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Fourier Analysis and Szemer

�

edi's Theorem

W. T. Gowers

Abstract. The famous theorem of Szemerédi asserts that for every
positive integer k and every positive real number δ > 0 there is a positive
integer N such that every subset of {1, 2, . . . , N} of cardinality at least
δN contains an arithmetic progression of length k. A second proof of the
theorem was given by Furstenberg using ergodic theory, but neither this
proof nor Szemerédi’s gave anything other than extremely weak informa-
tion about the dependence of N on k and δ. In this article we describe a
new, more quantitative approach to Szemerédi’s theorem which greatly
improves the best known bound when k = 4, and which will probably do
the same for general k.
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§1. Introduction.

A well known result of van der Waerden [vdW], published in 1927, is the following.

Theorem 1A. Let the natural numbers be partitioned into finitely many sets.
Then one of the sets contains arbitrarily long arithmetic progressions.

A straightforward compactness argument allows this statement to be rephrased as
follows.

Theorem 1B. For every pair of positive integers k, r there exists a positive in-
teger M such that, whenever the set {1, 2, . . . ,M} is partitioned into r subsets
C1, . . . , Cr, at least one of the subsets contains an arithmetic progression of length
k.

This is one of the classic results of Ramsey theory: it is customary to call the
cells of the partition colours, the partition itself an r-colouring and the resulting
arithmetic progression monochromatic.

Let us define M(k, r) to be the minimal M for which the conclusion of The-
orem 1B holds. A compactness argument proves that M(k, r) is finite but does
not give any bound for it. As it happens, though, van der Waerden proved the
second version of his theorem directly, and it is possible to extract from his proof
an explicit estimate for M(k, r). However, the estimate is enormously large, as we
shall see later, and barely qualifies as a quantitative bound.

In 1936, Erdős and Turán [ET] made a conjecture which significantly strength-
ened van der Waerden’s theorem. It soon became clear that their conjecture was
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very difficult, and it took almost forty years before it was solved, by Szemerédi
[Sz2]. The statement is the following.

Theorem 2A. Any subset of the natural numbers with positive upper density con-
tains arithmetic progressions of arbitrary length.

Again, there is a finite version.

Theorem 2B. For every natural number k and positive real number δ there exists
a natural number N such that every subset of {1, 2, . . . , N} of cardinality at least
δN contains an arithmetic progression of length k.

This certainly implies van der Waerden’s theorem, as one can take δ = r−1 and
consider the most frequently occurring colour. For this reason, the result is of-
ten called the density version of van der Waerden’s theorem (as opposed to the
colouring version).

It is interesting to consider why Erdős and Turán made their conjecture, and
to compare it with other results in Ramsey theory. Ramsey’s theorem itself states
that for every k and r there exists N such that if the edges of the complete graph
on N vertices are coloured with r colours, then a complete subgraph on k vertices
can be found with all its edges the same colour. However, it is absolutely not true
that one can do this with the most frequently occurring colour. (For example,
consider a complete bipartite graph on two sets of equal size.) A theorem of Schur
states that if N is sufficiently large and the set {1, 2, . . . , N} is coloured with r
colours, then one of the colours contains a triple (x, y, z) with x + y = z. Again,
there is no density version of the statement – just consider the set of all odd
numbers less than N . The most important difference between van der Waerden’s
theorem and Schur’s theorem in this respect is that van der Waerden’s theorem is
affine-invariant. This property rules out simple counterexamples such as the set
of all integers satisfying some congruence.

This shows why the conjecture had a chance of being true, but the motivation
for it was stronger than that. In particular, it was reasonable to think that it would
not be possible to prove the conjecture using the sorts of inefficient combinatorial
arguments that yielded poor bounds for van der Waerden’s theorem. In that case,
a proof of the conjecture would give new quantitative information even for the
colouring statement. Moreover, if the bounds turned out to be good enough, one
could obtain an important number-theoretic result purely combinatorially. To be
precise, Erdős went on to give the following conjecture, which was possibly his
favourite of all problems.

