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1 Introduction

In general terms, Dynamics is concerned with describing for the majority of sys-
tems how the majority of orbits behave, specially as time goes to infinity. And
with understanding when and in which sense this behaviour is robust under small
modifications of the system. For instance, most gradient flows on a compact man-
ifold have finitely many singularities, with almost every orbit converging to some
of the attracting ones (stable equilibria). And the same is true about any nearby
flow, with the same number of attractors. General systems can behave in much
more complicated ways, though. Here I consider both discrete time systems –
smooth transformations f : M → M , possibly invertible – and continuous time
systems – smooth flows or semi-flows Xt :M →M , t ∈ R – on manifolds M .

In the early sixties, Smale was proposing the notion of uniformly hyperbolic
system, a broad class that includes the diffeomorphisms and flows named after
Anosov [4], most gradient-like systems, and the “horseshoe” map. See [101]. A
hyperbolic set , or generalized horseshoe, is an invariant subset Λ ⊂ M such that
the tangent space over it splits into two invariant subbundles TΛM = Es ⊕ Eu

so that Es is uniformly contracted by future iterates, and similarly for Eu in
past iterates. The system is uniformly hyperbolic, or Axiom A, if its limit set –
the closure of all future and past accumulation sets of orbits – is hyperbolic. A
prototype is the diffeomorphism induced on the 2-torus by (x, y) 7→ (2x+y, x+y),
with Es and Eu corresponding to the eigenspaces of this linear map. This, just
as many other uniformly hyperbolic systems, is also an example of “chaotic” (or
sensitive) behaviour: orbits of typical nearby points move away from each other
exponentially fast, under forward and backward iterations.
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Nevertheless, uniformly hyperbolic systems admit a very precise description of
their behaviour: there are compact invariant subsets Λ1, . . . ,ΛN that are transitive
(dense orbits) and such that almost every forward orbit of the system accumulates
on one of them [101]. And, though the dynamics near these attractors Λj may
be quite “chaotic”, it is strikingly well behaved from a statistical point of view:
there exists a physical probability measure µj supported on Λj , such that the time
average (δp stands for Dirac measure at p)

lim
n→+∞

1

n

n−1∑
j=0

δfj(z) , or lim
T→+∞

1

T

∫ T

0

δXt(z) dt,

exists and coincides with µj for Lebesgue almost every point z whose orbit accu-
mulates on Λj . Cf. Sinai, Ruelle, Bowen [100], [95], [20], [19].

Another major breakthrough was the proof that uniformly hyperbolic sys-
tems are, essentially, the structurally stable ones. This was completed by Mañé
[63], and Hayashi [43] for flows, in the C1 setting, after crucial contributions from
several mathematicians, specially Anosov, Palis, Smale, Robbin, de Melo, Robin-
son. See [84] for an extended list of references. The notion of structural stability ,
introduced by Andronov-Pontryagin in the thirties, means that all nearby systems
are equivalent up to continuous global change of coordinates.

On the other hand, striking examples like Newhouse’s maps with infinitely
many periodic attractors [74], or the “strange” attractors of Lorenz [56] and
Hénon [44], showed that uniform hyperbolicity is too strong a condition for a
general description of dynamics: systems can be persistently non-hyperbolic (per-
sistently unstable). As the hope to describe generic dynamical systems in a uni-
formly hyperbolic scope was gradually abandoned, still other important develop-
ments were taking place concerning enlarged settings of dynamics.

Starting from Oseledets [78], Pesin [87] developed a theory of non-uniform
hyperbolicity , dealing with general systems endowed with an invariant probability
measure with respect to which almost every point exhibits asymptotic contraction
and expansion along complementary directions (non-zero Lyapunov exponents).
Then almost every point has a stable and an unstable manifold, whose points are
exponentially asymptotic to it, respectively, in the future and in the past. See
Katok-Hasselblatt [48] for an account of the theory and references.

There was also considerable progress in studying the modifications (bifurca-
tions) through which a system may cease to be stable. Global bifurcations like
homoclinic tangencies and heteroclinic cycles , that affect the system’s behaviour
on large regions of the ambient M , are accompanied by such a wealth of dynam-
ical changes that one must aim at describing the main phenomena occurring for
most nearby systems, specially in terms of probability in parameter space. See
Palis-Takens [84] and Section 5 below.

And one could attain substantial understanding of some “chaotic” systems,
such as Lorenz-like flows, quadratic maps of the interval, period-doubling cascades,
and Hénon-like attractors. Since orbits are sensitive to initial conditions, and
so essentially unpredictable over long periods of time, one focus on statistical
properties of large sets of trajectories, a point of view pioneerly advocated by
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Sinai and by Ruelle back in the seventies. See [106] and Sections 3, 4, 6 below.

Building on this, we are again trying to develop a global picture of Dynamics
recovering, in a new and more probabilistic formulation, much of the paradigm of
finitude and stability for most systems that inspired Smale’s proposal about four
decades ago. Palis conjectured that every dynamical system can be approximated
by another having only finitely many attractors, supporting physical measures
that describe the time averages of Lebesgue almost all points. This is at the core
of a program [81] that also predicts that statistical properties of such systems are
stable, namely under small random perturbations.

In this note I survey some of the recent, rather exciting progress in the general
direction of such a program, as well as related open problems and conjectures,
mostly in the context of general dissipative systems.

2 Setting the scenario

In what follows I refer mostly to transformations, since the definitions and results
for flows are often similar. Except where otherwise stated, manifolds are smooth,
compact, without boundary, and measures are probabilities on the Borel σ-algebra.
Lebesgue measure means any measure generated by a smooth volume form.

