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What is Moonshine?

Richard E. Borcherds1

This is an informal write up of my talk at the ICM in Berlin. It gives some
background to Goddard’s talk [Go] about the moonshine conjectures. For other
survey talks about similar topics see [B94], [B98], [LZ], [J], [Ge], [Y].

The classification of finite simple groups shows that every finite simple group
either fits into one of about 20 infinite families, or is one of 26 exceptions, called
sporadic simple groups. The monster simple group is the largest of the sporadic
finite simple groups, and was discovered by Fischer and Griess [G]. Its order is

8080, 17424, 79451, 28758, 86459, 90496, 17107, 57005, 75436, 80000, 00000

= 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71

(which is roughly the number of elementary particles in the earth). The smallest
irreducible representations have dimensions 1, 196883, 21296876, . . . . The elliptic
modular function j(τ) has the power series expansion

j(τ) = q−1 + 744 + 196884q + 21493760q2 + . . . ,

where q = e2πiτ , and is in some sense the simplest nonconstant function satisfying
the functional equations j(τ) = j(τ + 1) = j(−1/τ). John McKay noticed some
rather weird relations between coefficients of the elliptic modular function and the
representations of the monster as follows:

1 = 1 ,

196884 = 196883 + 1 ,

21493760 = 21296876 + 196883 + 1 ,

where the numbers on the left are coefficients of j(τ) and the numbers on the
right are dimensions of irreducible representations of the monster. At the time he
discovered these relations, several people thought it so unlikely that there could be
a relation between the monster and the elliptic modular function that they politely
told McKay that he was talking nonsense. The term “monstrous moonshine”
(coined by Conway) refers to various extensions of McKay’s observation, and in
particular to relations between sporadic simple groups and modular functions.

For the benefit of readers who are not native English speakers, I had better
point out that “moonshine” is not a poetic terms referring to light from the moon.
It means foolish or crazy ideas. (Quatsch in German.) A typical example of its

1Supported by a Royal Society professorship.
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use is the following quotation from E. Rutherford (the discoverer of the nucleus of
the atom): “The energy produced by the breaking down of the atom is a very poor
kind of thing. Anyone who expects a source of power from the transformations of
these atoms is talking moonshine.” (Moonshine is also a name for corn whiskey,
especially if it has been smuggled or distilled illegally.)

We recall the definition of the elliptic modular function j(τ). The group
SL2(Z) acts on the upper half plane H by

(

a b
c d

)

(τ) =
aτ + b

cτ + d
.

A modular function (of level 1) is a function f on H such that
f((aτ + b)/(cτ + d)) = f(τ) for all

(

ab
cd

)

∈ SL2(Z). It is sufficient to as-
sume that f is invariant under the generators τ 7→ τ +1 and τ 7→ −1/τ of SL2(Z).
The elliptic modular function j is the simplest nonconstant example, in the sense
that any other modular function can be written as a function of j. It can be
defined as follows:

j(τ) =
E4(τ)

3

∆(τ)

= q−1 + 744 + 196884q + 21493760q2 + · · · ,

E4(τ) = 1 + 240
∑

n>0

σ3(n)q
n

= 1 + 240q + 2160q2 + · · ·
(σ3(n) =

∑

d|n
d3) ,

∆(τ) = q
∏

n>0

(1− qn)24

= q − 24q + 252q2 + · · · .

A modular form of weight k is a holomorphic function

f(τ) =
∑

n≥0

c(n)qn

on the upper half plane satisfying the functional equation f((aτ + b)/(cτ + d)) =
(cτ + d)kf(τ) for all

(

a b
c d

)

∈ SL2(Z). The function E4(τ) is an Eisenstein series
and is a modular form of weight 4, while ∆(τ) is a modular form of weight 12.

The function j(τ) is an isomorphism from the quotient SL2(Z)\H to C, and
is uniquely defined by this up to multiplication by a constant or addition of a
constant. In particular any other modular function is a function of j, so j is in
some sense the simplest nonconstant modular function.

An amusing property of j (which so far seems to have no relation with moon-
shine) is that j(τ) is an algebraic integer whenever τ is an imaginary quadratic

Documenta Mathematica · Extra Volume ICM 1998 · I · 607–615



What is Moonshine? 609

irrational number. A well known consequence of this is that

exp(π
√
163) = 262537412640768743.99999999999925 . . .

is very nearly an integer. The explanation of this is that j((1+i
√
163)/2) is exactly

the integer
−262537412640768000 = −2183353233293 ,

and

j((1 + i
√
163)/2) = q−1 + 744 + 196884q + · · ·

= −eπ
√
163 + 744 + (something very small).

