance A/(1− θ), where

A = 4E
1

ch2 β(g
√
q + h)

(3.16)

and where θ is the quantity (3.17) below. It seems to us that the joint laws

under Gibbs measure of the maps N−1/2(σσσℓ ·σσσℓ′ − 〈σσσℓ ·σσσℓ′〉) should be asymptot-
ically gaussian, independent of the disorder, and that the joint laws of the maps
N−1/2〈σσσℓ · σσσℓ′〉 should also be gaussian. Checking this is in principle elementary,
but the algebraic formalism needed to write nicely such a result remains to be
found.

What is the high temperature region? The physicists believe that it is the
region defined by

θ = β2E
1

ch4 β(g
√
q + h)

< 1(3.17)

(where q is as in (3.10)). This conclusion was first obtained in [A-T], literally, by
analyzing the eigenvalues of matrices of dimension 0× 0. In order to estimate the
size of the cultural gap (and, in particular why the notion of “triviality” is very
relative) it is instructive to outline the derivation of this using the cavity method
from [M-P-V]. After conducting some computations that seem based upon the
a priori assumption that most of the conclusions of Theorem 2.1 are valid the
authors reach the relation CN = θCN + A/N where A is given by (3.16) and θ
by (3.17) and conclude “thus we must have θ < 1 to have CN positive”. In other
words physicists do not mind purely formal computations, and what is amazing is
how well this works.

The predicted structure of the low temperature region involves the myste-
rious phenomenon of “replica-symmetry breaking’ and I am much grateful to
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M. Mézard for having explained it to me outside the replica formalism (see
[To]). The idea is simply that an arbitrarily small coupling between two repli-
cas has big consequences. Consider, on Σ2

N , the Hamiltonian HN given by
HN (σσσ1)+HN (σσσ2)+ tσσσ1 ·σσσ2/N , and the corresponding Gibbs measure 〈 · 〉t on Σ2

N

(which is NOT a product measure). Consider the function ϕN,β,h(t) = ϕN (t) =
〈N−1σσσ1 ·σσσ2〉t. Replica symmetry breaking means that “lim

N
ϕN (t) is discontinuous

at zero”, which, as we cannot prove the existence of the limit, we formulate as
follows.

Definition 3.2. We say that there is replica symmetry breaking (RSB) for the
parameters (β, h) if the sequence ϕN is not uniformly equicontinuous as N → ∞
at the point t = 0.

This means that there is an ǫ > 0 such that there are arbitrarily large values of
N and arbitrarily small values of t for which |ϕN (t)− ϕN (0)| ≥ ǫ.

Theorem 3.3. There is replica symmetry breaking at the generic point (in the
sense of Baire category) of the region θ > 1.

One of course expects that there is RSB at each point of the region θ > 1. It
is a simple consequence of (3.8) that there is no RSB in the region D of Theorem
3.1. The status of the other points of the region (3.9) is unknown.

The proof of Theorem 3.3 relies upon the basic observation that if there is no
RSB, then (2.2) holds. We then know how to make computations and we can
make the physicist’s relation CN

∼= θCN + A/N rigorous. It is worthwhile to
detail a bit what happens here, as this touches what seems to us to be the central
obstacle in proving that under (3.17) the system is in a pure state. If there is no
RSB, one shows that for any ǫ > 0, when N is large, we essentially always have
|(σσσ1−σσσ2) ·σσσ3| ≤ ǫN . This implies that if we set Dn,N = E〈(N−1(σσσ1−σσσ2) ·σσσ3)2n〉
then for large N,D2,N ≪ D1,N . This is extremely valuable because when one tries
to compute DN = D1,N by the cavity method using an order 2 expansion, we find
terms involving D2,N , and we now know that these are indeed smaller order terms.
In contrast, when we try to prove that D1,N is small under (3.17) we do not know
a priori that D2,N ≪ D1,N . This is not a trivial issue. For a related model (to be
considered in Section 7) we did prove rigorously that there exist situations where

D2,N and D1,N are of the same order (and of order at most 1/
√
N). Moreover,

this issue does not seem to have been considered by the physicists. They seem to
ignore it when using either the cavity method or the “stability analysis” of the
replica formalism (a personal impression based on the fact that, in particular for
the model of Section 7 a wrong solution, that roughly speaking “would be true if
D2,N ≪ D1,N”, is found to be stable in this sense.) To control D1,N close enough
to the low temperature region without a priori assumptions, the most natural way
seems to control D2,N ; but this in turn requires to control D3,N , etc., leading
naturally to the consideration of exponential inequalities such as in Theorem 3.1.

One of the striking and easily formulated predictions of the Parisi solution is that
at low temperature certain quantities depend upon the realization of randomness.
For different Hamiltonians (that make matters easier) it is shown in [P-S], [Sh1]
that the quantity qN = N−1

∑

i≤N

〈σi〉2 essentially depends upon the randomness
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when β is large enough (its variance does not go to zero as N → ∞). For the
Hamiltonian (1.3) it is shown in [T5] that when h = 0 and β is large enough
the quantity q′ = N−2

∑

i<j

〈σiσj〉2 must essentially depend upon the randomness.