Conjecture 3. Let A be a set of natural numbers such that
∑

n∈A n
−1 = ∞.

Then A contains arithmetic progressions of arbitrary length.

This conjecture, if true, would imply that the primes contained arbitrarily long
arithmetic progressions, and the proof would use very little about the distribution
of primes – Chebyshev’s theorem would suffice. However, Szemerédi’s proof used
van der Waerden’s theorem, so, although it was a major breakthrough, it did not
after all provide improved bounds, and indeed Conjecture 3 is still wide open, even
for progressions of length three.
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A different sort of breakthrough was made by Furstenberg [Fu] in 1977, who
gave a second proof of Szemerédi’s theorem, which used ergodic theory (much
of which was new, fascinating and specially developed by Furstenberg for the
purpose). Furstenberg’s methods have since been extended, and there are now
several purely combinatorial results for which the only known proofs use ergodic
theory. Some of these will be discussed later in this paper. However, the ergodic
theory method as it stands does not give any estimates and so in particular gives
no information about Conjecture 3.

Let us now consider in more detail the best known bounds for this class of
problems. In order to state them, it will be necessary to remind the reader of
the Ackermann hierarchy of rapidly-growing functions, defined as follows. Let
A1(n) = 2 + n, A2(n) = 2n and A3(n) = 2n. In general one obtains Ak(n) by
starting with the number 2 and applying the function Ak−1 n− 1 times. In other
words, each function iterates the previous one. A concise definition is

A1(n) = 2 + n; Ak(1) = 2 (k > 1); Ak(n) = Ak−1(Ak(n− 1)) (n > 1).

Note in particular that A4(n) is given by a tower of twos of height n, while A5(n)
is given by a tower of twos of height A5(n− 1).

The Ackermann function itself is defined as A(n) ≡ An(n). Thus, it grows
faster than any individual function Ak. In fact, it is known to grow faster than any
primitive recursive function, which very roughly means any function that can be
defined starting with the successor function and using a finite sequence of single
inductive definitions (rather than the double induction we needed above). Nev-
ertheless, this function does from time to time appear naturally (for a very good
example see Ron Graham’s account in this volume of the work of Peter Shor) and
was the upper bound obtained by van der Waerden for the function M(k, 2), that
is, the smallest M such that every 2-colouring of {1, 2, . . . ,M} yields a monochro-
matic arithmetic progression of length k. (One might reasonably suppose that
this was about the worst bound that could arise from any sensible proof of a nat-
ural combinatorial statement. If you believe this, then see [PH] or [GRS Section
6.3].) This remained the best known upper bound until 1987, by which time some
people had even been tempted to wonder whether there was a comparable lower
bound, although the best known lower bound was only exponential in k. Then
Shelah [Sh] found a primitive recursive upper bound for M(k, 2) of A5(k). To
everybody’s surprise, his argument was very natural, not especially difficult and
in much the same spirit as that of van der Waerden. This, needless to say, did not
stop it being highly ingenious.

Since Szemerédi used van der Waerden’s theorem in the middle of an inductive
step, one can guess that his argument, when combined with Shelah’s later bound,
gave an upper bound for N(k, δ) of the general form of A6(k) (for fixed δ), but
this has not been checked. Despite this bound being a huge improvement on the
Ackermann function, it still had the flavour of a bound that just happened to come
out of a not particularly quantitative argument. Moreover, to improve it, it was
clear that a substantially new proof would be necessary, one which avoided the use
of van der Waerden’s theorem. (Another important tool in Szemerédi’s proof, his
so-called uniformity lemma, also makes a big contribution. See [G1] for a proof
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that the function A4 can occur in nature.)
Fortunately, there was one result in the area which was undeniably quantita-

tive, a proof in 1953 by Roth [R1] that N(3, δ) is at most exp exp(C/δ) for some
absolute constant C. This result was proved using Fourier analysis, and the proof
will be sketched below. On the other hand, the argument did not seem to gener-
alize to progressions of length greater than three, for reasons which will also be
sketched below. Indeed, Szemerédi was able to make further progress only after he
had found a different proof for progressions of length three. Even so, the existence
of Roth’s proof suggested that Fourier analysis (or exponential sums – they are the
same in this context) ought to be used as the basis for any significant improvement
to the bounds in Szemerédi’s theorem. In this paper, we shall indicate how to use
it for progressions of length four. More details can be found in [G2]. (It should
be remarked that Roth [R2], using ideas of Szemerédi, found a proof in this case
which used exponential sums, but this proof was not purely analytic. In particular
it still required van der Waerden’s theorem.)

