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Abstract. Over the past two decades there has been growing interac-
tion between theoretical physics and pure mathematics. Many of these
connections have led to profound improvement in our understanding of
physics as well as of mathematics. The aim of my talk is to give a non-
technical review of some of these developments connected with string
theory. The central phenomenon in many of these links involves the no-
tion of duality, which in some sense is a non-linear infinite dimensional
generalization of the Fourier transform. It suggests that two physical
systems with completely different looking properties are nevertheless iso-
morphic if one takes into account “quantum geometry” on both sides.
For many questions one side is simple (quantum geometry is isomorphic
to classical one) and the other is hard (quantum geometry deforms the
classical one). The equivalence of the systems gives rise to a rich set
of mathematical identities. One of the best known examples of dual-
ity is known as “mirror symmetry” which relates topologically distinct
pairs of Calabi-Yau manifolds and has applications in enumerative ge-
ometry. Other examples involve highly non-trivial “S-dualities” which
among other things have found application to the study of smooth four
manifold invariants. There have also been applications to questions of
quantum gravity. In particular certain properties (the area of the hori-
zon) of black hole solutions to Einstein equations have been related to
growth of the cohomology of the moduli space of certain minimal sub-
manifolds in a Calabi-Yau threefold. A central theme in applications of
dualities is a physical interpretation of singularities of manifolds. The
most well known example is the A−D−E singularities of the K3 man-
ifold which lead to A − D − E gauge symmetry in the physical setup.
The geometry of contracting cycles is a key ingredient in the physical
interpretation of singularities. More generally, singularities of manifolds
encode universality classes of quantum field theories. This leads not only
to a deeper understanding of the singularities of manifolds but can also be
used to “geometrically engineer” new quantum field theories for physics.
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1. Introduction

The history of physics and mathematics is greatly interconnected. Sometimes new
mathematics gets developed in connection with understanding physical questions
(for example the development of Calculus was not independent of the questions
raised by classical mechanics). Sometimes new physics gets developed from known
mathematics (for example general theory of relativity found its natural setting in
the context of Riemannian geometry). I believe we are now witnessing perhaps an
unprecedented depth in this interaction between the two disciplines. It is thus a
great pleasure to explain some of the recent progress which has been made in our
understanding of quantum field theories, string theory and quantum gravity to a
mathematical audience. The works I will be explaining here is a result of the work
of many physicists and mathematicians.1

Many of the key elements in these recent advances have a deep mathematical
content. These involve new predictions for answers to some very difficult mathe-
matical questions as well as new interpretations of some old mathematical results.
It also sometimes hints at the existence of whole new branches of mathematics
which does not exist yet.

In preparing this talk, I have had to make some choices. First of all I have had
to decide which topics to cover and which ones to leave out. This has been very
difficult because there are many interesting interaction points between theoretical
physics and pure mathematics today, and unfortunately I only have a very limited
time here. My choice was motivated by the degree of my familiarity with the
subject as well as by attempts at trying to give a unified exposition of the seemingly
unrelated topics. Secondly I have had to assume a certain level of familiarity of
this mathematical audience with physics. This is also unavoidable, if we are to
make any connection to interesting new developments. However, I have tried to
make this assumption in the weakest possible sense. Thirdly I have chosen a list
of questions which I find interesting for physics which I hope the mathematicians
will help us solve.

The organization of my talk is as follows: In section 2 I will describe the basic
notion of duality which is the key notion in recent advances. In sections 3-5 I give
examples of dualities. Section 3 is devoted to a review of what mirror symmetry is.
Section 4 explains the physical interpretation of singularities of certain manifolds.
Section 5 is devoted to the notion of black hole entropy and what duality predicts
about that. Section 6 is devoted to a list of questions which I raise in connection
with the topics discussed.

2. What is meant by Duality?

I will try to define a very general notion of duality first, a priori nothing to do
with physics, and then try to be a little more particular in what it means in the
physical context.

1 I will not make any attempts to present a complete list of references to all
the relevant literature, though some illustrative references, in the spirit of the
presentation here will be given.
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Suppose we have two classes of objects. Moreover suppose these two objects
satisfy identical properties. Then in a mathematical context they usually will
be called isomorphic. Very often this is a trivial isomorphism. For example if a
property of geometry on a 2 dimensional plane is true, it will also be true for the
mirror reflection of the same geometry (Fig. 1).

Fig.1: Reflection on the plane is an example of a “trivial” duality.