(In contrast, in the region D, this quantity is asymptotically close to q2/2.) The
basis for the argument is the fact that the random convex function FN/N has
fluctuations of order N−1/2, so that for most values of β, F ′

N (β)/N has only small
fluctuations. One then computes the variance of this quantity using integration by
parts, assuming that q′ has vanishing fluctuations, and this yields the information

that E〈|(σσσ1·σσσ2

N )2 − 〈(σσσ1·σσσ2

N )2〉|〉 → 0. This is not as good as (2.2), but is sufficient
to prove that (3.13) would hold, which is known to be wrong for large β as proved
in [C].

The idea for the first part of the above argument is in germ in [A-L-R] . This line
of arguments is exquisitely developed by F. Guerra [Gu2]. Using only integration
by parts and the fact that EF ′′

N (β)/N is non negative and of order 1 for most β,
he shows that for most values of β,

E〈(σσσ
1 · σσσ2

N
)4〉 − 4E〈(σσσ

1 · σσσ2

N
)2(

σσσ1 · σσσ3

N
)2〉+ 3E〈(σσσ

1 · σσσ2

N
)2〉2 ≃ 0.(3.18)

It is explained in [A-C1] why this is less miraculous than it seems at first sight.

4. The Hopfield Model

The Hopfield model was introduced by Pastur and Figotin [P-F] in the spin glass
context, but became famous only after Hopfield interpreted it as a model for
memory. We will refer the reader to [H1], [H2], [H-K-P], [T-D-C] for this aspect
of the model, and we will directly turn towards the underlying mathematics. The
model involves N spins, and M configurations “to be memorized” (ηηηk)k≤M , where
ηηηk = (ηi,k)i≤N . These configurations are called the prototypes and are chosen
at random in the simplest possible manner, independently, with P (ηi,k = 1) =
P (ηi,k = −1) = 1

2 . The object of interest is the function on ΣN defined by

HN,M (σσσ) = −N

2

∑

k≤M

mk(σσσ)
2(4.1)

where

mk(σσσ) =
1

N

∑

i≤N

σiηi,k(4.2)

is the overlap between σσσ and ηηηk. The normalizing factor N/2 will be pleasant when
we will use a temperature; one way to look at HN is that it is among the simplest
functions one can write that is a candidate to take a large negative value when
σσσ = ηηηk (since mk(ηηηk) = 1). We will study the Hopfield model only at N → ∞.
There are different regimes of growth of M = M(N) that are of interest; we will
consider here only the most challenging one, when M = [αN ] is a proportion of
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N . (We consider α as fixed and no longer write the dependence in M .) Not
surprisingly, the smaller α is, the easier the model is.

Even though this is not our main line of interest, we will say a few words about
the “zero temperature case”, that is the study of the function HN itself. The
rigorous results concerning that case are not sharp, and often obtained by ad-hoc
methods that cannot yield optimal results; but at least they exist.

It is believed that for large N (and with an overwhelming probability) for α ≤
.13 there is an “energy barrier” around each prototype; that is, for some δ > 0,
ǫ > 0

inf
d(σσσ,ηηηk)=δN

HN (σσσ) > HN (ηηηk) + ΣN

where d(σσσ,ηηηk) is the number of indexes i ≤ N such that σi 6= ηi,k. This was
proved for α ≤ 0.05 by C. Newman [N], α ≤ 0.07 by D. Loukianova [Lou 1] and
can be further improved [T6, Section 9]. Let us say that a configuration σσσ is
a local minimum if the value of HN,M (σσσ) cannot be decreased by changing the
sign of one single spin. (The importance of these is that they can be thought as
the configurations “memorized” by HN,M .) Possibly the prettiest proof is due to
Loukianova [Lou 2], who shows, that, as α → ∞, the function HN cannot have a
local minimum anywhere close to a prototype. However, nagging questions remain.
In particular, it is believed that for α = .1, HN,M has a local minimum near each
prototype, but a lower global minimum. (This lower global minimum is believed
not to be simply related to any prototype, and does not seem to be accessible by
any explicit algorithm.) Our inability to deal rigorously with this question takes
its root in the fact that, while we know, at least in principle, how to calculate the
order of (the expected value of) the supremum of a gaussian process (see [T1]) we
do not know how to do this, say, within 10% (or even a factor 2).

It is natural to study the function HN through the introduction of a tempera-
ture T = 1/β, and to study the corresponding Gibbs measure (that gives weight
Z−1 exp−βHN (σσσ) to σσσ, where Z is the normalizing factor). The results of the
study through the replica formalism are presented in [A-G-S].

The region β(1 +
√
α) < 1 corresponds to the case h = 0, β < 1 of the SK

model. In that region we have

lim
N→∞

1

N
E logZN = lim

1

N
logEZN (=

α

2
log

1

1− β
).(4.3)

As we already mentioned, this seems to make things simpler and this region is
rather well understood [T6, Section 2]. The situation can be physically described
by saying that the temperature is so high that nothing can be learned about the
prototypes by studying Gibbs measure.

At β = 1, there seems to be an instability that has yet to be analyzed, so we
will consider directly the case β > 1. Important rigorous work has been done
in that case by A. Bovier and V. Gayrard (sometimes jointly with P. Picco) [B],
[B-G1, 2, 3, 4], B-G-P1, 2]. These authors have in particular been interested in the
image of G on R

M of Gibbs measure under the map σσσ → (mk(σσσ)k≤M . It is very
natural to consider this measure since HN (σσσ) is defined in function of the overlaps
mk(σσσ) only. They proved that if α ≤ L−1 min(1, (β − 1)2) (where L is a universal
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constant) then G is essentially supported by the union of 2M disjoint balls of RM .
These balls are centered at the points m∗eeek, where (eeek) is the canonical basis of
R

M and m∗ = thβm∗. This spontaneous decomposition of G into “states” simply
reflects the strong influence of each prototype on the Hamiltonian. Much more
precise information on the structure of G is contained in Theorem 4.1 below, so
we will not state the results of [B-G1] in detail, but beside the intrinsic interest of
these results, it must be pointed out that this a priori information of G is essential
for the use of the cavity method.