§2. Roth’s argument.

Let N be a prime (for convenience) and write ZN for Z/NZ, the integers mod
N . Let ω be the primitive N th root of unity exp(2πi/N). Given a function

f : ZN → C, one can define a discrete Fourier transform f̃ by the formula

f̃(r) =
∑

s∈ZN

f(s)ω−rs .

One then has the inversion formula

f(s) = N−1
∑

r∈ZN

f̃(r)ωrs ,

while Parseval’s identity takes the form

∑

r∈ZN

|f̃(r)|2 = N
∑

s∈ZN

|f(s)|2 .

Since the Fourier transform is in some sense measuring periodicity, it is not sur-
prising that it should be useful for problems to do with arithmetic progressions.
Roth’s argument starts with the observation (standard to analytic number theo-
rists) that it gives a neat way of counting arithmetic progressions of length three.
Consider three subsets A,B,C of ZN , and identify these sets with their character-
istic functions. Then the number of triples (x, y, z) such that x ∈ A, y ∈ B, z ∈ C
and x+z = 2y (this last condition states that (x, y, z) is an arithmetic progression
mod N) is

N−1
∑

r

∑

x,y,z

A(x)B(y)C(z)ω−r(x−2y+z) .

(Here, and from now on, all sums where the range is unspecified are over the whole
of ZN .) To see this, notice that

∑
r ω

−r(x−2y+z) is zero when x− 2y + z 6= 0, and
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otherwise N , while A(x)B(y)C(z) is 1 if x ∈ A, y ∈ B and z ∈ C, and otherwise
zero.

Now ω−r(x−2y+z) = ω−rxω2ryω−rz, so the expression above is nothing other
than

N−1
∑

r

Ã(r)B̃(−2r)C̃(r) .

Notice that Ã(0) is just the cardinality of the set A, and similarly for B and C, so
we can split this up as

N−1|A||B||C|+
∑

r 6=0

Ã(r)B̃(−2r)C̃(r) . (∗)

If A, B and C have cardinalities αN , βN and γN respectively, then the first
term equals αβγN2. Notice that this is exactly the number of triples one would
expect to have satisfying the conditions above if the sets A, B and C had been
chosen randomly with their given cardinalities, since there are N2 triples (x, y, z)
in arithmetic progression mod N , and the probability that an individual one lies
in A×B ×C is αβγ. Of course, in general A, B and C are not chosen randomly,
and A × B × C may well contain no arithmetic progression mod N , but this can
happen only if the first term is cancelled out by the second, and this can happen
only if some of the non-zero Fourier coefficients of A, B and C are large.

One applies this argument as follows. Let A ⊂ {0, 1, 2, . . . , N − 1} be a set of
cardinality αN containing no arithmetic progression of length three. Let B and C
both equal {x ∈ A : N/3 < x < 2N/3}. Now regard A, B and C as subsets of ZN

in the obvious way. Notice that if (x, y, z) ∈ A×B×C and x+z = 2y mod N , then
either x = y = z or (x, y, z) corresponds to an arithmetic progression in the original
set A when it was not regarded as a subset of ZN . As explained in the previous
paragraph, the fact that A × B × C contains no arithmetic progressions mod N
(apart from the degenerate ones of the form (x, x, x), but there are too few of these
to be significant) implies that A, B and C have large non-zero Fourier coefficients.
More precisely, it is not hard to deduce from (∗) that if B = C has cardinality at

least αN/4, then there must exist a non-zero r such that |Ã(r)| ≥ α2N/20. (If
|B| < αN/4, then A is not uniformly distributed inside ZN , and a similar but
stronger conclusion is true.)