Time averages of continuous functions ϕ :M → R

lim
n→+∞

1

n

n−1∑
j=0

ϕ(f j(z))

are the most basic statistical data on the system’s asymptotic behaviour. An
invariant measure µ is a physical measure if the time average of every ϕ coincides
with the spatial µ-average

∫
ϕdµ, for a positive Lebesgue measure subset of points

z ∈M . And the basin of µ is the set B(µ) of points z for which this happens.

Physical measures are often called SRB measures , after Sinai, Ruelle, Bowen,
who first constructed them for Anosov systems [100] and then for general uniformly
hyperbolic diffeomorphisms [95] and flows [20]. For these systems there are finitely
many SRB measures µ1, . . . , µN , and their basins cover Lebesgue almost all of
the phase space M . Each support Λi = suppµi is an attractor , meaning that
it is an invariant transitive set whose basin of attraction has positive Lebesgue
measure. An invariant set Λ is transitive if there exists z ∈ Λ whose forward
orbit {fn(z) : n ≥ 0} is dense in Λ. The basin of attraction (or stable set) B(Λ)
is the set of points whose forward orbits accumulate in Λ. In this hyperbolic
setting, as well as in all known cases that are relevant here, the basin contains a
full neighbourhood of the attractor.

For systems preserving a smooth measure, Birkhoff’s ergodic theorem ensures
that time averages are defined Lebesgue almost everywhere. It is widely believed
that the same should be true for most non-conservative systems, but this is not
known, and there are examples showing that it is not the case for all systems. For
instance, Bowen exhibited a simple flow on the plane where time averages fail to
exist on a whole open region bounded by two saddle connections; see e.g. [106].
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On the other hand, existence results for SRB measures are now available for some
large classes of systems, as we shall see.

SRB measures are sometimes defined differently, by a property of absolute
continuity of their conditional measures on unstable manifolds; see e.g. Eckmann-
Ruelle [37]. The definition adopted above is a bit more general, but all the SRB
measures we meet in the present paper also have this absolute continuity property.

Palis proposed a few years ago that, for a dense subset of all systems statistical
properties should be essentially as nice as in the Axiom A case. In more precise
terms, he conjectured that every system can be approximated by another having
only finitely many attractors (approximation in the Ck topology, any k ≥ 1)
supporting SRB measures whose basins cover a full Lebesgue measure subset of the
manifold ; see [81]. He also conjectured that those properties should be very stable
under small perturbations of the system. Here one thinks of modifications of the
system along generic parametrized families, i.e. finite-dimensional submanifolds in
the space of systems. For Lebesgue almost all parameters there should be finitely
many attractors, supporting SRB measures whose basins cover nearly all of M ,
also in terms of Lebesgue measure. Moreover, time averages should not be much
affected if small random errors in parameter space are introduced at each iteration:
stochastic stability.

This last notion is most relevant when dealing with concrete situations mod-
eled by mathematical systems (which are always only approximately correct): in
many cases, features of the actual system that are unaccounted for by the model
are well represented by random fluctuations around it. For a definition, let us con-
sider first the situation where the initial map f has some attractor Λ supporting
a unique SRB measure µ, and whose basin contains a trapping open region U :
the closure of f(U) is contained in U . One considers sequences xj , j ≥ 0, with
x0 ∈ U and xj+1 = gj(xj) for j ≥ 0, where the maps gj are chosen at random
(independently) in the ǫ-neighbourhood of f , according to some probability Pǫ.
Here ǫ should not be too large, to ensure that these sequences xj do not escape U .
Then f is stochastically stable on the basin of Λ if for each continuous function ϕ

lim
n→+∞

1

n

n−1∑
j=0

ϕ(xj) is close to

∫
ϕdµ,

for almost every random orbit (xj)j (Lebesgue almost every x0 ∈ U and Pǫ almost
every gj , j ≥ 0) if ǫ is small. More concretely, I propose to take these small
random perturbations along generic parametrized families through f : Pǫ is given
by Lebesgue measure in the corresponding parameter space.

There are other perturbation schemes, for instance, random orbits may be
formed by choosing each xj+1 at random close to f(xj), following some probability
measure Pǫ(xj , ·). The random noise Pǫ(x, ·) is usually taken absolutely continuous
with respect to Lebesgue measure, and supported on the ǫ-neighbourhood of f(x)
or, more generally, converging to Dirac measure at f(x) as ǫ → 0. See Kifer [52],
[53]. Stochastic stability with respect to this perturbation scheme is defined as
before. Although it is not logically related to the notion in the previous paragraph,
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which corresponds to

Pǫ(x,A) = Pǫ({g : g(x) ∈ A}),

the two definitions agree for the systems known to be stable, such as uniformly
hyperbolic attractors Kifer [53], Young [108], and other cases mentioned below.

So far, I restricted to attractors with a unique SRB measure and whose basin
contains some trapping region: this is true for essentially all known cases, although
it is not yet clear in which generality it holds. If the basin of attraction is just
a positive Lebesgue measure set (or if one considers random noise which is not
supported on small neighbourhoods), then random orbits may escape from it. In
such cases, as well as for transitive attractors supporting several SRB measures,
a more global notion of stochastic stability can be applied: denoting µi the SRB
measures of f , time averages of each continuous ϕ along almost all random orbits
should be close to the convex hull of the

∫
ϕdµi when ǫ is small.