Since G (and hence G) breaks into rather unrelated pieces, it is quite natural
to study these separately. One way (introduced in [A-G-S]) to do this is to replace
the Hamiltonian (4.1) by

HN (σσσ) = −N

2

∑

k≤M

mk(σσσ)
2 − hNm1(σσσ)(4.4)

where h > 0 (and small). The effect of the extra term is to favor the part of G
close to eee1m

∗ over the parts close to −eee1m∗ or ±eeekm∗, k ≥ 2.

To state our main result, we consider the domain

D = {(α, β, h);β > 1, α ≤ 1

L
min((β − 1)2,

1

log β
); 0 < h < h(α, β)}(4.5)

where L is a (suitably large) number and h(α, β) is positive (and suitably small).
The condition upon h means that we are interested only in the case of h very
small; the results can be extended to the case of any h > 0 with some extra
effort; on the other hand the requirement on α is essentially the best possible.
It should be pointed out that the region D is a part of what is usually called
the low temperature region, but the behavior there is typically high temperature
(“replica-symmetry”).

We consider the system of equations

µ = E thβ(g
√
r + µ+ h)(4.6)

q = E th2 β(g
√
r + µ+ h)(4.7)

r = αq(1− β(1− q))−2(4.8)

It can be shown that if (α, β, h) ∈ D (and the constant L of (4.5) is large
enough), this system of equations has a unique solution. We consider the function
ϕ(x) = min(x, x2). The somewhat complicated inequalities (4.9) to (4.13) mostly
intend to convey the message that great accuracy can be reached, and need not
be understood in detail by the casual reader.

Theorem 4.1. For each value of (α, β, h) in D there exists a number K indepen-
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dent of N with the following properties

E〈exp 1

KN
(σσσ1 · σσσ2 −Nq)2〉 ≤ K(4.9)

E〈exp N

K
ϕ
(

∑

2≤k≤M

mk(σσσ
1)mk(σσσ

2)− r)〉 ≤ K(4.10)

E〈exp N

K
(m1(σσσ)− µ)2〉 ≤ K(4.11)

∀k ≥ 2, E〈exp N

K
m2

k(σσσ)〉 ≤ K(4.12)

E〈exp N

K
ϕ
(

∑

2≤k≤M

m2
k(σσσ)−

1− β(1− q)2

(1− β(1− q))2
)

〉 ≤ K(4.13)

E〈exp N

K
ϕ
(

∑

2≤k≤M

(mk(σσσ)− 〈mk(σσσ)〉)2 −
α(1− q)

(1− β(1− q))2
)

〉 ≤ K(4.14)

Moreover, for any n > 0, the r.v. 〈σ1〉, · · · , 〈σn〉 are asymptotically independent;
their limit law is the law of thβ(g

√
q + µ+ h) where g is standard normal.

The use of the function ϕ rather than x2 is motivated by problems with the
very large values; the reason why m1(σσσ) plays a special role should be obvious

from (4.4). The meaning of (4.9) is that the measure G
′
image of Gibbs’ measure

under the map σσσ → (mk))2≤k≤M “is in a pure state”. The meaning of (4.14) is
that this measure is nearly carried by a small shell around the sphere of center
bbb = (〈mk(σσσ)〉)2≤k≤M and of radius (α(1− q))1/2/1− β(1− q); and (4.13) implies

that ‖bbb‖2 is nearly r. We thus have very accurate information on G
′
. We consider

now the function

RS(α, β, h) = −µ2β

2
+

α

2

( βq

1− β(1− q)
− log(1− β(1− q))(4.15)

− β2 r

2
(1− q) + E log chβ(g

√
r + µ+ h)

where of course r, q, µ are solutions of (4.6) to (4.8).

Theorem 4.2. If the parameters (α, β, h) belong to D, then

lim
N→∞

N−1EFN (α, β, h) = RS(α, β, h).(4.16)

Theorem 4.2 was first proved in [T6] in the smaller domain D1 ⊂ D where,
for β ≥ 2, the condition Lα log β ≤ 1 is replaced by the stronger constraint
Lαβ ≤ 1. Equality (4.16) extends by continuity to the case h = 0. The proof of
[T6] uses the (somewhat unsatisfactory) technique of adding an appropriate small
perturbation term to the Hamiltonian (4.4), a trick that produces magical and
mysterious results. This perturbation term is γϕ(N)

∑

k≤M

gkNmk(σσσ), where ϕ(N)

goes to zero but not too fast (say ϕ(N) = N−1/3), where gk are i.i.d. N(0, 1), and
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where 0 ≤ γ ≤ 1 (say). As N → ∞, for fixed γ the extra term has a vanishing
influence on the expected free energy density (because ϕ(N) → 0). On the other
hand, differentiation of N−1FN with respect to γ as in [Gu2] leads to precious
information. This information comes essentially “for free”, a miraculous fact that
it would be nice to really understand. Upon reading [T6], Bovier and Gayrard
[B-G3] discovered a very beautiful approach (in the same smaller domain D1) that
deals directly with the Hamiltonian (4.4), and where the fact that the system is
in a pure state follows from a transparent geometric property. Unfortunately this
property is not true in the entire domain D of (4.5). One can only hope that their
approach can be modified to cover the correct domain D and is not specific to this
particular model.