However there are times where the fact that the objects and operations are
isomorphic is less trivial, because the maps between these two classes of objects
is not so trivial. As an example, suppose we wish to solve a linear differential
equation of the form

F =
∑

k

ak
dk

dxk
ψ(x) = 0

with constant coefficients ak. Consider instead the polynomial equation in one
variable p:

G =
∑

ak(ip)
k = 0

Apriori the two problems seem unrelated. In fact the second problem on the face
of it sounds much simpler. However, as is well known the two problems are related
by Fourier transform, and the general solution to the first problem is given by

ψ(x) =

∫

dpφ(p)exp(ipx)δ(G(p))

This isomorphism of functions in x and functions in p with the map between them
being Fourier transform allows us to solve a ‘hard’ problem in the x space setup
in terms of an easy problem in the p space setup. Isomorphisms of this type which
are non-trivial we will call dualities. As it is clear from this example dualities
will be very useful in solving problems. Dualities very often transform a difficult
problem in one setup to an easy problem in the other. In some sense very often
the very act of ‘solving’ a non-trivial problem is finding the right ‘dual’ viewpoint.

Now I come to specializing this idea in the context of a physical system.
Consider a physical system Q (which I will not attempt to define). And suppose
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this system depends on a number of parameters [λi]. Collectively we denote the
space of the parameters λi by M which is usually called the moduli space of the
coupling constants of the theory. The parameters λi could for example define
the geometry of the space the particles propagate in, the charges and masses of
particles, etc. Among these parameters there is a parameter λ0 which controls
how close the system is to being a classical system (the analog of what we call
h̄ in quantum mechanics). For λ0 near zero we have a classical system and for
λ0 ≥ 1 quantum effects typically dominate the description of the physical system.
Typically physical systems have many observables which we could measure. Let
us denote the observables by Oα. Then we would be interested in their correlation
functions which we denote by2

〈Oα1
...Oαn

〉 = fα1...αn
(λi)

Note that the correlation functions will depend on the parameters defining Q.
The totality of such observables and their correlation functions determine a phys-
ical system. Two physical systems Q[M,Oα],Q̃[M̃, Õα] are dual to one another
if there is an isomorphism between M and M̃ and O ↔ Õ respecting all the
correlation functions. Sometimes this isomorphism is trivial and in some cases it
is not. We are interested in the cases where this isomorphism is non-trivial. In
such cases typically what happens is that a parameter which controls quantum
corrections λ0 on one side gets transformed to a parameter λ̃k with k 6= 0 de-
scribing some classical aspects of the dual side. This in particular implies that
quantum corrections on one side has the interpretation on the dual side as to how
correlations vary with some classical concept such as geometry. This allows one
to solve difficult questions involved in quantum corrections in one theory in terms
of simple geometrical concepts on the dual theory. This is the power of duality
in the physical setup. Mathematics parallels the physics in that it turns out that
the mathematical questions involved in computing quantum corrections in certain
cases is also very difficult and the questions involved on the dual side are math-
ematically simple. Thus non-trivial duality statements often lead to methods of
solving certain difficult mathematical problems.

One should note, however, that very rarely can one actually prove (even in
the physics sense of this word) that two given physical systems are dual to one
another. Often the existence of dualities between two systems is guessed at based
on some physical consistency arguments. Testing many non-trivial consequences
of duality conjectures leads us to believe in their validity. In fact we have observed
that duality occurs very generically, for reasons we do not fully understand. This
lack of deep understanding of duality is not unrelated to the fact that it leads
to solutions of otherwise very difficult problems. At the mathematical level, ev-
idence for duality conjectures amounts to checking validity of proposed solutions
to certain difficult mathematical problems.

2 One could attempt to define a physical system by an infinite dimensional
bundle over M where the fiber space is identified with the space of observables
Oα, together with a rank n multi-linear map from the fiber to C, for each n,
satisfying some compatibility conditions.
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In the next three sections I will consider examples of duality and some of its
mathematical consequences. In section 3 we will start with the best understood
duality known as mirror symmetry, which relates string theory on one target man-
ifold with another. In section 4 we discuss how singularities of the geometry get
related to gauge bundles for the dual theory. In section 5 we discuss a dual descrip-
tion of black hole geometry which is intimately related to properties of minimal
submanifolds in Calabi-Yau manifolds.

3. Mirror Symmetry

String theory, which is the only known consistent framework for a quantum theory
of gravity, involves the study of quantum properties of one dimensional extended
objects. The spacetime picture corresponds to a two dimensional Riemann surface
Σ mapped to a target spacetime Riemannian manifold M . The sliced Riemann
surfaces give the picture of strings propagating in time (Fig. 2).

Fig.2: Strings propagating in spacetime span a Riemann surface known
as the worldsheet.

In string theory we are instructed to “sum” over all such maps

φ : Σ →M

weighted with exp(−S(φ)) where S(φ) denotes the integral

S(φ) =

∫

Σ

|dφ|2

where we use the metric on M to define |dφ|2. (For superstrings which is the
case of most interest, there are also some fermionic fields, which I suppress in this
discussion.)