The main random perturbation scheme for flows Xt is by diffusion. That is,
letting X be the corresponding vector field, one considers the flow ξt associated to
the stochastic equation (for simplicity, pretend M = R

d)

dξt = X(ξt) dt+ ǫA(ξt) dwt (1)

where A(·) is matrix-valued and dwt is the standard Brownian motion. See e. g.
Friedman [38]. Then stochastic stability is defined essentially as before, if Xt has
a unique SRB measure µ: the time averages of each continuous ϕ over almost all
stochastic orbits ξt should be close to

∫
ϕdµ if ǫ is small. More generally, since

solutions of (1) usually spread over the whole ambient manifold M , one should
use a global notion of stability as in the previous paragraph.

Before proceeding, let me recall another probabilistic notion, expressing sen-
sitivity of the dynamics, that plays an important role in the characterization of
complex systems: decay of correlations. The definition applies to general maps f
(or flows) endowed with some invariant measure µ, though the most interesting
case is when µ is a physical measure. Informally, this notion can be motivated as
follows. Sensitiveness means that orbits, in some sense, forget their initial state
as time increases to infinity. So, given real functions ϕ and ψ on M , knowledge of
ϕ(z) should provide little information about ψ(fn(z)) for large n ≥ 1. This may
be expressed in terms of their correlations

Cn(ϕ,ψ) =

∫
ϕ (ψ ◦ fn) dµ−

∫
ϕdµ

∫
ψ dµ,

that should converge rapidly to zero as time increases to infinity. In general, one
must restrict to some subspace F of functions ϕ,ψ with a minimum amount of
regularity. This is because the systems we deal with are actually deterministic
(and, in many cases, reversible): loss of memory resulting from sensitiveness ap-
pears only at a coarse level of observation of the system, through quantities ϕ,ψ
that do not distinguish nearby points well. One speaks of (exponential) decay of
correlations in the space F if Cn(ϕ,ψ) goes to zero (exponentially fast) as n goes
to infinity, for all ϕ,ψ ∈ F .

Documenta Mathematica · Extra Volume ICM 1998 · I · 557–578



562 Marcelo Viana

3 One-dimensional maps

Let fa be the real quadratic map given by fa(x) = x2 + a. If a /∈ [−1/4, 2] then
the orbit fn(0) of the critical point goes to infinity as n → +∞, and so does
the orbit of Lebesgue almost every point x. Let us look at the more interesting
case a ∈ [−1/4, 2]. Then there exists a maximal compact interval Ia containing
x = 0 and invariant under fa, in the sense that fa(Ia) ⊂ Ia. Two main types of
behaviour are known, depending on the value of the parameter a.

A first type (periodic, uniformly hyperbolic, regular) corresponds to fa having
a periodic attractor, i.e. a point p such that fka (p) = p and |(fka )

′(p)| < 1 for some
k ≥ 1. Then, the orbit of Lebesgue almost every x ∈ Ia converges to the orbit of
p. It is easy to see that this behaviour corresponds to an open set of parameters,
and it was conjectured for a long time that this set is also dense in [−1/4, 2].
This statement, known as the hyperbolicity conjecture, was eventually settled
affirmatively by Swiatek with the aid of Graczyk [40], and by Lyubich [60].

A second kind of behaviour (chaotic, non-uniformly hyperbolic, stochastic) is
displayed by maps fa that admit an invariant measure µa absolutely continuous
with respect to Lebesgue measure. It is a theorem of Jakobson [46] that this occurs
for a set of parameters with positive Lebesgue measure. When it exists, such a
measure µa is unique and ergodic, and it gives the time average of Lebesgue almost
every x ∈ Ia, Blokh-Lyubich [13].

Do these cases exhaust all the possibilities for a full Lebesgue measure set of
parameters? Remarkably, the answer is affirmative, as shown by Lyubich:

Theorem 1 ([59]). For Lebesgue almost every a ∈ [−1/4, 2], the quadratic map
fa has either a periodic attractor or an absolutely continuous invariant measure.

In particular, Palis’ finitude conjecture in Section 2 holds in this context:
Lebesgue almost every quadratic map admits a unique SRB measure (either a
Dirac measure on a periodic orbit or an absolutely continuous measure), whose
basin contains Lebesgue almost every bounded orbit. It is interesting to point out
that quadratic maps without SRB measures do exist, cf. Hofbauer-Keller [45].

Most of this holds for general unimodal or multimodal maps of the interval
or the circle, though the extension may be far from trivial. A proof of the hy-
perbolicity conjecture in a general setting of unimodal maps was announced by
Kozlovski [54]. An analog of Theorem 1 is also conjectured for general families of
one-dimensional maps, but this has not yet been proved.

Jakobson’s theorem does extend beyond quadratic maps, and many general
criteria for the existence of absolutely continuous invariant measures were ob-
tained since then. This is the most interesting case from an ergodic point of view,
and there are several works concerning statistical properties of non-uniformly hy-
perbolic maps in dimension one, such as the results of Keller-Nowicki [51] and
Young [109] on exponential decay of correlations, and those of Collet [28], Katok-
Kifer [49], Benedicks-Young [10], and Baladi-Viana [6] on stochastic stability.

Infinite-modal maps – one-dimensional maps with infinitely many maxima and
minima – come up in many natural contexts of Dynamics, but they are mostly
unexplored. Recently, Pacifico-Rovella-Viana [80] proved that non-uniform hyper-
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bolicity is persistent – positive Lebesgue measure set of parameters – in a large
class of parametrized families of infinite-modal maps, thus setting a way to a more
complete study of such maps and their statistical properties. It is an interesting
problem to carry out such a study.