It is possible to explain some of the mystery of the formula (4.15). If we consider
the right-hand side of (4.15) as a function of independent variables α, β, h, q, r, µ,
equations (4.6) to (4.8) mean that the partial derivatives of this function with
respect to µ, q, r respectively are zero, so that even though these depend upon α,
the partial derivative of RS(α, β, h) with respect to α can be computed as if it
were not the case. One simply has to check that this partial derivative coincides
with the increase of expected free energy when M is replaced by M + 1, that is

E log〈expβ
(

∑

i≤N

ηi,M+1σi

)2〉

which is calculated with (2.9) showing first that the variables ηi,M+1 can be re-
placed by independent gaussian (although non trivial technicalities arise due to
lack of boundedness).

Theorem 4.3. If a function W on a p replica is a product of finitely many ex-
pressions of one of the following types:

N−1/2(σσσℓ · σσσℓ′ − E〈σσσℓ · σσσℓ′〉)(4.17)

N1/2
(

∑

2≤k≤M

mk(σσσ
ℓ)mk(σσσ

ℓ′)− E〈
∑

2≤k≤M

mk(σσσ
ℓ)mk(σσσ

ℓ′)〉)(4.18)

N1/2(mk(σσσ
ℓ)− E〈mk(σσσ

ℓ)〉)(k ≥ 1)(4.19)

then lim
N→∞

E〈W 〉 exists.

This theorem is proved by an explicit method allowing in principle explicit com-
putation of the limits. Only remains the uninspiring (and in principle elementary)
task to clarify the underlying algebraic structure. Motivated by [B-G4] (that con-
siders the case α = α(N) → 0) we did check that given any n, the laws under
Gibbs measure of the maps σσσ → N1/2mk(σσσ)(2 ≤ k ≤ n) are asymptotically i.i.d.
gaussian centered, of variance (1− β(1− q)2)(1− β(1− q))−2.

Let us now outline the main aspect in which the proofs differ from the case
of the SK model. When one tries to compute a quantity such as DN = E〈(σ̃σσ ·
σσσ3)2〉 in function of DN−2, by regrouping in the Hamiltonian the terms containing
σℓ
N , σℓ

N−1(ℓ ≤ 3) one rather finds terms such as AN−2, where

AN = E〈
(

∑

2≤k≤M

m̃mmk ·mmm3
k

)2〉(4.20)

Documenta Mathematica · Extra Volume ICM 1998 · I · 507–536



526 M. Talagrand

(again with a small change of temperature) where m̃mmk = mk(σσσ
1)−mk(σσσ

2),mmm3
k =

mk(σσσ
3), and to obtain a useful relation one would have to relate such terms to

terms such as DN−2. Since it is not obvious how to do this, we chose the alternate
strategy to show first that AN is small. To relate AN with AN−1, the first step is to
isolate in m̃k,m

3
k the contribution of σ̃N , σ3

N . After expansion, one faces dangerous
sums of the type E

∑

k

ηk,N 〈fk〉. In these terms fk is not small, but does not depend

upon ηk,N . Cancellation occurs because the bracket 〈 · 〉 depends only weakly upon
ηk,N ; this is expressed by an extension of the integration by parts formula (3.6)
to Bernoulli r.v. (with now an error term). After integration by parts the various
terms can then be related to a N −1 spin situation via the scheme (3.8). The only
drawback of this approach is that integration by parts creates numerous terms,
and from each of these (3.8) creates numerous new terms, so that the computations
soon reach gargantuan proportions; but once one has learned how to identify the
leading terms, all it really takes to go through them is a few weeks of patience.

5. Intersecting random half spaces:

The capacity of the Perceptron

The problem to be discussed in this section originates in the theory of neural
networks. Its basic nature makes it however of interest well beyond this theory,
and the reader interested in neural networks is referred to [G2], [H-K-P]. We will
consider random half spaces in R

N that are at a given distance from the origin.
The random direction will be modeled by a sequence ξξξ = (ξi)i≤N of r.v. with
P (ξi = 1) = P (ξi = −1) = 1/2. This choice (rather than the most canonical
choice of gaussian r.v.) is motivated by the origin of the problem. The same result
(often quite easier) can be obtained in the Gaussian case. Given a number κ,

we consider the half space H(ξξξ) = {xxx ∈ R
N ;ξξξ · xxx ≥ κ

√
N}: Given independent

choices ξξξ1, · · · , ξξξM of random directions, we would like to know whether typically
⋂

k≤M

H(ξξξk) meets ΣN . If λN denotes the homogeneous probability on ΣN , when

κ = 0 (the most important case) and (to avoid minor complications) N is odd, it
is trivial that EλN (

⋂

k≤M

H(ξξξk)) = 2−M , and this shows that if M > (1 + ǫ)N the

answer is no. It is proved in [K-R] that there is ǫ > 0 such that for large N the set
⋂

k≤M

H(ξξξk) typically meets ΣN if M ≤ ǫN , but not if M ≥ (1− ǫ)N , a result that

is somewhat streamlined and improved in [T13]. It is conjectured in [K-M] that
the critical value of M is about M = .83N . One would like to compute exactly (in
the limit) the “typical value” of N−1 log λN (