A good way to view the argument so far is to regard the size of the largest non-
zero Fourier coefficient of A as a measure of non-randomness. Then what we have
shown (or rather sketched) is that either A is random, in which case it contains
plenty of arithmetic progressions of length three, just as one would expect, or it
is non-random, in which case it has a non-zero Fourier coefficient which is large,
where “large” means exceeding γN for some constant γ > 0 that depends only on
the density α of the set A.

We must now deal with the second case, so suppose that r 6= 0 and |Ã(r)| ≥
γN . Let m be a sufficiently large integer (depending on α only) and define, for
1 ≤ j ≤ m, the set Pj to be {s ∈ ZN : (j − 1)N/m ≤ rs < jN/m}. The sets Pj

have been chosen so that the function s 7→ ω−rs is roughly constant on each Pj .
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Let sj be an arbitrary element of Pj . Then

Ã(r) =
∑

s

A(s)ω−rs =
m∑

j=1

∑

s∈Pj

A(s)ω−rs

is well approximated by

m∑

j=1

∑

s∈Pj

A(s)ω−rsj =
m∑

j=1

|A ∩ Pj |ω−rsj .

Since the numbers ω−rsj are evenly spread around the unit circle, this sum cannot
be large unless the sets |A ∩ Pj | have widely differing sizes, and because we know
that

∑m
j=1 |A ∩ Pj | = αN , this implies that there exists j such that |A ∩ Pj | ≥

(α+ γ′)|Pj |, where γ′ again depends on α only.
Now Pj is nothing other than an arithmetic progression mod N with common

difference r−1. If the argument above is done carefully, then the size of Pj can be
made proportional to N (with a constant depending on α only) and |A ∩ Pj | ≥
(α + cα2)|Pj |, where c is an absolute constant. The final ingredient is a simple
and standard argument, based on Dirichlet’s pigeonhole principle, which shows
that the set Pj can be partitioned into r sets, with r proportional to

√
N , which

are not only arithmetic progressions mod N but are still arithmetic progressions
when regarded as subsets of {0, 1, . . . , N − 1}. Then, by an averaging argument,
we can find one of these, Q say, such that |A ∩Q| ≥ (α+ cα2)|Q| and Q has size
proportional to

√
N .

The proof is now over, because we have managed to find a subprogression
of {0, 1, . . . , N − 1} inside which the density of the set A has gone up from α to
α(1 + cα). We can then repeat the argument. A small calculation shows that
we cannot repeat it more than C/α times, where C is another absolute constant,
and another small calculation gives the bound N(3, δ) ≤ exp exp(C/δ), the double
exponential coming from the fact that at each iteration we are taking the square
root of N .

§3. Progressions of length four.

One could summarize Roth’s proof as follows. If a set A ⊂ ZN (or more accurately
its characteristic function) has no large non-trivial Fourier coefficients, then it
behaves randomly in a useful sense. In particular, it contains roughly the right
number of arithmetic progressions of length three. On the other hand, if it has a
large non-trivial Fourier coefficient, then it is not uniformly distributed inside mod-
N arithmetic progressions of size proportional to N . It follows by a pigeonhole
argument that there is a genuine arithmetic progression P of size proportional to√
N such that the density of A∩P inside P is significantly larger than the density

of A inside ZN . This allows us to iterate.
It is now natural to wonder whether the “random behaviour” of the set A