One of the most amazing properties of string theory is that strings moving on
one manifold may behave identically with strings moving on a different manifold.
Any pair of manifolds M1 and M2 which behave in this way are called mirror
pairs. Of course this would be a trivial duality if M1 and M2 are isomorphic Rie-
mannian manifolds. The interesting dualities arise when M1 and M2 are distinct
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Riemannian manifolds. In some cases M1 and M2 are topologically the same, but
in some cases they are distinct even topologically. In such cases the equivalence
of the two manifolds for string theory will be only a statement about correlation
functions after summing over all maps φ. The act of summing over all maps φ is
what we mean by the quantum theory. So only in the quantum theory, i.e. after
summing over all φ the two computations would be related (i.e. we should not
try to compare individual maps). The parameter controlling the significance of
quantum corrections, for a fixed genus surface Σ, is the volume of M , V (M). In
particular, the parameter we called λ0 in the previous discussion in this case is
λ0 = 1/V (M) (and thus in the large volume limit the quantum corrections are
suppressed).

The simplest example of mirror symmetry corresponds to choosing M1 to be
a circle of circumference L and M2 to be a circle of circumference 1/L. This is
a case of mirror symmetry which can be rigorously proven (see [1] for a review).
However here we will just illustrate why such a statement is not unreasonable.

This statement would definitely be unreasonable for point particle theories:
If we consider a particle in a circle of size L, the momentum states are quantized
as the allowed wave functions

ψn(x) = exp(2πinx/L)

compatible with the invariance under x → x + L gives the spectrum of allowed
momenta (which for massless particles is the same as energy) to be n/L, where
n ∈ Z. If we consider the circle of circumference 1/L the allowed energies are
now nL. Thus the energy spectrum of the two theories do not match. The story
changes dramatically for strings: We will still have the same excitations as in the
point particle case, after all the string mapped to a point looks like a point particle.
However we have in addition other states corresponding to winding states of the
string around the circle. Consider the first circle of circumference L and assume
a string wraps around it m times, then its energy is mL (I am working in units
where the string tension is one). Now the full spectrum of momentum and winding
states does have L → 1/L symmetry where in the process momentum states get
exchanged with winding states (Fig. 3).

Fig.3: Momentum modes, with energy n/L get exchanged with winding
modes with energy mL under mirror symmetry L→ 1/L.
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There is one context in which a similar duality is already well known math-
ematically: Consider a U(1) bundle on a circle. Then the choice of the bundle
(i.e. the choice of the holonomy of U(1) around the circle) is equivalent to the
choice of a point on the dual circle. This also turns out to have a very important
physical analog [2]. If we consider open strings, in addition to closed strings, we
would be considering Riemann surfaces with boundaries. In such a case in addition
to specifying the target geometry M where the closed strings are mapped to, we
have to specify where the boundaries are mapped to. In general they could map
to some subspaces of M of various dimensions p. Such a p-dimensional subspace
of M is called a p − brane or Dp − brane (D signifying the fact that the maps
from the Riemann surface have Dirichlet conditions in codimension p, and “brane”
generalizing the terminology of membranes which are 2-branes, to the higher di-
mensional objects). Moreover it turns out that a Dp-brane will carry a U(1) gauge
field and so can be viewed as a sheaf in M . Physically a Dp-brane corresponds to
some charged matter localized in a p-dimensional subspace of M . From the string
viewpoint D-branes are regions where an open string can end on (Fig. 4).

Fig.4: A Dp brane is a subspace of the target manifoldM where a string
can end on.

Returning to the case of a circle, if we consider a D1 brane which includes the
entire circle of circumference L, we can ask what happens under mirror symmetry
to the D-brane. The answer is that it gets transformed to a D0 brane on the
mirror. This is in accord with the mathematical fact mentioned before (where the
holonomy of a U(1) bundle gets transformed to the choice of a point on the dual
circle). This has also a natural generalization to the case where we consider N
D1 branes wrapping the S1 which in physics leads to a U(N) bundle on S1 and
choosing a flat U(N) connection on S1 amounts to choosing N points on the dual
circle, i.e. it is transformed to N D0 branes on the mirror.

Documenta Mathematica · Extra Volume ICM 1998 · I · 537–556



544 Cumrun Vafa

It is natural to ask how mirror symmetry extends in cases where the target
manifold is more complicated than S1. One simple example consists of taking a d-
dimensional torus T d = (S1)d and doing inversion on each of the S1’s. The action
of this on the Dp branes, viewed as subspaces T p ⊂ T d is also clear where they
get transformed to a dual T ∗d−p ⊂ T ∗d. However for more interesting examples
we need the following idea 3.