⋂

k≤M

H(ξξξk)) (the mean is not defined

since
⋂

k≤M

H(ξξξk) can be empty). There is an obstacle to the study of a quantity

such as
⋂

k≤M

H(ξξξk), namely that the size of this set is extremely dependent upon

each direction ξξξk (e.g. the set is empty if ξξξM = −ξξξ1, κ > 0). Of course one
expects that “in general configurations” this is not the case, but showing this
requires works. It does not seem even trivial to show that the random quantity
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N−1 log λN (
⋂

k≤M

H(ξξξk)) has small fluctuations around its median value, and this

despite a well developed machinery that has been constructed to handle such
problems [T2], [T4]. It is currently not known how to show that these fluctuations
are of order N−1/2, as one should expect (see [T9] for a weaker result). It is thus
natural to study first a version of the problem “with temperature”, by considering
the Hamiltonian

HN,M (σσσ) = −
∑

k≤M

θ
(ξξξk · σσσ√

N

)

(5.1)

where θ(x) = 1{x≥κ}. One will then consider the corresponding Gibbs measure

GN at inverse temperature β. When θ(x) = x2/2 (5.1) is the Hamiltonian of
the Hopfield model; but the fact that θ is now bounded suppresses the strong
attraction of the system towards the configurations ξξξk.

Given a function θ, and β > 0, we consider the function (defined for y < 1 )

Φ(x, y) =
1√
1− y

Eg expβθ(x+ g
√
1− y)

E expβθ(x+ g
√
1− y)

(5.2)

where g is N(0, 1). In the next statement, z also denotes a N(0, 1) variable inde-
pendent of g, and Eg denotes integration in g only.

Theorem 5.1. Given β > 0, there exists a number α0(β) > 0 with the following
property. Consider a nondecreasing function θ : R → [−1, 1], and the function Φ
given by (5.2). Then, if α ≤ α0(β) the system of equations

q = E th2(z
√

q̂); q̂ = αEΦ2(z
√
q, q)(5.3)

has a unique solution q = q(α, θ, β), q̂ = q̂(α, θ, β). Moreover, if ZN,M denotes
the partition function of the system governed by the Hamiltonian (5.1) at inverse
temperature β, we have

lim
N→∞

1

N
E logZN,M = RS(α, β)(5.4)

when M = [αN ] and

RS(α, β) = −1

2
q̂(1− q) + E log 2 ch z

√

q̂(5.5)

+ αE logEg expβθ(z
√
q + g

√

1− q).

It is of interest to compare this formula with the corresponding formula for the
Hopfield model. When θ(x) = x2,Φ is well defined for β(1 − y) < 1, and the
second equation of (5.3) becomes q̂ = αβ2q(1− β(1− q))−2. Then (5.5) gives the
formula (4.15) in the case µ = h = 0.

The reader has noted that Theorem 5.1 does not require that θ be smooth.
On the other hand, we do not know how to relate an N spin system with an
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(N − 1) spin system unless θ is smooth and we can make power expansions. To
prove Theorem 5.1, we first assume that θ is smooth, and we use the monotonicity
of ZN,M in θ. With this approach, it is not clear how to prove (2.2), or even
whether this is true when θ is an indicator function. The difficulty is a problem
of interversion of limits. The useful estimates when θ is smooth require N large,
where “large” seems to depend on how large the derivative of θ can be.

When relating an N spin system with an (N − 1) spin system, the role
that was played by the quantities mk in the case of the Hopfield model is now
played by θ′(sk)/

√
N , where sk = N−1/2

∑

i≤N

ξki σi. A first observation is that

∑

k≤M

(θ′(sk)/
√
N)2 (among other quantities) will not be bounded by a quantity

depending upon ‖θ‖∞ = sup |θ| only. In order to be able to prove Theorem 5.1,
we must make estimates that (for large N) do not depend on ‖θ′‖∞ but only on
‖θ‖∞; not surprisingly, the main tool for that purpose is integration by parts. A
second observation is that we no longer benefit as in the Hopfield case from the
fact that θ′(x) = βx is a very simple function. This made possible (through in-
tegration by parts) to relate quantities such (4.20) (quantifying that the image of

Gibbs measure under the map σσσ → (θ′(sk)/
√
N)k≤M is nearly in a pure state) with

quantities such as E〈( 1
N σ̃σσ ·σσσ3)2〉 that involve only configurations. As a substitute

to these explicit evaluations, we use another version of the cavity method (that
we learned in [M]), which relies on the simple observation that for any function f ,

〈f(sk)〉 =
〈f(sk) expβθ(sk)〉1

〈expβθ(sk)〉1
(5.6)

where 〈 · 〉1 denotes Gibbs relative to the Hamiltonian HN,M−1 of (5.1) (thus the
summation is over k ≤ M − 1). In order to compute expectation of the right hand
side of (5.6) (and of the similar quantities required to work with several replicas)
one first integrates in ξξξk = (ξki )i≤N . To do this one shows first that we can replace
the ξki by i.i.d. N(0, 1) variables. One then uses a decomposition of the type (3.8),

where now Z = 〈expβθ(sk)〉1 and where Ẑ (motivated by (2.9)) is

Ẑ = Eg expβθ(ξξξ
k · bbb+ g

√

1− ‖bbb‖2)

for bbb = (〈σi〉1/
√
N)i≤N . In these computations, we are not dealing with explicit

functions (and thus cannot make explicit computations); instead we obtain esti-
mates through comparison theorems for Gaussian processes.