McKay and Thompson suggested that there should be a graded represen-
tation V = ⊕n∈ZVn of the monster, such that dim(Vn) = c(n − 1), where j(τ) −
744 =

∑

n c(n)q
n = q−1 + 196884q + · · ·. Obviously this is a vacuous statement

if interpreted literally, as we could for example just take each Vn to be a trivial
representation. To characterize V , Thompson suggested looking at the McKay-
Thompson series

Tg(τ) =
∑

n

Tr(g|Vn)q
n−1

for each element g of the monster. For example, T1(τ) should be the elliptic
modular function. Conway and Norton [C-N] calculated the first few terms of each
McKay-Thomson series by making a reasonable guess for the decomposition of the
first few Vn’s into irreducible representations of the monster. They discovered the
astonishing fact that all the McKay-Thomson series appeared to be Hauptmoduls
for certain genus 0 subgroups of SL2(R). (A Hauptmodul for a subgroup Γ is
an isomorphism from Γ\H to C, normalized so that its Fourier series expansion
starts off q−1 +O(1).)

As an example of some Hauptmoduls of elements of the monster, we will look
at the elements of order 2. There are 2 conjugacy classes of elements of order
2, usually called the elements of types 2A and 2B. The corresponding McKay-
Thompson series start off

T2B(τ) = q−1 + 276q − 2048q2 + · · · Hauptmodul for Γ0(2)

T2A(τ) = q−1 + 4372q + 96256q2 + · · · Hauptmodul for Γ0(2)+

The group Γ0(2) is {
(

ab
cd

)

∈ SL2(Z)|c is even}, and the group Γ0(2)+ is the
normalizer of Γ0(2) in SL2(R). Ogg had earlier commented on the fact that the
full normalizer Γ0(p)+ of Γ0(p) for p prime is a genus 0 group if and only if p is
one of the primes 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, or 71 dividing
the order of the monster.

Conway and Norton’s conjectures were soon proved by A. O. L. Atkin, P.
Fong, and S. D. Smith. The point is that to prove something is a virtual charac-
ter of a finite group it is only necessary to prove a finite number of congruences.
In the case of the moonshine module V , proving the existence of an infinite di-
mensional representation of the monster whose McKay-Thompson series are give
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Hauptmoduls requires checking a finite number of congruences and positivity con-
ditions for modular functions, which can be done by computer.

This does not give an explicit construction of V , or an explanation about why
the conjectures are true. Frenkel, Lepowsky, and Meurman managed to find an
explicit construction of a monster representation V = ⊕Vn, such that dim(Vn) =
c(n−1), and this module had the advantage that it came with some extra algebraic
structure preserved by the monster. However it was not obvious that V satisfied
the Conway-Norton conjectures. So the main problem in moonshine was to show
that the monster modules constructed by Frenkel, Lepowsky and Meurman on the
one hand, and by Atkin, Fong, and Smith on the other hand, were in fact the same
representation of the monster.

Peter Goddard [Go] has given a description of the proof of this in his talk in
this volume, so I will only give a quick sketch of this. The main steps of the proof
are as follows:

• 1. The module V constructed by Frenkel, Lepowsky, and Meurman has an
algebraic structure making it into a “vertex algebra”. A detailed proof of
this is given in [F-L-M].

• 2. Use the vertex algebra structure on V and the Goddard-Thorn no-ghost
theorem [G-T] from string theory to construct a Lie algebra acted on by the
monster, called the monster Lie algebra.

• 3. The monster Lie algebra is a “generalized Kac-Moody algebra” ([K90]);
use the (twisted) Weyl-Kac denominator formula to show that Tg(τ) is a
“completely replicable function”.

• 4. Y. Martin [M], C. Cummins, and T. Gannon [C-G] proved several theo-
rems showing that completely replicable functions were modular functions of
Hauptmoduls for genus 0 groups. By using these theorems it follows that Tg

is a Hauptmodul for a genus 0 subgroup of SL2(Z), and hence V satisfies the
moonshine conjectures. (The original proof used an earlier result by Koike
[Ko] showing that the appropriate Hauptmoduls were completely replicable,
together with a boring case by case check and the fact that a completely
replicable function is characterized by its first few coefficients.)