1. The Adiabatic Principle

Consider a family of flat d-dimensional tori T d varying slowly, i.e. adiabat-
ically over some base space B. Consider the total space M1 over B with T d as
the fiber. Consider another space consisting of the same base space B, where over
each point we replace the fiber T d with the mirror torus where all lengths are
inverted. Call the total spaceM2. Then it is natural to believe that the spacesM1

and M2 are mirror to one another. However the interesting examples arise when
the assumption of adiabaticity is violated over some subspaces of B. For example
the T d may degenerate over some loci. If the category of objects we are dealing
with is sufficiently nice one may hope that the mirror property will continue to
hold. One nice category4 seems to be when the base B is also d-dimensional and
the total space is a Calabi-Yau d-fold (a Kähler manifold of complex dimension d
whose bundle of holomorphic d-forms is trivial) where the fibers T d are viewed as
Lagrangian submanifolds relative to the Kähler form. In fact the non-trivial data
specifying the geometry of the Calabi-Yau is precisely how the degeneration of T d

over B takes place. This construction corresponds to describing a hypersurface in
a toric variety, in a degenerate limit. In a singular limit the Calabi-Yau may be
viewed as a T d fiber space over the base being a boundary of some simplex (in
the sense of toric geometry), where T d degenerates to T k over d − k dimensional
subspaces of B. The data defining the mirror, after suitably rescaling the metric
on B looks like the dual geometry where the regions where the T d shrinks to T k

is replaced by the dual k-dimensional subspaces where the T d−k ⊂ T d shrinks and
the dual survives, this being consistent with the small/large radius exchange (Fig.
5). This gives what is known as Batyrev’s construction of mirror pairs using the
toric description.

3 The presentation here of the mirror symmetry for more complicated target
spaces does not follow the historical order of its discovery. Mirror symmetry was
first conjectured to exist for Calabi-Yau manifolds in [3][4], with the concrete
examples being found in [5] followed by a concrete application to counting holo-
morphic curves in [6]. The construction of mirror pairs was systematized by [7].
The presentation here follows the approach in [8] developed further in [9] which
explains the construction of [7] from this viewpoint.

4 There may well be other categories, such as the category of manifolds of
Sp(n), Spin(7) or G2 holonomy.
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Fig.5: An application of inversion duality of tori when tori are varying
leads to an explanation of mirror symmetry in more complicated exam-
ples.

2. Kähler-Complex Deformation Exchange

It would be nice to examine some of the consequences of the existence of
mirror geometries. To get a feeling for this it is useful to start at the level of S1

fibered trivially over B = S1. This is a simple case, as a constant fibration admits
the flat metric. Let Rf , Rb denote the radii of the fiber and a section respectively.
Note that the complex structure (shape) of the torus is determined by

C = Rb/Rf

and its Kähler class (size) is determined by

K = RbRf

Now if we do mirror transform on the fiber S1 it again leads to a torus. However
since Rf → 1/Rf but Rb → Rb the parameters controlling the complex and Kähler
deformations get exchanged:

C ↔ K under mirror transform

This turns out to be the general feature of mirror symmetry for Calabi-Yau man-
ifolds, and the Kähler and complex structures always get exchanged. In the case
of Calabi-Yau manifold of complex dimension d the number of complex moduli
is determined by h1,d−1 (where hp,q denotes the dimension of the cohomology
of p-holomorphic and q anti-holomorphic forms). Thus if M and W are mirror
Calabi-Yau manifolds we learn in particular that

h1,1(M) = h1,d−1(W ) h1,d−1(M) = h1,1(W ).

This in particular implies that the topology of the manifold and the mirror will in
general be very different. In fact it turns out that hp,q(M) = hp,d−q(W ) for all p, q.
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Moreover, as mentioned before, the parameter controlling quantum corrections is
the Kähler class of the Calabi-Yau, which gets transformed under mirror transform
to complex deformation parameter of the mirror. Thus the question of quantum
corrections for one manifold get transformed to the question involving the variation
of complex structure on the other, which is classical. This leads to some very non-
trivial implications of mirror symmetry.

The most concrete prediction this leads to is to the question of counting
the “number” of holomorphic curves mapped from a Riemann surface of genus g
to the threefold. For example the intersection numbers of cycles in the Calabi-
Yau receives a quantum correction coming from holomorphic curves (recall this
is natural from the string theory viewpoint, where the worldsheet is a Riemann
surface) (Fig. 6). This “quantum intersection theory” for triple intersections
allows, in addition to the classical intersection, the possibility that the three cycles
meet a holomorphic curve weighted by the quantum deformation parameter q =
e−A where A is the area of the holomorphic curve5.

Fig.6: Quantum intersection of three cycles A,B,C in addition to the
classical piece has corrections where A,B,C meet on a holomorphic ra-
tional curve.

This very difficult mathematical problem, i.e. counting holmorphic curves
in Calabi-Yau manifolds, gets transformed on the mirror to a question involving
the variation of Hodge structures (in this case it is the study of how the middle
dimensional Hp,d−p cohomology elements vary as we vary the complex structure
on the mirror). This is a well studied mathematical subject 6. The genus 0 version
of the prediction has been confirmed recently [11][12]. The higher genus version

5 The fact that classical cohomology ring is deformed by instantons and gives
rise to a quantum cohomology ring was pointed out in [3]. The precise definition
of this deformation was given in [10].