6. The random p-sat problem

Consider independent Boolean variables x1, · · · , xN . A p-clause is a Boolean func-
tion yi1 ∨ yi2 ∨ · · · ∨ yip where i1 < · · · < ip, and where, for each ℓ ≤ p, either
yiℓ = xiℓ or yiℓ = xiℓ . Thus there is exactly one truth assignment of the variables
(xiℓ)ℓ≤p that does not satisfy the clause. Given M clauses, the satisfiability prob-
lem is the question of whether or not there is a truth assignment of the variables
that satisfies them all. It is a fundamental problem of computer science. In the
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random model of the p-sat problem the set of M clauses is chosen independently
uniformly among all sets of Mp-clauses. The question is then to decide whether
in the typical case these M random clauses can be simultaneously satisfied, and,
more generally, what is the typical proportion of truth assignments that will sat-
isfy them all. To see the relation with previous sections, we replace “true” by 1
and “false” by −1. We denote by [N ]p the collection of subsets of {1, · · · , N} of
cardinal p. Given I ∈ [N ]p and ρρρ ∈ ΣN , we consider the set

AI,ρρρ = {σσσ ∈ ΣN ; ∃i ∈ I, σi 6= ρi}(6.1)

and the problem is now to find the typical proportion of configurations that belong
to M random sets AI,ρρρ. This problem is formally very close to the perceptron
capacity problem of Section 6. The big difference is that the random sets depend
only upon finitely many coordinates; but as previously the important case is when
M = ⌊αN⌋.

In order to introduce a temperature, we consider (following [M-Z]) the Hamil-
tonian

HN (σσσ) = −
∑

k≤M

1{σσσ∈Ak}(6.2)

where Ak, k = 1, · · · ,M are M sets of the type (6.1) chosen uniformly among all
possibilities.

In order not to be hypnotized by the specific form of (6.2), we consider a more
general setting, as follows. Consider a function f : [0, 1]× {−1, 1}p → [−1, 1]. For
each set I ∈ [N ]p consider the random function fI(σσσ) = f(XI , σi1 , · · · , σip) where
I = {i1 < · · · < ip} and where the collection (XI)I∈[N ]p is independently uniform
over [0, 1]. We then consider the more general form of (6.2)

HN (σσσ) = −
∑

k≤M

fIk(σσσ)(6.3)

and the corresponding random Gibbs measure GN on ΣN . The expected number
of intervals Ik that contain N is pM/N , so that the conditional distribution of σN

(for Gibbs’ measure) given σ1, · · · , σN−1 depends of (σ1, · · · , σN−1) through only
finitely many components, a fact that is expressed in physics by saying that the
N th site interacts with finitely many other sites. We cannot expect the central
limit theorem to come into effect, and the gaussian r.v. that were ubiquitous
in the previous sections will not appear here. This makes the situation more
complicated. The formal computations of the physicists that lead then to (e.g.)
(4.15) make it natural for them to think of the Hopfield model as depending upon
these parameters (µ, q, r), that are determined by the relations (4.6) to (4.8). They
say that the system “depends on the order parameters µ, q, r”. The situation is
more complex here, and the central object is the limiting distribution of 〈σ1〉, a
fact expressed in physics by saying that “the order parameter of the system is a
function”. (In that case the replica formalism involves yet another arbitrary step.
Namely, one has to look for the extremum of a certain functional over a very large
function space, and one restricts a priori the search to a more manageable very
small subspace.)
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Theorem 6.1. Given the integer p, and α > 0, there exists a number β(p, α) > 0
with the following property. Whenever β < β(p, α), the system governed by (6.3) at
inverse temperature β is in a pure state. Given any n, the r.v. 〈σ1〉, · · · , 〈σn〉 are
asymptotically identically distributed and the expected free energy density converges
as N → ∞.

The limit law ν = ν(f, β, α) of 〈σ1〉 appears as the fixed point of a certain
operator (in the spirit of the previous sections). The limiting expected free energy
density can be in principle computed in function of ν (see [M-Z] for a rather formal
expression, obtained through the replica formalism, in the case of (6.2)).

To prove Theorem 6.1, the main difficulty is to prove the conditions of Theorem
2.1. The positivity argument is very precious here because, if one tries an approach
along the lines of (3.8), the natural candidate for Ẑ is complicated enough so that

it is not clear how to estimate simply EU/Ẑ. The statement about the limiting
behavior of 〈σ1〉, · · · , 〈σn〉, which, as we explained, is an essentially obvious conse-
quence of the conditions of Theorem 1.2 in the previous examples lies somewhat
deeper here. The basic idea is however simple. The last spin σN interacts with
only finitely many other spins. Each of these in turn interacts only with finitely
many other spins, etc. The key point is that the (global) influence upon σN of the
finitely many spins obtained at the k-stage decreases with k, so that the behavior
of σN is essentially controlled by a finite set of other spins. When applying the
same principle to σN−1, another finite set of spins is involved, that is generically
disjoint of the previous one, and this creates independence. The reader has noticed
that the role of α and β are reversed in Theorem 6.1 compared to Theorem 5.1.
It is true that given f, β, the conclusion of Theorem 6.1 does hold for small α,
but for uninteresting reasons. In fact if α(p − 1) < 1, with high probability the
interactions “die out” and the set {1, · · · , N} decomposes in small pieces that do
not interact with each other.