4 Hénon-like attractors

This class of systems is modeled by the Hénon map [44]

(x, y) 7→ f(x, y) = (1− ax2 + y, bx),

where a, b are real parameters. A main feature is the coexistence of hyperbolic and
folding behaviour: at points away from the line x = 0 one may find complementary
directions that are geometrically contracted and expanded by the derivative of the
map; but these directions do not extend across the critical region {x ≈ 0}, where
the phase space is “folded” by the map.

For a large domain in parameter space, e.g. 1 < a < 2 and b not too large,
one may find some rectangle R which is positively invariant – f maps R to its
interior – and this is the most interesting case. Computer pictures of the “strange
attractor”, where orbits of points inside R seem to accumulate, were produced by
Hénon [44] for parameters a ≈ 1.4, b ≈ 0.3. But it was only some ten years ago that
Benedicks-Carleson could prove that there is indeed a non-trivial (non-periodic)
attractor, with positive probability in parameter space:

Theorem 2 ([7]). For every sufficiently small b > 0 there exists a positive
Lebesgue measure subset E ⊂ R so that for all a ∈ E there exists a compact invari-
ant subset Λ ⊂ R such that B(Λ) has non-empty interior, and ‖Dfn(z)‖ → +∞
exponentially fast when n→ +∞, for some z with forward orbit dense in Λ.

This was a major achievement, opening the way to a theory of Hénon-like
maps , which are the first class of genuinely non-uniformly hyperbolic systems in
dimension larger than 1 to be understood specially from an ergodic point of view
(Lorenz-like flows can be reduced to hyperbolic maps, cf. Section 6).

On the one hand, it was shown that attractors combining hyperbolic and crit-
ical behaviour are a very general phenomenon occurring, with positive probability
in parameter space, in many bifurcations of diffeomorphisms or flows: homoclinic
tangencies Mora-Viana [64], saddle-node cycles Dı́az-Rocha-Viana [35], Costa [31],
saddle-focus connections Pumariño-Rodriguez [92]. Colli [30] proved that infinitely
many of these attractors may coexist, for many parameter values, in the unfolding
of homoclinic tangencies. Henceforth, I refer to all these attractors as Hénon-like.

On the other hand, Benedicks-Young proved that these non-hyperbolic at-
tractors have, nevertheless, well defined statistical properties:

Theorem 3 ([11], [12]). Let Λ be a Hénon-like attractor of a surface diffeomor-
phism f , as above. Then there exists a unique SRB measure µ supported on Λ, and
(f, µ) is equivalent to a Bernoulli shift. Moreover, (f, µ) has exponential decay of
correlations in the space of Hölder continuous functions.
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Their strategy in [11] was to find an ergodic invariant measure µ supported on
Λ, with absolutely continuous conditional measures along Pesin’s unstable man-
ifolds. Then, the basin of µ must contain a positive Lebesgue measure set, cf.
Pugh-Shub [90]. This construction of the SRB measure could not decide whether
Lebesgue almost every point that is attracted to Λ is in B(µ) or, on the contrary,
there are sizable sets (“holes”) of points in B(Λ) whose time average is not given
by µ. This basin problem was raised by Sinai and by Ruelle back in the seventies,
and is also related to the following question: is Lebesgue almost every orbit in the
basin of attraction asymptotic to some orbit inside the attractor? For uniformly
hyperbolic attractors the answers are well-known and affirmative, see Bowen [19].

Then, Benedicks and I solved both questions for Hénon-like attractors: there
are no “holes” in their basins. More recently, we also proved that these attractors
are stochastically stable, thus bringing the ergodic theory of these systems close
to completion.

Theorem 4 ([9], [8]). Let Λ be a Hénon-like attractor of a surface diffeomor-
phism f , as before, and µ be the SRB measure. Then

B(Λ) =
⋃
ξ∈Λ

W s(ξ) = B(µ), up to zero Lebesgue measure sets.

Moreover, (f, µ) is stochastically stable under small random perturbations.

The proofs of these results depend on an assumption of strong area dissipative-
ness, e.g. in Theorem 2 the Jacobian of f must be very small (much smaller than
Hénon’s b ≈ 0.3). In particular, we are still far from understanding non-uniformly
hyperbolic behaviour in area-preserving systems such as the conservative Hénon
family (x, y) 7→ (1− ax2 + y,±x), or the standard family of maps on the 2-torus

fk(x, y) = (−y + 2x+ k sin(2πx), x)

For the latter, Duarte [36] proved abundance of KAM islands for generic (Baire
second category) large parameters k. But the standing conjecture is that, from a
measure-theoretical point of view, non-uniform hyperbolicity – non-zero Lyapunov
exponents on a positive Lebesgue measure subset, possibly even non-existence of
elliptic islands – should prevail in parameter space. To settle this is a major
challenge in Dynamics nowadays.

5 Homoclinic tangencies - Fractal dimensions

A homoclinic tangency is a non-transverse intersection between the stable mani-
fold and the unstable manifold of some periodic point p. In this section I want to
explain why this phenomenon is a main ingredient for non-hyperbolic dynamics:
homoclinic tangencies are always an obstruction to hyperbolicity and, for low di-
mensional systems such as surface diffeomorphisms, this is likely to be the essential
obstruction.

Palis conjectured that every surface diffeomorphism can be Ck approximated
by another which either is uniformly hyperbolic or has a homoclinic tangency.
This was recently established by Pujals-Sambarino, for k = 1:
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Theorem 5 ([91]). The set of diffeomorphisms on a surface M which are either
uniformly hyperbolic or have a homoclinic tangency is dense in Diff1(M).