implies anything about the number of arithmetic progressions it contains of length
four. However, it turns out that merely having small Fourier coefficients is not
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enough. An example to illustrate this is the set A = {x ∈ ZN : −N/1000 < x2 <
N/1000} (where, for the purposes of the inequality, x2 stands for the representative
of x2 that lies between −N/2 and N/2). It can be shown, using estimates due to
Weyl [We] for exponential sums involving quadratic functions, that all the non-
zero Fourier coefficients of this set are very small. We now give a very rough
argument (which can easily be made rigorous) to show that A contains more mod-
N arithmetic progressions of length four than one would expect. (If A has size
αN and is chosen randomly, then one expects about α4N2 quadruples of the form
(a, a+d, a+2d, a+3d) to belong to A4.) Suppose we know that a−d, a and a+d
all belong to A. Then (a − d)2, a2 and (a + d)2 are all “small” mod N . Taking
differences, this implies that 2ad− d2 and 2ad+ d2 are both small, which implies
that 4ad and 2d2 are both small. But then (a+ 2d)2 = a2 + 4ad+ 2.2d2 must be
small. In other words, once we have an arithmetic progression of length three in A
(and of these we have about the expected number) there is a greater chance than
there should be that the next term in the progression also belongs to A. Therefore
A contains more progressions of length four than it should.

With a bit more effort, one can use similar ideas to construct a set A with
small Fourier coefficients and fewer arithmetic progressions of length four than a
random set of the same cardinality. This seems to indicate that, beautiful as Roth’s
argument is, there is a fundamental limitation to Fourier methods which stops it
generalizing. On the other hand, it is difficult to find examples to illustrate this
that are fundamentally different from the set A above. That is, they all seem to
involve quadratic polynomials and work for basically the same reason. It turns out
that this is necessary, and can be proved to be necessary using Fourier methods.
We now give a very brief outline of the argument.

The first step is to define a stronger notion of randomness, which we call
quadratic uniformity. Let us define a set A to be δ-uniform if |Ã(r)| ≤ δN for
every non-zero r. Write A + k for {x ∈ ZN : x − k ∈ A}. Define A to be δ-
quadratically uniform if A ∩ (A+ k) is δ-uniform for all but at most δN values of
k. In loose terms, A is quadratically uniform if there are almost no translates of
A (meaning sets of the form A + k) for which the intersection A ∩ (A + k) has a
non-trivial large Fourier coefficient.

It can be shown that if A has size αN and is δ-quadratically uniform for
sufficiently small δ (depending on α only) then A contains approximately the
correct number of arithmetic progressions of length four, and in particular at
least one such progression. (The proof is similar to the weak mixing case in
Furstenberg’s argument. I am grateful to Gil Kalai for pointing this out to me.) We
therefore have an appropriate generalization of the first step of Roth’s argument,
and in fact it can be generalized further, without much difficulty, to deal with
arithmetic progressions of arbitrary length.

However, it is not at all obvious what to do if A is not quadratically uniform.
From the definition we can say that there is a set B ⊂ ZN of size at least δN and a
function φ : B → ZN never taking the value zero such that

∣∣A∩ (A+k)∼(φ(k))
∣∣ ≥

δN for every k ∈ B, but this fact on its own does not seem particularly helpful. In
order to get any further, it is useful to examine the set A = {x ∈ ZN : −N/1000 <
x2 < N/1000} mentioned earlier. This is an example of a set which is uniform but
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not quadratically uniform. A number x belongs to A∩ (A+k) only if both x2 and
(x− k)2 are small, which implies that 2kx− k2 is small. It follows (from an easy
calculation) that A ∩ (A+ k)∼(2k) is large. Thus, the quadratic nature of the set
A leads to linear behaviour of the function φ.

This suggests that perhaps φ cannot be an entirely arbitrary function, and
the suggestion is correct. The rest of our proof consists in showing first that
φ must always have a certain weakish linearity property, and then (reversing the
implication from quadratic to linear above) that the linearity of φ implies some sort
of quadratic bias to the set A. Finally, this quadratic bias implies (using Weyl’s
estimates for exponential sums mentioned earlier) the existence of an arithmetic
progression P of size N c such that |A ∩ P | ≥ (α + γ)|P | (where c and γ depend
on α only).

The most interesting of the steps is finding the linearity of the function φ,
which is itself done in two stages. The first is a somewhat algebraic argument which
shows that, for a constant γ depending on α only, B4 contains γN3 quadruples
(a, b, c, d) such that a+ b = c+ d and φ(a) + φ(b) = φ(c) + φ(d). Let us call such
a quadruple φ-additive. Notice that there are only N3 quadruples (a, b, c, d) ∈ Z

4
N

such that a+ b = c+d, so this is potentially a strong restriction on the function φ,
and seems to put pressure on φ to be linear, or at least to be linear when restricted
to some large subset of B.