6 To be precise, the counting of genus 0 curves gets transformed to this question.
The higher genus version gets transformed to a quantum version of variation of
Hodge structure known as Kodaira-Spencer theory of gravity which is only slightly
more complicated.
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[13] has not been proven yet (except in some special cases), but there is little doubt
that it is generally valid.

3. Extension to Bundles

It is clear from the discussion of D-branes in the context of circles that we
can extend mirror symmetry to Calabi-Yau manifolds with bundles. In particu-
lar let c ∈ ⊕pH

p,p(M) denote the chern class of a holomorphic vector bundle on
Calabi-Yau manifold M . Represent this by a collection of Poincaré dual holomor-
phic cycles. Consider D-branes wrapped over them. This is a D-brane made up of
various even dimensional branes. Each (p, p) cycle projects to a p real dimensional
subspace of B with typical fiber a p dimensional subtorus. On the mirror, the p
dimensional subspace of T d gets transformed to the dual torus T d−p. Thus on the
mirror Calabi-Yau, the whole bundle representated by the collection of D-branes
is mirror to a submanifold C of real dimension d.7 The condition that the original
bundle be holomorphic translates to the condition that C is Lagrangian relative
to the Kähler form on the mirror. If we further impose that the original bundle
be stable, this translates to the cycle C being of minimal area. This extension
of mirror symmetry to include bundles conjectured in [18] (see also related works
[19][20][21][22]) has only recently been made and checks on its prediction are un-
derway. It makes certain predictions for the enumerative geometry of holomorphic
maps from Riemann surfaces with boundaries being mapped holomorphically to
Calabi-Yau, with boundaries being mapped to Lagrangian cycles on it.8. For exam-
ple the Ray-Singer Torsion associated to the bundle V is transformed to counting
holomorphic maps from the annulus to the Calabi-Yau whose boundary is on the
mirror minimal cycle.

4. Physical Interpretation of Geometric Singularities

One of the remarkable aspects of string theory is the existence of a few different
types of consistent theories (5 in 10 dimensions and one in 11 dimensions) which
are dual to one another. This is known as S-duality. For example, Type IIA
strings in a 10 dimensional space having a K3 fibration (K3 being a Calabi-Yau
manifold of complex dimension 2) is dual to heterotic strings in a space admitting
a T 4 fibration. This is very surprising because in particular the two string theories
and the two target spaces look very different. Moreover on the heterotic side one
has to choose flat bundles of rank 16. Moreover as we change the size of the T 4

and the choice of the flat bundle (and some choice of a constant field belonging to

7 This leads to a new application of mirror symmetry: For example consider a
rational elliptic surface inside a 3-fold. Then the study of rank N stable bundles
on it gets transformed to the study of spectral curves on the dual rational elliptic
surface (by viewing the bundle as D4 brane wrapped the rational elliptic surface
and doing mirror symmetry along T 2 fiber)[14][15]. The Euler class of the moduli
space can be computed using mirror symmetry techniques [16] (this prediction has
been recently confirmed for the rank 2 case [17]).

8 For this to make sense beyond Disc one should restrict to the category of
stable bundles on one side and minimal Lagrangian submanifolds on the mirror.
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H2(T 4)) one can get various different gauge groups. For example one can obtain
SU(N), SO(2N) (for small enough N) and E6,7,8. The question is how all this is
reflected on the K3 geometry? It is well known that K3 can have singularities
corresponding to contracting 2 spheres. Moreover the intersection matrix of the
contracting 2 spheres is given by the Cartan matrix of the A-D-E groups. The ap-
pearance of the Dynkin structure for the K3 singularities appears mathematically
as purely “accidental”. However this accident gets explained in this duality con-
text: One identifies the singular K3 geometries with A-D-E singularities with the
points on the heterotic side with enhanced A-D-E gauge symmetry. The physical
explanation of enhanced symmetries on the K3 side has to do with the existence of
D2 branes, which can wrap around the contracting 2-cycles, and give rise to mass-
less particles. The wrapped D2 branes encode in a beautiful way the connection
of the bundle anticipated from the heterotic dual (Fig. 7). Thus the non-abelian
enhancement of gauge symmetry on heterotic side is transformed to appearance
of geometric singularities on the type IIA side.

Fig.7: A wrapped D2-brane over a sphere of blown up A-D-E- singularity
is the origin of gauge symmetry enhancement when the spheres shrink.

Similar considerations suggest interesting physical interpretations whenever
one has geometric singularities. For example if one considers a Calabi-Yau 3-fold,
one has sometimes contracting S3’s. In this context there are two ways to get
rid of the singularity. One either deforms the polynomial equations defining the
manifold (which effectively gives a finite size to the contracting S3’s) or replaces
the singular point by a higher dimensional geometry (in this case S2’s) which is
known as blowing up the singularities, changing the geometry of the 3-fold in the
process. The singular manifold can thus be viewed as belonging to two distinct
families of Calabi-Yau manifolds. The physical interpretation of this is that there
are two ways to get rid of the extra massless fields, one is by preserving a U(1)k

gauge symmetry which is called the “Coulomb branch” (corresponding in type
IIA string to blowing up S2’s) the other is going to the “Higgs branch” (which
corresponds to making S3’s have finite volume)[23][24].