Their arguments, inspired by Mañé’s proof of the C1 stability conjecture [61],
[62], [63], have other important consequences, including the following corollary of
Theorem 5 that gives a partial converse to Newhouse’s theorem [75]: C1 open
sets where coexistence of infinitely many periodic attractors occurs densely must
contain diffeomorphisms with homoclinic tangencies.

There are other results showing that specific phenomena of complicated dy-
namics, such as saddle-node cycles, cascades of bifurcations, or Hénon-like attrac-
tors, can be approximated by maps with homoclinic tangencies; see Newhouse-
Palis-Takens [77], Catsigeras [25], Ures [103]. Conversely, surface diffeomorphisms
with homoclinic tangencies are approximated by others exhibiting any of these
phenomena; see Newhouse [75], Yorke-Alligood [107], Mora-Viana [64], Colli [30].
In these situations one gets approximation in the Ck sense, any k ≥ 1, and so
these results indicate that the space of non-hyperbolic Ck surface diffeomorphisms
should be rather homogeneous, even if there is little hope to settle the general case
k ≥ 2 of the conjecture above in a near future.

Let fµ, µ ∈ R, be a generic parametrized families of diffeomorphisms on a
surface M , such that f = f0 has a homoclinic tangency. What can one say about
the dynamics of fµ, for the majority of parameters µ close to zero? In some
cases fµ turns out to be uniformly hyperbolic for a set of parameters H with full
Lebesgue density at µ = 0:

lim
ε→0

Leb(H ∩ [−ε, ε])

2ε
= 1.

This is due to Palis-Takens [82], [83], extending Newhouse-Palis [76], where a main
assumption is that the periodic point p is in a hyperbolic set Λ whose Hausdorff
dimension HD(Λ) is less than 1. On the other hand, Palis-Yoccoz [86] showed
that this is generically not true if the Hausdorff dimension is larger than 1.

These works, as well as Newhouse [74], displayed a crucial role played by
fractal dimensions and related geometric invariants in the theory of bifurcations,
and inspired some general problems about Cantor subsets of the real line with
important consequences in the dynamical setting. Another conjecture of Palis
claimed that for generic regular Cantor sets K1,K2 ⊂ R, the arithmetic difference
K2 − K1 = {a2 − a1 : a1 ∈ K1, a2 ∈ K2} either has zero Lebesgue measure or
contains an interval. A regular Cantor set is one which is generated by a smooth
expanding map defined on a finite union of intervals. The space of regular Cantor
sets inherits a topology from the space of such expanding maps, and the word
generic refers to a residual (Baire second category) subset in this topology. The
arithmetic difference always has measure zero if HD(K1) +HD(K2) < 1, so the
interesting case of the conjecture corresponds to the sum being larger than 1.
This was achieved a couple of years ago by Moreira-Yoccoz who, in fact, proved a
stronger statement:

Theorem 6 ([73]). There exists an open and dense subset of the space of pairs of
regular Cantor sets (K1,K2) with HD(K1)+HD(K2) > 1, such that K1 intersects
stably some translate K2 + t.
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Partial results had been obtained by Moreira [71], who introduced the notion
of stable intersection: given any K̃1 close toK1 and K̃2 close toK2+t, then K̃1∩K̃2

is non-empty. In particular, K2 − K1 contains an interval around t. Theorem 6
has the following important translation in the dynamical setting [72]: for a generic
family of diffeomorphisms fµ unfolding a homoclinic tangency the set of parameters
for which fµ is either uniformly hyperbolic or has persistent homoclinic tangencies
has full density at µ = 0. This second possibility corresponds to intervals in
parameter space where densely one observes homoclinic tangencies, cf. [75].

Of course, one also wants to describe the structure of the limit set L(fµ), for
most small values of µ, specially when it is not uniformly hyperbolic. Palis-Yoccoz
announced recently that L(fµ) does have a property of weak hyperbolicity for a set
of parameters with full density at zero, if the Hausdorff dimension of the horseshoe
Λ involved in the tangency is not too large, e.g. HD(Λ) < 3/2. Roughly, the part
of the limit set that is related to the unfolding of the tangency looks like a saddle-
type version of the Hénon attractor: in particular, its stable and unstable sets
have zero Lebesgue measure.

Several of these results hold in any dimension, or have been subsequently
extended to that generality, see Viana [104], Palis-Viana [85], Romero [93],
Gonchenko-Shil’nikov-Turaev [39], and references therein. As a rule, results in-
volving fractal dimensions are much harder in higher dimensions, and this is a
subject of current research. On the other hand, for high dimensional diffeomor-
phisms and flows, new key phenomena enter the scene, besides homoclinic tangen-
cies, and problems and conjectures must be restated accordingly. This I discuss
in the next sections.

6 Singular flows

In the early sixties, Lorenz [56] observed that the solutions of a simple differential
equation in dimension 3,

ẋ = −10x+ 10y, ẏ = 28x− y − xz, ż = −
8

3
z + xy (2)

related to a model of atmospheric convection, seemed to depend sensitively on the
initial point. Thus, in practice, their behaviour over long periods of time can not
be effectively predicted (and so neither can the weather, according to Lorenz): one
would need to know the initial point with infinite precision.