After a little thought, however, one realizes that there are definitely non-linear
examples of functions φ for which there are many φ-additive quadruples. A typical
one is the following. Let m be an integer much larger than 1 and much smaller
than N and let B = ZN . Given 0 ≤ x < N , write it as qm + r with 0 ≤ r < m,
and define φ(x) to be r. It can be checked easily that there are many φ-additive
quadruples, and also that there is no large subset of ZN on which φ is linear.

On the other hand, if one thinks of the numbers 1 and m as being something
like a basis of ZN , then φ is something like a linear function defined on a two-
dimensional set. It turns out, and this is of enormous importance for the proof,
that this sort of quasi-linear behaviour is typical. That is, if there are many φ-
additive quadruples, then there must be a large subset B′ of B such that the
restriction of φ to B′ resembles a linear function defined on a space of not too high
a dimension. The proof of this fact is not at all easy, because it relies on a deep
theorem of Freiman [F1,2] which we now describe, and in particular a recent proof
of Freiman’s theorem due to Ruzsa [Ru].

Let X be a subset of Z of size n. The sumset of X, written X +X, is simply
{x + y : x, y ∈ X}. Suppose that we know that the sumset of X has cardinality
at most Cn (where we think of n as large and C as fixed). What does this tell us
about the set X? This question is not unlike the question we have just asked about
φ, and one can make similar remarks. The most obvious example of a set X with
small sumset is an arithmetic progression. The next most obvious is a large subset
of an arithmetic progression. However, these do not exhaust all possibilities. For
example, if X = {a1r1 + a2r2 : 0 ≤ ai < si} then it is an easy exercise to show
that |X +X| < 4|X|. Such a set is called, for obvious reasons, a two-dimensional
arithmetic progression, and it is not hard to guess the definition of a d-dimensional
arithmetic progression for arbitrary d. It is another (similar) easy exercise to show
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that a large subset of a low-dimensional arithmetic progression will have a small
sumset. Remarkably, the converse is also true, and this is Freiman’s theorem.

Theorem 4. Let X be a subset of Z such that |X + X| ≤ C|X|. Then X is a
subset of a d-dimensional arithmetic progression of size at most D|X|, where d
and D depend on C only.

To relate Freiman’s theorem to our problem, we consider the graph of the function
φ, which we shall call Γ. This is a subset of Z2

N of size at most N which contains at
least γN3 quadruples (x, y, z, w) such that x+y = z+w. A theorem of Balog and
Szemerédi [BS] now tells us that Γ contains a subset X of size at least ηN such
that |X+X| ≤ C|X|, with η and C constants that depend on γ (and hence α) only.
It is an easy exercise to formulate an appropriate version of Freiman’s theorem for
subsets of Z2 (as we may regard X) and prove that it is equivalent to Freiman’s
theorem in Z. Applying such a version of Freiman’s theorem to X, we find that X
is a subset of a d-dimensional arithmetic progression P of size at most D|X|. An
easy averaging argument shows that P must contain a one-dimensional arithmetic
progression Q of size proportional to N1/d such that |X ∩Q| ≥ D−1|Q|. Now X is
the graph of the restriction of φ to some subset B′ of B, and Q is the restriction
of a linear function ψ to an arithmetic progression R ⊂ Z (of size proportional to
N1/d). The estimate for |X ∩ Q| tells us that φ(x) = ψ(x) for at least D−1|R|
values of x ∈ R. We have shown that φ has at least some linear behaviour, and it
turns out to be enough.