We have given Theorem 6.1 as an illustration of the fact that even the case
of “functional order parameter” is amenable to rigorous results because it relates
to a known famous problem. There are, however, simpler situations of the same
nature. One of them is the diluted SK model, where the Hamiltonian (1.3) is
replaced by

HN (σσσ) = −
∑

i<j

ηijgijσiσj − h
∑

i<j

σi.(6.4)

There, the r.v. ηij are independent among themselves and of the gij , and satisfy
P (ηij = 1) = γ/N , P (ηij = 0) = 1 − γ/N so that each spin interacts with an
average number of γ other spins. A result similar to Theorem 6.1 can be proved at
high temperature. The proof is much easier because (2.2) can be obtained through
an immediate adaptation of the argument we outlined in Section 3.

7. The p-spin interaction model: low temperature

The p-spin model is a generalization of the SK model. If p is an integer ≥ 2, the
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Hamiltonian is

H(σσσ) = −
( p!

2Np−1

)1/2 ∑

1≤i1<···<ip≤N

gi1···ipσi1 · · ·σip .(7.1)

The summation is over all possible choices of i1, · · · , ip and the gi1···ip are i.i.d.
standard normal. A basic observation is that (neglecting terms of order one)

2EH(σσσ)H(σσσ′) =
p!

Np−1

∑

i1<···<ip

σi1 · · ·σipσ
′
i1 · · ·σ′

ip ≃ N(
σσσ · σσσ′

N
)p.(7.2)

Thus the complicated covariance structure of the gaussian variables (H(σσσ))σσσ (that
is responsible for the difficulty of the problem) simplifies as p → ∞ and the r.v.
(H(σσσ))σσσ become independent, a situation that can be analyzed in great detail [D].
We are however not interested in having N fixed, p → ∞, but rather p fixed,
N → ∞. Still, (7.2) indicates that the larger p, the easier the model should be.
Physics predicts that for low (but not too low) temperature, the behavior of the
model is non trivial, yet much simpler than the conjectured behavior of the SK
model [G-M], [G1]. The different behavior starts at p = 3 for reasons that will
soon be obvious.

The basic idea to obtain information about the low temperature region is to use
the “transfer principle” outlined in Section 3. This principle allows only a small
change of inverse temperature, so that in order to reach the low temperature region
we must first be able to control most of the high temperature region, which we
know best how to do when there is no external field (our results can be extended
to small external field, say h of order 2−p, but we do not see how to handle the
case where h is not small, say, h = 1). But what is the high temperature region?
Let us define the critical number βp as the supremum of the numbers β for which

lim
N→∞

1

N
E logZN = lim

N→∞

1

N
logEZN (=

β2

4
).(7.3)

We do not know the exact value of βp if p > 2, but we proved that 2
√
log 2−2−p <

βp < 2
√
log 2 for large p. To obtain information about the range of the overlaps

at high temperature, the idea is as follows. We write, for an interval I,

G2
N ({(σσσ1,σσσ2);σσσ1 · σσσ2/N ∈ I}) = Z−2

N

∑

σσσ1,σσσ2

exp−β(HN (σσσ1) +HN (σσσ2))

where the summation is over σσσ1 · σσσ2/N ∈ I. We control EZN from (6.3), and
we use that from general principles (concentration of measure [I-S-T]) ZN is very
close from its expectation so that it can be controlled from below. To control the
summation from above, we then estimate

E
∑

exp−β(H(σσσ1) +H(σσσ2)) =
∑

exp
β2

2
E(H(σσσ1) +H(σσσ2))2

using (7.2), where now appears the importance of the exponent p, contrasted with
the fact that the proportion of configurations σσσ1,σσσ2 for which σσσ1 · σσσ2 = Nt is
about exp−Nt2/2. (In practice some technicalities like truncation are required).
To avoid complications, let us give a typical result (which is not the best we can
prove).
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Theorem 7.1. There exists a number L with the following property. If p ≥ L, x ≤
1/L and if β ≤ βp+x/L, then the overlap of two replicas essentially never belongs

to the set J ∪ −J where J = [x, 1− (x+ 2−p/L)].

There (and below) “essentially never belongs” means

EG2
N ({σσσ1,σσσ2;σσσ1 · σσσ2/N ∈ J ∪ −J}) ≤ exp−N/K

where K does not depend upon N .
Let us now consider a probability ν on the sphere SN of RN of radius

√
N (so

that ΣN ⊂ SN ) such that the overlap σσσ1 ·σσσ2/N of two independent configurations
belong to J ∪ −J only with very small probability where J is, say, the interval
[.01, .99]. (Thus, for p large enough and β ≤ βp +1/L,GN has this property with
overwhelming probability). Then it is intuitively clear, and easy to prove, that
almost all the mass ν must be carried by a union

⋃

α≥1

Cα of sets Cα such that each

Cα is the union of two opposite small caps. The decomposition is finite (Cα = ∅
for α large enough). It is such that when σσσ and σσσ′ belong to two different sets Cα,
then |σσσ · σσσ′/N | is small (say, ≤ 1/10). The fact that Cα has to be the union of
two pieces is clear when ν is invariant by symmetry about zero, as is the case for
Gibbs measure when p is even. Moreover, the decomposition is essentially unique
“within sets of small measure”.