One can use these ideas to construct the geometric versions of quantum field
theories with desired properties. This is called geometric engineering of quantum
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field theories. For example, if we have a shrinking CP 1 inK3 we already mentioned
that this gives rise to SU(2) gauge symmetry. If we fiber this over a complex
curve, depending on what curve we choose we get different theories in the 4 left-
over dimensions. For example if we consider the simple product with T 2, then we
obtain a theory in four dimensions with N = 4 supersymmetric SU(2) Yang-Mills
theory. Moreover the coupling constant of the gauge theory 1/g2 (which appears
in the action in 4 dimensions in the form 1

g2TrF ∧ ∗F ) gets identified with the

volume of T 2. As discussed before string theory has volume inversion symmetry for
T 2. This implies, therefore, that N = 4 Yang-Mills should have g → 1/g inversion
symmetry as well. This in fact was anticipated long ago [25]. This duality has
interesting consequences for four-manifolds: Consider taking as the four left-over
dimensions a smooth four manifold K. Then the (topological) partition function
of N = 4 Yang-Mills is given by

FG,K(q) =
∑

instantons

qnχ(Mn)

where q = exp(−1/g2) and χ(Mn) denotes the Euler characteristic of the moduli
space of instantons of gauge group G (in the case at hand G = SU(2)) with
instanton number n onK. The duality just discussed implies that this is a modular
form (after shifting by an overall coefficient qa for some constant a). This has
been tested in some cases (see [26] and references therein). This modular form is
a smooth invariant of K, for each group G.9

If we fiber the A1 singularity instead of T 2 over a CP 1 we obtain an N = 2
supersymmetric gauge theory in 4 dimensions with SU(2) gauge symmetry. If
different singularities exist over different curves which intersect (what is sometimes
called colliding singularities) we typically get “matter” in the physical language
transforming according to a representation of the product of the two groups (Fig.
8) [27].

Fig.8: Matter arises where two loci of singularities intersect. The matter
is localized at the intersection.

9 The subgroup of SL(2, Z) for which this is a modular form depends on G.
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This geometric construction of quantum field theories allows us to have a new
viewpoint in solving aspects of them. For example consider the N = 2 supersym-
metric SU(2) gauge theory in 4 dimensions. As just mentioned this can be viewed
as fibering a contracting CP 1 over a base CP 1. The instantons of this theory in
four dimensions, which are relevant to questions involving Donaldson invariants of
four manifolds, correspond to holomorphic curves mapped to a Calabi-Yau 3-fold
whose local geometry is a line bundle over a CP 1 fibered over CP 1. In particu-
lar the instanton class in four dimension gets identified with the number of times
the curve gets wrapped around the base CP 1. These can be counted thanks to
mirror symmetry discussed before. Thus Donaldson invariants [28] through this
geometric construction and by an applications of mirror symmetry can be reduced
to Seiberg-Witten invariants [29][30].

Sometimes the physics of the singularities are unconventional. For example
when a 4-cycle (say a CP 2) shrinks in a Calabi-Yau threefold, it gives rise to very
interesting unconventional new physical theories which were not anticipated! This
is thus a great source of insight into new physics. In particular what types of
singularities occur as well as what are the ways to resolve them will be of extreme
importance for unravelling aspects of this new physics. It is tempting to speculate
that these singularities may also lead to new invariants for four manifolds.

5. Black Holes and Minimal Cycles

Black holes are solutions to the Einstein equations which represent matter with
sufficient concentration in some region.10 Consider a d dimensional spacetime.
The idealized version of a black hole would correspond to a spherically symmetric
distribution of possibly charged matter. This would correspond to solving Euler-
Lagrange equations for the action of the form (suppressing all constants)

S =

∫

(R+
∑

i

Fi ∧ ∗Fi)

where R denotes the scalar curvature of the metric and Fi denote the curvature
of some U(1)k gauge fields. One solves these equation with the assumption of
spherical symmetry with some asymptotic condition imposed on the metric which
corresponds to a total mass M black hole and on the gauge fields with charge
Qi =

∫

Sd−2 ∗Fi.
11

Black holes have a causal structure which separates it into two parts by a
“horizon” H = Sd−2, for which the future light cone of points inside the sphere
does not include exterior points (Fig. 9).

10 The following discussion is somewhat oversimplified to make the essential
point more clear.
11 If d=4 we can also consider having magnetic charges Mi =

∫

S2 Fi.
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Fig.9: From the regions interior to the horizon no light can come out.