We will now give a brief description of some of the terms above, starting with
vertex algebras. The best reference for finding out more about vertex algebras is
Kac’s book [K]. In this paragraph we give a rather vague description. Suppose
that V is a commutative ring acted on by a group G. We can form expressions
like

u(x)v(y)w(z) ,

where u, v, w ∈ V and x, y, z ∈ G, and the action of x ∈ G on u ∈ V is denoted
rather confusingly by u(x). (This is not a misprint for x(u); the reason for this
strange notation is to make the formulas compatible with those in quantum field
theory, where u would be a quantum field and x a point of space-time.) For each
fixed u, v, . . . ∈ V , we can think of u(x)v(y) · · · as a function from Gn to V . We
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can rewrite the axioms for a commutative ring acted on by G in terms of these
functions. We can now think of a vertex algebra roughly as follows: we are given
lots of functions from Gn to V satisfying the axioms mentioned above, with the
difference that these functions are allowed to have certain sorts of singularities. In
other words a vertex algebra is a sort of commutative ring acted on by a group G,
except that the multiplication is not defined everywhere but has singularities. In
particular we cannot recover an underlying ring by defining the product of u and v
to be u(0)v(0), because the function u(x)v(y) might happen to have a singularity
at u = v = 0.

It is easy to write down examples of vertex algebras: any commutative ring
acted on by a group G is an example. (Actually this is not quite correct: for
technical reasons we should use a formal group G instead of a group G.) Con-
versely any vertex algebra “without singularities” can be constructed in this way.
Unfortunately there are no easy examples of vertex algebras that are not really
commutative rings. One reason for this is that nontrivial vertex algebras must be
infinite dimensional; the point is that if a vertex algebra has a nontrivial singular-
ity, then by differentiating it we can make the singularity worse and worse, so we
must have an infinite dimensional space of singularities. This is only possible if
the vertex algebra is infinite dimensional. However there are plenty of important
infinite dimensional examples; see for example Kac’s book for a construction of
the most important examples, and [FLM] for a construction of the monster vertex
algebra.

Next we give a brief description of generalized Kac-Moody algebras. The
best way to think of these is as infinite dimensional Lie algebras which have most
of the good properties of finite dimensional reductive Lie algebras. Consider a
typical finite dimensional reductive Lie algebra G, (for example the Lie algebra
G = Mn(R) of n× n real matrices). This has the following properties:

• 1. G has an invariant symmetric bilinear form ( , ) (for example (a, b) =
−Tr(a, b)).

• 2. G has a (Cartan) involution ω (for example, ω(a) = −at).

• 3. G is graded as G = ⊕n∈ZGn with Gn finite dimensional and with ω acting
as −1 on the “Cartan subalgebra” G0. (For example, we could put the basis
element ei,j of Mn(R) in Gi−j .)

• 4. (a, ω(a)) > 0 if g ∈ Gn, g 6= 0.

Conversely any Lie algebra satisfying the conditions above is essentially a sum of
finite dimensional and affine Lie algebras. Generalized Kac-Moody algebras are
defined by the same conditions with one small change: we replace condition 4 by

• 4’. (a, ω(a)) > 0 if g ∈ Gn, g 6= 0 and n 6= 0.

This has the effect of allowing an enormous number of new examples, such as all
Kac-Moody algebras and the Heisenberg Lie algebra (which behaves like a sort
of degenerate affine Lie algebra). Generalized Kac-Moody algebras have many of
the properties of finite dimensional semisimple Lie algebras, and in particular they
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have an analogue of the Weyl character formula for some of their representations,
and an analogue of the Weyl denominator formula. An example of the Weyl-Kac
denominator formula for the algebra G = SL2[z, z

−1] is

∏

n>0

(1− q2n)(1− q2n−1z)(1− q2n−1z−1) =
∑

n∈Z

(−1)nqn
2

zn.

This is the Jacobi triple product identity, and is also the Macdonald identity for
the affine Lie root system corresponding to A1.

Dyson described Macdonald’s discovery of the Macdonald identities in [D].
Dyson found identities for η(τ)m = qm/24

∏

n>0(1− qn)m for the following values
of m:

3, 8, 10, 14, 15, 21, 24, 26, 28, . . .

and wondered where this strange sequence of numbers came from. (The case
m = 3 is just the Jacobi triple product identity with z = 1.) Macdonald found
his identities corresponding to affine root systems, which gave an explanation for
the sequence above: with one exception, the numbers are the dimensions of simple
finite dimensional complex Lie algebras. The exception is the number 26 (found
by Atkin), which as far as I know has not been explained in terms of Lie algebras.
It seems possible that it is somehow related to the fake monster Lie algebra and
the special dimension 26 in string theory.