Thus, Theorem 7.1 proves that if β ≤ βp + β0 (where β0 is a fixed number)
and p is large enough, the Gibbs measure is supported by a union of small sets
(Cα)α≥1 that are far apart. The remarkable feature here is that this decomposition
is not(in contrast with the case of the Hopfield model) apparent from the form of
the Hamiltonian. We will call the sets Cα the lumps, to avoid the overused word
“state”. (We will consider later the question of whether they are “pure states”.)

Theorem 7.2. There exists a number L such that if p ≥ L and β ≤ βp + 1/L,
then

lim
N→∞

E〈
(σσσ1 · σσσ2

N

)2
1{|σσσ1·σσσ2|≤N/2}〉 → 0.

This means that two configurations in different lumps have generically a zero
overlap, so that the lumps are as far from each other as they can possibly be. They
are also small, since σσσ1 · σσσ2/N is close to 1 for σσσ1,σσσ2 in the same lump, so they
are well separated from each other, which of course greatly helped us to construct
them. Theorem 7.2 is proved by the cavity method; due to the restriction to
integration over the region where overlaps are ≤ 1/2, it does not seem possible to
use a positivity argument, but here again gaussian processes are very useful.

Let us now denote by wα the weight GN (Cα) of lump α, and assume that the
numbering is such that w1 ≥ w2 ≥ · · · . The random sequence (wα)α≥1 is obviously
crucial for the understanding of the model; it is unfortunately not easy to obtain
information about it. From Theorem 7.2, we have

E〈
(σσσ1 · σσσ2

N

)p〉 ≤
∑

w2
α + o(1)

where o(1) → 0 as N → ∞.
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Combining with the relation

E
1

N

∂

∂β
logZN =

β

2
(1− 〈

(σσσ1 · σσσ2

N

)p〉)

(that is obtained as the first equality of (3.7)) one can prove that for β > 2
√
log 2

and large N we have E
∑

w2
α > ǫ(p) > 0 where ǫ(p) does not depend upon N .

(This ought to be true for all β > βp but we do not know how to show this. Note
however that the restriction β ≤ βp + 1/L does allow values of β > 2

√
log 2). The

condition E
∑

w2
α > ǫ(p), together with

∑

wα = 1, shows that at least some of
the weights wα are “macroscopic”, i.e. of order 1.

The distribution predicted (and reinvented) by the physicists for the weights
(wα) is of interest (see [P-Y] for a modern view and earlier references). Consider
a number m ∈ (0, 1) and a Poisson point process on R

+ such that its intensity
measure has density mx−m−1 with respect to Lebesgue measure. Consider a re-
alization (xα)α≥1 of this process. Then S =

∑

xβ < ∞. a.s, and it is believed
that as N → ∞, the distribution of the weights wα converges to the distribution
of vα = xα/S, where the parameter m = m(p, β) is such that (1 − m) is about
(β− βp)/βp for β− βp small and p large. There would be some hope to prove this
conjecture [A-C2] if we knew that the distribution of the weights wα has a limit
as N → ∞; but, unfortunately, the best argument to date towards the existence
of such a limit seems to be that there is no reason why it should not exist!

In this situation, it makes sense to try to go forward and examine the funda-
mental question of whether the lumps are “pure states” by assuming as weak as
possible unproven properties of the weight distribution. One particularly useful
such condition is as follows.
(H) There exists δ > 0, p0 > 0 such that, if p ≥ p0, we have for each ǫ > 0

lim sup
N→∞

P
(

∑

α≤200

wα ≥ 1− ǫ) ≤ ǫδ.

The number 200 is of course somewhat arbitrary. This condition simply means
that it is rare that a few weights carry almost all the mass, and is (of course)
satisfied by the conjectured distribution. To simplify the statement of the following
result, we consider only the case p even.

Theorem 7.3. (informal version). There exists a constant L with the following
property. If (H) is true, then for p large enough, and β ≤ βp + 1/pL, the lumps
(Cα) are in the limit the union of two pure states related by a global symmetry
around zero.

Thus, we will have Cα = Σα ∪ (−Σα), where Σα is a “pure state ”. A physicist
would define a pure state by saying that the overlap of two independent configu-
rations belonging to Σα are generically constant (which is a way to express that
(2.2) holds for the restriction of GN to Σα). How to express this mathematically
is a bit more tricky. One way to do this is to introduce the quantity

EN = E〈(N−1(σσσ1 − σσσ2) · (σσσ3 − σσσ4))21A〉(7.4)
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where A = {σσσ1,σσσ2,σσσ3,σσσ4; ∀i, j ≤ 4,σσσi · σσσj ≥ N/2}. Restricting the thermal
integral to A essentially means that we force σσσ1,σσσ2,σσσ3,σσσ4 to belong simultaneously
to a set of the type Σα or to a set of the type −Σα. The final statement of Theorem
7.3 is that lim

N→∞
EN = 0, which essentially means that “(2.3) holds in each Σα”.

The proof again relies upon relating EN and EN−1 via the cavity method.
Thus Theorem 7.3 asserts that if σσσ1,σσσ2 ∈ Σα then (generically) σσσ1 · σσσ2 =

±Nqα, where qα is a certain (possibly random) quantity depending possibly upon
α. Physicists believe that for each α, qα = q, where q is non random; but it
unfortunately seems to be difficult to gather evidence in this direction unless one
has a much better control of the weights distribution.
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à P.-A. Meyer et J. Neveu”, Astérisque 236, 103-108, 1996.
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