Geometric models were proposed by Afraimovich-Bykov-Shil’nikov [1] and
Guckenheimer-Williams [42], to interpret the behaviour observed by Lorenz in the
equation (2). These are smooth flowsXt in three dimensions, admitting a trapping
region U – the closure of Xt(U) is contained in U for every t > 0 – such that the
maximal invariant set Λ = ∩t>0X

t(U) contains both a singularity (equilibrium
point) and regular orbits dense in Λ. The flow leaves invariant a foliation of U , a
key property that permits to reduce the dynamics to that of an expanding map of
the interval. Moreover, these attractors are robust: the maximal invariant set in
U of any nearby flow Y t also has all these properties.
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These Lorenz models attracted a lot of attention, and their geometric, dynam-
ical, and ergodic properties are now well understood: in particular, they support a
unique SRB measure and they are stochastically stable. See e.g. Bunimovich [22],
Collet-Tresser [29], Kifer [52], Pesin [88], Sataev [97], and references therein. On
the other hand, Lorenz’ original conjecture that a sensitive attractor Λ exists in
the specific system (2) remained an open problem for more than three decades.
Remarkably, a positive solution has just been announced by Tucker [102].

With these examples in mind, let us call a compact invariant set Λ of a flow
Xt a singular transitive set if it is the maximal invariant set Λ =

⋂
t∈R

Xt(U) in
some open neighbourhood U , and contains both singularities and dense regular
orbits. We also call Λ a singular (or Lorenz-like) attractor if U can be taken
positively invariant (trapping), and a singular repeller if it is a singular attractor
for the flow X−t obtained from Xt by reversing the direction of time. In general,
we say that the singular transitive set Λ is C1 robust if ΛY = ∩t∈RY

t(U) is also a
singular transitive set for any flow Y t in a C1 neighbourhood of Xt.

Robust singular transitive sets are a main novelty in the dynamics of flows,
relative to discrete time systems. In the last few years, Morales-Pacifico-Pujals
have been developing a general theory of such sets, specially in the 3-dimensional
case. A related goal is to characterize the flows whose singularities and periodic
orbits are robustly hyperbolic, meaning that they remain so for every C1 nearby
flow, see [66]. Morales-Pacifico-Pujals construct new types of flows with singular
attractors, some of which can be obtained from hyperbolic flows through a single
bifurcation [65], [70], [67]. Most specially, they prove that a C1 robust singular
transitive set Λ must have the following hyperbolicity property [68]. A compact
invariant set Λ is singular hyperbolic for the flow Xt if there exists a decomposition
of the tangent space

TΛM = E1 ⊕ E2

invariant under everyDXt, where E1 is 1-dimensional and (norm) contracting, and
E2 is 2-dimensional and volume expanding. The latter may contain directions that
are contracted, but the decomposition must be dominated : possible contraction
along E2 is weaker than the contraction along E1. We also say that Λ is singular
hyperbolic for Xt if it is singular hyperbolic for the dual flow X−t.

Theorem 7 ([68]). Let Λ be a C1 robust singular transitive set of a flow on a
3-dimensional manifold M . Then all the singularities in Λ have the same stable
dimension, either 1 or 2. In the first case Λ is a singular repeller, in the second
one it is a singular attractor. In either case, Λ is a singular hyperbolic set.

A key tool in Theorem 7, and in other important results in this area, is
Hayashi’s connecting lemma [43]: a system exhibiting some unstable manifold
accumulating on a stable manifold may be C1 perturbed to have the two invariant
manifolds intersect.

A next step is to understand the structure of singular hyperbolic sets. In this
direction, Morales-Pacifico-Pujals can give a pseudo Markov description reminis-
cent of [20], and they also have made progress towards a converse to Theorem 7,
characterizing when a singular hyperbolic set is C1 robustly transitive. In the
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proof of the theorem they also get that in the attractor case the eigenvalues at the
singularities λ1 < λ2 < 0 < λ3 must satisfy λ2 + λ3 > 0, just as in the classical
Lorenz models. A dual fact holds in the repeller case.

Rovella [94] had given the first examples of singular transitive attractors that,
although not robust, are persistent in a probabilistic sense: positive probability
in parameter space, in generic parametrized families of flows through the initial
one. For this he considered a modification of the geometric Lorenz flows where
the eigenvalues at the singularity satisfy λ2 + λ3 < 0 instead. New examples are
provided by the extended model for the behaviour of the Lorenz equations over a
large parameter range proposed by Luzzatto-Viana [58], [57]: a main novelty with
respect to the usual geometric models and Rovella’s flows is that these systems
admit no invariant foliation. Moreover, Pacifico-Rovella-Viana [80], [79] proved
that global spiral attractors exist, as conjectured by Sinai, in fact they occur
persistently in many families of flows. These are attractors containing a saddle-
focus singularity (two contracting complex and one real expanding eigenvalue),
which forces an extremely complicated spiraling geometry.

The theory of singular flows in dimension larger than 3 is mostly open. Until
very recently it was not even known whether robust transitive attractors can con-
tain singularities with unstable dimension larger than 1, an old problem posed by
the introduction of the geometric Lorenz models in the seventies. This was solved
by Bonatti-Pumariño-Viana [17] who proved that such multidimensional Lorenz-
like attractors do exist, with arbitrary unstable dimension k ≥ 1. Moreover, they
support a unique SRB measure. Examples persisting in codimension 2 subsets of
flows were found by Morales-Pujals [69].

Let me also briefly comment on piecewise smooth maps, an important class of
systems including e.g. Poincaré maps of flows with singularities, some Markov or
non-Markov extensions of smooth maps, and billiards. See [50]. Liverani [55]
proved exponential decay of correlations for area-preserving uniformly hyper-
bolic piecewise smooth maps. Young [110] extended this to the dissipative case,
and also proved exponential decay of correlations for planar Sinai billiards [99].
Chernov [26], [27] extended these results to arbitrary dimension. Alves [2] con-
structed absolutely continuous invariant measures for piecewise expanding maps
with countably many domains of smoothness, in any dimension.