By some semiclassical arguments one expects that black hole carry entropy
S, which is the logarithm of the number of its states, is given by

S =
A(H)

4

where A(H) denotes the d− 2 dimensional “area” of the horizon H. For the black
hole solution to make physical sense one finds a lower bound on mass for a fixed
set of charges Qi, namely M2 ≥ ∑

iQ
2

i . Physically what will happen is that if the
mass is above this bound the black hole radiates and loses mass until it reaches
this bound, at which point it becomes a stable stationary state. These are known
as extremal black holes. The entropy, which is defined as a quarter of the horizon
area now becomes

S = cdM
d−2

d−3

where cd is some universal constant, depending on d. It has been a challenge
of quantum gravity to explain the microscopic origin of this entropy, i.e. what
counting do we do to get this entropy.

In string theory, for large enough charges Qi, the charged black holes are
realized as branes wrapped around cycles of the Calabi-Yau, and the condition
for extremality of the black hole is that the corresponding cycle be minimal in
the given class. Thus the charge lattice corresponds to H∗(M) where the target
space is Rd ×M .12. Thus the question of black hole entropy gets transformed to
counting of the “number” of minimal submanifolds for a fixed class Q ∈ H∗(M).
In case there are moduli for such cycles, what is meant by the “number” is the
number of cohomology elements of the moduli space. The non-minimal surfaces
correspond to non-extremal black holes which “decay” to the extremal ones.

I will now discuss one concrete example to illustrate how the counting works.
Consider the 11 dimensional supergravity theory (“M-theory”) on target space
R5 × T 6 (which is closely related to type IIA on R4 × T 6), which I will use to

12 The homology dimensions which are allowed charges correspond to the al-
lowed dimensions of the branes in the corresponding theory.
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count the number of black holes in 5 dimensions, with charges given by an element
inH2(T

6, Z) (this is related to black hole count in [31]). Let us think of T 6 = (T 2)3

and consider the 2-class of each T 2 being represented by ei where i = 1, 2, 3. Let us
consider an extremal black hole made of 2-branes whose class is Ne1+Me2+Pe3.
We will consider the regime of parameters where N >> M,P >> 1. Let Σ denote
a holomorphic curve in the class [Σ] =Me2 +Pe3 (being holomorphic guarantees
being minimal in that class). To construct a 2-surface in the class Ne1+Me2+Pe3
we choose N points on Σ and attach a copy of the first T 2 on each of those points
(Fig. 10).

Fig.10: A 2-brane constructed out of Σ and the attachment of N copies
of T 2 at N points.

This gives rise to a degenerate minimal 2-cycle. The moduli of this D2 brane
will in addition correspond to choosing a flat connection on it, which for each T 2

corresponds to choosing a point on the dual T 2. Thus this surface together with
the choice of a flat connection is specified by N points in T̂ 2×Σ where T̂ 2 denotes
the dual torus. Of course the choice of N points has no ordering so that the moduli
space of this minimal cycle, for a fixed Σ is given by

MN = SymN (T 2 × Σ)

Since we are interested in the regime where N is much larger than the other two
parameters, we can treat Σ as fixed (i.e. the moduli degrees of freedom coming
from it are negligible in comparison). We are thus interested in the growth for
the cohomology of MN for large N . This space is singular and this cohomology
should be understood in the sense of the Hilbert Scheme. The answer is well known
[32][33] and is given by the coefficient dN of qN in

F =

∏

n(1 + qn)bodd
∏

n(1− qn)beven

where bodd = beven = 4(MP+2) denote the odd and even betti numbers of T 2×Σ.
F has modular properties which allows one to estimate the growth of the coefficient
of qN , following Hardy-Ramanujan, to be

dN ∼ exp(2π
√

N(MP + 2))
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Thus we obtain a prediction for the entropy to be

S = 2π
√

N(MP + 2)

The computation of the area of this 5 dimensional black hole by solving the
Einstein’s equations in this case gives

SBH =
A(H)

4
= 2π

√
NMP

which agrees with what we have found in the range of validity of the parameters
N >> M,P >> 1.

6. A List of Questions

I will list a number of questions which I believe would be interesting to understand
further.

1- I have discussed some aspects of mirror symmetry. The physical and math-
ematical properties of mirror symmetry without including the D-branes is more or
less understood. The case involving the D-branes, which is mirror symmetry for
(stable) sheaves on Calabi-Yau and is transformed to (minimal) Lagrangian mid-
dimensional cycles on the mirror is stated in this note. However the prediction this
entails has not been checked yet. In particular both sides of the mirror transform
in this case, regardless of the relationship between the two, deserve further study.
Even though some aspects of stable bundles on Calabi-Yau are known, it is rather
far from a complete understanding. The properties of minimal Lagrangian cycles
and enumerative questions in that context are even less understood. Thus the ex-
istence of mirror symmetry in this case may lead to many valuable mathematical
insights into both questions.