Next we give a quick explanation of “completely replicable” functions. A
function is called completely replicable if its coefficients satisfy certain relations.
As an example of a completely replicable function, we will look at the elliptic
modular function j(τ)− 744 =

∑

c(n)qn. This satisfies the identity

j(σ)− j(τ) = p−1
∏

m>0

n∈Z

(1− pmqn)c(mn) ,

where p = e2πiσ, q = e2πiτ . (This formula was proved independently in the 80’s
by Koike, Norton, and Zagier, none of whom seem to have published their proofs.)
Comparing coefficients of pmqn on both sides gives many relations between the
coefficients of j whenever we have a solution of m1n1 = m2n2 in positive integers,
which are more or less the relations needed to show that j is completely replicable.
For example, from the relation 2× 2 = 1× 4 we get the relation

c(4) = c(3) +
c(1)2 − c(1)

2
,

or equivalently

20245856256 = 864299970 +
1968842 − 196884

2
.

In the rest of this paper we will discuss various extensions of the original
moonshine conjectures, some of which are still unproved. The first are Norton’s
“generalized moonshine” conjectures [N]. If we look at the Hauptmodul T2A(τ) =
q−1 + 4372q + . . . we notice that one of the coefficients is almost the same as the
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dimension 4371 of the smallest non-trivial irreducible representation of the baby
monster simple group, and the centralizer of an element of type 2A in the monster
is a double cover of the baby monster. Similar things happen for other elements
of the monster, suggesting that for each element g of the monster there should
be some sort of graded moonshine module Vg = ⊕nVg,n acted on by a central
extension of the centralizer ZM (g). In particular we would get series Tg,h(τ) =
∑

n Tr(h|Vg,n)q
n satisfying certain conditions. Some progress has been made on

this by Dong, Li, and Mason [D-L-M], who proved the generalized moonshine
conjectures in the case when g and h generate a cyclic group by reducing to the
case when g = 1 (the ordinary moonshine conjectures). G. Höhn [H] has made
some progress in the harder case when g and h do not generate a cyclic group
by constructing the required modules for the baby monster (when g is of type
2A). It seems likely that his methods would also work for the Fischer group Fi24,
but it is not clear how to go further than this. There might be some relation to
elliptic cohomology (see [Hi]for more discussion of this), as this also involves pairs
of commuting elements in a finite group and modular forms.

The space Vg mentioned above does not always have an invariant vertex al-
gebra structure on it. Ryba discovered that a vertex algebra structure sometimes
magically reappears when we reduce Vg modulo the prime p equal to the order of g.

In fact Vg/pVg can often be described as the Tate cohomology group Ĥ0(g, V ) for
a suitable integral form V of the monster vertex algebra. This gives natural exam-
ples of vertex algebras over finite fields which do not lift naturally to characteristic
0. (Note that most books and papers on vertex algebras make the assumption
that we work over a field of characteristic 0; this assumption is often unnecessary
and excludes many interesting examples such as the one above.)

We will finish by describing some more of McKay’s observations about the
monster, which so far are completely unexplained. The monster has 9 conjugacy
classes of elements that can be written as the product of two involutions of type
2A, and their orders are 1, 2, 3, 4, 5, 6, 2, 3, 4. McKay pointed out that these are
exactly the numbers appearing on an affine E8 Dynkin diagram giving the linear
relation between the simple roots. They are also the degrees of the irreducible
representations of the binary icosahedral group. A similar thing happens for the
baby monster: this time there are 5 classes of elements that are the product of
two involutions of type 2A and their orders are 2, 4, 3, 2, 1. (This is connected
with the fact that the baby monster is a “3,4-transposition group”.) These are
the numbers on an affine F4 Dynkin diagram, and if we take the “double cover”
of an F4 Dynkin diagram we get an E7 Dynkin diagram. The number on an
E7 Dynkin diagram are 1, 1, 2, 2, 3, 3, 4, 2 which are the dimensions of the
irreducible representations of the binary octahedral group. The double cover of
the baby monster is the centralizer of an element of order 2 in the monster. Finally
a similar thing happens for Fi24.2: this time there are 3 classes of elements that
are the product of two involutions of type 2A and their orders are 2, 3, 1. (This
is connected with the fact that F24.2 is a “3-transposition group”.) These are
the numbers on an affine G2 Dynkin diagram, and if we take the “triple cover”
of an G2 Dynkin diagram we get an E6 Dynkin diagram. The number on an E6

Dynkin diagram are 1, 1, 1, 2, 2, 2, 3, which are the dimensions of the irreducible
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representations of the binary tetrahedral group. The triple cover of Fi24.2 is the
centralizer of an element of order 3 in the monster.

The connection between Dynkin diagrams and 3-dimensional rotation groups
is well understood (and is called the McKay correspondence), but there is no
known explanation for the connection with the monster.
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