7 Cycles - partial hyperbolicity

For high dimensional maps and flows, more generally than homoclinic tangencies
one must take into account heteroclinic cycles : periodic points with variable stable
dimensions cyclic related through intersections between their invariant manifolds.
A general version of the conjecture at the beginning of Section 5 was also proposed
by Palis: every diffeomorphism can be Ck approximated by another which either
is uniformly hyperbolic or has a homoclinic tangency or a heteroclinic cycle.

A key fact about uniformly hyperbolic diffeomorphisms (or flows), is that the
limit set L(f) can be partitioned into finitely many basic pieces Λ1, . . . ,ΛK (among
which are the attractors of f) that are invariant, transitive, and isolated : each Λi

is the maximal invariant set in a neighbourhood Ui. In fact, Λi is C1 robustly
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transitive: the continuation Λi(g) = ∩n∈Zg
n(Ui) of Λi is also transitive, for any

diffeomorphism g C1 close to f . See [101]. Can one find something on the way
of such a decomposition for general diffeomorphisms? Recently, there has been
some remarkable progress towards understanding how the building blocks could
look like. Let Λ be an isolated C1 robustly transitive set of a diffeomorphism f .
What can be said about Λ?

For surface diffeomorphisms, Mañé [61] proved that Λ must be a hyperbolic
set. He also observed that this can not be true in higher dimensions: there exist
open sets of C1 diffeomorphisms of the 3-torus which are transitive in the whole
ambient, and yet have periodic saddles with different stable dimensions (so they
can not be Anosov diffeomorphisms). Notice that C1 robustly transitive diffeomor-
phisms that are not uniformly hyperbolic had been exhibited before by Shub [98],
in dimension 4 or higher. In both constructions, the diffeomorphisms admit a
continuous invariant splitting TM = Es ⊕ Ec ⊕ Eu such that Es is contracting,
Eu is expanding, and they dominate Ec. Bonatti-Dı́az [14], building on Dı́az[32],
gave the first examples of robustly transitive diffeomorphism with central bundle
Ec having dimension larger than 1.

Next, Dı́az-Pujals-Ures [33] proved that C1 robustly transitive sets of diffeo-
morphisms in dimension 3 must be partially hyperbolic. A compact set Λ invariant
under a diffeomorphism f is partially hyperbolic if there are C > 0, λ < 1, and an
invariant splitting of the tangent space TΛM = E1 ⊕ E2 which is dominated

‖Dfn|E1
z‖ ‖(Df

n|E2
z )

−1‖ ≤ Cλn for all z ∈M and n ≥ 1

and such that either E1 is contracting or E2 is expanding: either

‖Dfn|E1‖ ≤ Cλn for all n ≥ 1, or ‖(Dfn|E2)−1‖ ≤ Cλn for all n ≥ 1.

It is common to write the splitting E1 ⊕ E2 as Es ⊕ Ec in the first case, and
as Ec ⊕ Eu in the second one, and I shall keep this convention in what follows.
Still in dimension 3, Bonatti observed that C1 robustly transitive sets need not
be strongly partially hyperbolic (three invariant subbundles), see [18] for other
examples. Also related to this, Dı́az-Rocha [34] prove that near a diffeomorphism
with a heteroclinic cycle there are others with either homoclinic tangencies or
robustly transitive sets that are strongly partially hyperbolic.

In [18], Bonatti and I also constructed the first examples of robustly transi-
tive diffeomorphisms having neither contracting nor expanding subbundles. Our
examples, e.g. in the 4-torus, do admit a dominated splitting, though, with E1

volume contracting and E2 volume expanding. Then, Bonatti-Dı́az-Pujals [16]
rounded off this series of results, by proving that a dominated splitting is indeed
a necessary condition for robust transitivity, in any dimension. Summarizing:

Theorem 8. Let Λ be a C1 robustly transitive set of f :M →M .

1. ([61]) If dimM = 2 then Λ is a hyperbolic set.

2. ([33]) If dimM = 3 then Λ is a partially hyperbolic set.

3. ([16]) If dimM ≥ 4 then Λ admits a dominated splitting.
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Actually, Mañé [61] had proved a stronger fact than 1 above, implying that
a transitive isolated set of a surface diffeomorphism either is hyperbolic or its
continuation for some C1 near map contains infinitely many periodic attractors
or repellers. This is also extended to any dimension in [16], with hyperbolicity
replaced by existence of a dominated splitting.

Diffeomorphisms with infinitely many periodic attractors or repellers are still
a mystery: little is known apart from the fact that they are generic in some open
sets of Diff2(M), cf. [74], [75], [85], and of Diff1(M) if dimM ≥ 3, cf. [15].
Pujals-Sambarino report some progress in the direction of proving that such dif-
feomorphisms can be approximated by others having (codimension 1) homoclinic
tangencies, in the C1 topology. This would be an important step towards incor-
porating this phenomenon into the theory. Another point of view is to try to
show that it is negligible from a probabilistic point of view. It is not yet known if
coexistence of infinitely many attractors or repellers corresponds to zero Lebesgue
probability sets in parameter space, for generic families of maps. But Araújo [5]
proves that some general maps with random noise have only finitely many at-
tractors, including one-parameter families of diffeomorphisms through homoclinic
tangencies (as originally considered in [74]) with small random errors in parameter
space.