2-We have mentioned that A−D−E singularities ofK3 lead to the appearance
of the corresponding gauge group in physics. We have also noted that some other
singularities, such as a contraction of CP 2 in a Calabi-Yau threefold leads to novel
physics, not described by a conventional gauge theory. It is thus a pretty exciting
link to develop further. To what extent can one classify singularity types of Calabi-
Yau (and other Kähler) manifolds, for three and fourfolds? How about transitions
among manifolds mediated through singularity types? What is a general way to
think about all manifolds at once, having in mind their connectivity by passing
through singular ones? Among all singularities is the appearance of A − D − E
singularity a rare phenomenon? If so, what explains the fact that we seem to live
in a world with gauge symmetries?

3-Another issue we discussed was the counting of minimal submanifolds. This
has some applications in the context of counting black hole states. There are many
puzzles still to resolve in this context. In the context of minimal 2 dimensional
submanifolds mirror symmetry gives us a way to count them in many cases of
interest. However even here there are some puzzles: We consider a fixed class
Q ∈ H2(M,Z) in a Calabi-Yau threefold M and ask how many black holes exist
in that class. The predicted answer from solving the Einstein equations is given
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as follows. Consider an arbitrary Kähler metric k with volume 1 on Calabi-Yau
M . Find the Kähler metric which minimizes the area of Q

V = k[Q]

Call the minimum value Vmin, and assume this is achieved for a non-degenerate
Kähler metric. Then the prediction for the entropy of the black hole [34], and thus
the growth of moduli of holomorphic curves in the class Q is that it goes as

S = exp(cV
3/2
min)

where c is a universal constant independent of Calabi-Yau. Note that the exponent
picks up a factor of λ3/2 once we rescale Q → λQ. Mirror symmetry allows us to
compute the Euler class (of an appropriate bundle) on the moduli space of curves
and that has typical growth which upon the same rescaling of Q picks up only a
λ in the exponent. The discrepancy of this growth with that obtained in mirror
computation is presumably because the number that mirror symmetry computes
is an Euler class, whereas the number the black hole degeneracy predicts is the
growth of cohomologies of the moduli space. It also suggests there must be an
enormous cancellation among even and odd cohomology states for such a dramatic
change in the growth of states. It would be interesting to verify this.

For other types of black holes other counting problems arise. For example, for
type IIB strings with target space being a Calabi-Yau threefold times R4 we need
to count the growth in the cohomology of the moduli space of minimal Lagrangian
3-submanifolds in a given class Q ∈ H3(M). The prediction from the black hole
side is that if we denote by Ω the holomorphic 3-form on the Calabi-Yau and
minimize

V =
|Ω(Q)|

√

∫

M
Ω ∧ Ω

(1)

over the moduli space of complex structure of the Calabi-Yau, assuming that the
minimum exists and does not correspond to a degenerate Calabi-Yau, then the
growth in the cohomology of moduli space of the minimal submanifold in that
class (together with a flat connection) is given by

S = exp(c′V 2

min)

where c′ is a universal constant. In order to verify such predictions we need to
be able to count minimal Lagrangian submanifolds. The basic question is how to
enumerate them and check this prediction? What is the analog of “mirror symme-
try” which allows counting p branes with p > 2? In fact I would conjecture, based
on a few examples (not predicted from physics) that for a Calabi-Yau of complex
dimension d, if we consider real minimal Lagrangian submanifolds of dimension d
and minimize V again as given by (1) then the growth of the cohomology of their
moduli space (together with a flat connection) is given by

S = exp(c(d)V d−1

min )
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where c(d) is a universal constant depending only on d. This formula is true for
d = 2, 1 (in the d = 1 case it is vacuous and in the d = 2 case it can be verified)
and is predicted to be true as discussed above for d = 3, and I am conjecturing it
to be true for all d. Is this true? (Note that by mirror symmetry, this conjecture
gets transformed to counting the growth of the cohomology of moduli of stable
bundles on the mirror Calabi-Yau.)

4-We have seen many instances of dualities in physical systems and we have
explained here some of its mathematical implications. We do not have a deep
understanding of why these dualities even exist. Does studying the mathematical
consequences of it shed any light on this question? In other words, why should
seemingly difficult mathematical questions find answers in terms of very simple
dual mathematical problems? What is the mathematical meaning of duality?

Given all this relation between physics and mathematics one recalls Wigner’s
thoughts on this relationship and in particular the “unreasonable effectiveness of
mathematics” in solving physical problems. With recent developments in physics
and its mathematical implications one may also reverse the arrow and wonder
about the unreasonable effectiveness of physics in solving mathematical problems.

I would like to thank the many collaborators I have worked with over the
years, who have greatly influenced my understanding of the subject presented here.
I would also like to thank Sheldon Katz for a careful reading of this manuscript
and for his suggestions for improvement.
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