8 Ergodic properties of partially hyperbolic systems

Then, a central problem is to understand the structure and properties of partially
hyperbolic transitive sets or, more generally, invariant transitive sets supporting
a dominated splitting. Here is a couple of my favourite questions: Do these sets
have some shadowing property (approximation of pseudo-orbits by actual orbits)?
Can one give some description of the dynamics in symbolic terms (semi-conjugacy
to a shift map)?

In general, these questions are wide open, but for C2 diffeomorphisms on a
surface Pujals-Sambarino [91] provide a rather precise description of sets Λ with
a dominated splitting: if all the periodic points in Λ are hyperbolic saddles, then
it is the union of a hyperbolic set and finitely many invariant closed curves which
are normally hyperbolic and support an irrational rotation.

On the other hand, there is substantial progress in the ergodic theory of par-
tially hyperbolic systems. Much of the foundations concerning invariant foliations
were set by Brin-Pesin [21], and they investigated the relations between topological
properties of these foliations and ergodic properties of the system, specially when
it preserves volume. This was pursued more recently by Grayson-Pugh-Shub [41],
leading to several other results providing conditions for a diffeomorphism to be
stably ergodic: every volume preserving diffeomorphism in a C1 neighbourhood is
ergodic with respect to Lebesgue measure.

For general partially hyperbolic attractors Λ, Pesin-Sinai [89] constructed
Gibbs u-states : invariant measures with absolutely continuous conditional mea-
sures along strong-unstable leaves (leaves of the unique integral foliation of Eu).
Then Carvalho [23] proved that in some cases, e.g. diffeomorphisms derived from
Anosov ones, these Gibbs u-states are SRB measures. Kan [47] gave examples of
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transitive partially hyperbolic diffeomorphisms having more than one SRB mea-
sure, with the basin of each of these measures dense in the ambient.

In [105], I introduced a class of maps exhibiting non-hyperbolic attractors
with a multidimensional character: there are several expanding directions (positive
Lyapunov exponents) at Lebesgue almost every point in the basin of attraction.
The simplest case corresponds to cylinder maps like

ϕ : S1 × R → S1 × R, ϕ(θ, x) = (g(θ), a(θ)− x2)

where g is strongly expanding, and a(·) is a convenient Morse function (diffeo-
morphisms in compact manifolds and/or higher dimensions may be constructed
along similar lines). They present some notable differences with respect to low
dimensional non-hyperbolic systems such as unimodal or Hénon maps, in partic-
ular they are robust (not just metrically persistent): chaotic behaviour – several
positive Lyapunov exponents – occurs for a full open set of perturbations. In
this context, Alves obtained the first examples of SRB measures with non-uniform
multidimensional expansion:

Theorem 9 ([2]). Every map in a neighbourhood of ϕ in the space of C3 self
maps of S1 × R admits an absolutely continuous invariant measure µ. Moreover,
this measure is unique and ergodic.

These last results inspired two general statements of existence and finitude of
SRB measures for partially hyperbolic attractors that I condense in the following
theorem. They concern partially hyperbolic diffeomorphisms whose central direc-
tion is either mostly contracting – negative Lyapunov exponents along Ec – or
mostly expanding – positive Lyapunov exponents along Ec. Without going into
technicalities (nor maximum generality) let me say that, given a diffeomorphism
f partially hyperbolic over the whole M with invariant splitting TM = Ec ⊕ Eu,
then Ec is mostly contracting if ‖Dfn(z)v‖ → 0 exponentially fast as n → +∞,
for every v ∈ Ec

z and Lebesgue almost every z ∈ M . And, given f with invariant
splitting TM = Es ⊕ Ec, we say that Ec is mostly expanding if ‖Dfn(z)v‖ → ∞
exponentially fast as n→ +∞, for every v ∈ Ec

z and Lebesgue almost every z ∈M ,
like in (3) below.

Theorem 10. Let f be a partially hyperbolic C2 diffeomorphism on a manifold
M . We have

1. ([18]) If the central direction is mostly contracting, then the Gibbs u-states
of f are SRB measures, there are finitely many of them, and their basins
cover a full Lebesgue measure subset of M .

2. ([3]) If the central direction is mostly expanding, then Lebesgue almost every
point is in the basin of some SRB measure. If the central Lyapunov exponents
are bounded away from zero then there are finitely many SRB measures.

Pushing part 1 of the theorem further on, Castro [24] has just proved expo-
nential decay of correlations for a large class of partially hyperbolic attractors.
Related to the examples of Kan [47] I mentioned before, which also fit in this
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setting, it is interesting to mention that if all the leaves of the strong-unstable
foliation are dense in M then there is a unique SRB measure [18]. Is this generic
among the transitive diffeomorphisms satisfying the assumptions of part 1?

The proof of part 2 includes a generalization of Ruelle’s theorem [96] on
the existence of absolutely continuous invariant measures for uniformly expanding
maps. Let f :M →M be any C2 covering map which is non-uniformly expanding
in the sense that (m(L) = 1/‖L−1‖ is the minimum expansion of a linear map L)

lim inf
n→+∞

1

n
log

n−1∏
j=0

m(Df(f j(z))) > 0 (3)

Lebesgue almost everywhere. Then f has some ergodic invariant measure abso-
lutely continuous with respect to Lebesgue measure and, indeed, the basins of such
measures cover almost all of M . There is a version of this last result for piecewise
smooth maps, assuming that most points do not visit the singular set (where the
map fails to be smooth, or the derivative fails to be surjective) too close too often;
see [3].

Such results suggest that non-uniform hyperbolicity may suffice for a system
to have good statistical properties. In this spirit, I state the following

Conjecture: If a smooth map has only non-zero Lyapunov exponents at Lebesgue
almost every point, then it admits some SRB measure.
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