We shall now be even more brief. (The reader wishing for more details of the
proof should consult [G2].) The linear behaviour of φ implies the existence of an
arithmetic progression S of size proportional to N1/d and a quadratic function q
such that, writing f(s) for A(s)− α, we have the inequality

∑

s∈S

f(s) +
∣∣∣
∑

s∈S

f(s)ωq(s)
∣∣∣ ≥ ζ|S|

with ζ depending on α only. It can be shown, using Weyl’s estimates again, that
S can be partitioned into arithmetic progressions T1, . . . , Tm with m ≤ N1−ǫ such
that the restriction of ωq(s) to any Tj is approximately constant. (For Roth’s
theorem we needed the corresponding result for linear functions, which is much
easier.) When this is done, we have that

∣∣∣
∑

s∈S

f(s)ωq(s)
∣∣∣ ≤

m∑

j=1

∣∣∣
∑

s∈Tj

f(s)ωq(s)
∣∣∣ ≈

m∑

j=1

∣∣∣
∑

s∈Tj

f(s)
∣∣∣ .

An averaging argument then yields some j such that |Tj | ≥ N ǫ and
∑

s∈Tj
f(s) ≥

ζ ′|Tj |. The second condition is equivalent to the statement that |A ∩ Tj | ≥ (α +
ζ ′)|Tj |. Finally, we can iterate, just as in the proof of Roth’s theorem.

A small modification of the above argument (which uses Ruzsa’s proof of
Freiman’s theorem rather than quoting the theorem directly) leads to an upper
bound of exp exp(δ−C) for N(4, δ). Equivalently, if A ⊂ {1, 2, . . . , N} has cardi-
nality at least N(log logN)−c, then it must contain an arithmetic progression of
length four. Here, C and c are absolute constants. Let us state this result formally.
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Theorem 5. Let δ > 0 and let N be a natural number greater than or equal
to exp exp(δ−C), where C is an absolute constant. Then every subset of the set
{1, 2, . . . , N} of size at least δN contains an arithmetic progression of length four.

Corollary 6. Let r and N be natural numbers such that N ≥ exp exp(rC), where
C is an absolute constant. Then, however the set {1, 2, . . . , N} is coloured with r
colours, there is a monochromatic arithmetic progression of length four.

In terms of our previous notation, Corollary 6 states that M(4, r) ≤ exp exp(rC).
The bound given by Shelah’s argument is more like A4(A4(r)), or in other words
a tower of twos of height a tower of twos of height r. The previous best known
bound for Theorem 5 was even larger, since the full strength of van der Waerden’s
theorem was used by Szemerédi even in this special case [Sz1]. So, as we remarked
earlier, the bound was probably something like A6(δ

−1).

§4. Further results and questions.

The first question to deal with is whether the above argument generalizes to pro-
gressions of arbitrary length. The answer is that most of it does with no difficulty
at all. However, one part involves significant extra difficulty. Let us define a set
A to be δ-cubically uniform if the intersection

A ∩ (A+ k) ∩ (A+ l) ∩ (A+ k + l)

is δ-uniform for all but at most δN2 pairs (k, l). Then if A is not δ-cubically
uniform, one obtains a set B ⊂ Z

2
N of cardinality at least δN2 and a function

φ : B → ZN , such that, for every (k, l) ∈ B, the Fourier coefficient of the above
intersection at φ(k, l) has size at least (k, l). The arguments for progressions of
length four tell us a great deal about the behaviour of φ in each variable separately,
but to prove results for longer progressions one must relate these restrictions in
order to show that φ has some sort of bilinear property, and this is not easy to do.
At the time of writing, I have a long preprint which deals with the general case
and which is still being checked thoroughly. If it stands up to scrutiny, it will give
an upper bound for N(k, δ) of exp exp

(
δ− exp exp(k+10)

)
.

This estimate is still far from best possible. In fact, for fixed k, the best
known lower bound for N(k, δ) is exp

(
c(log(1/δ))2

)
[Be]. (This bound may seem

unimpressive, but it demonstrates the interesting fact that randomly chosen sets
are not the worst, and thereby partly explains the difficulty of Szemerédi’s the-
orem.) The main obstacle to further progress on bounds is that progressions of
length three are not fully understood. There is now a development of Roth’s
argument due to Heath-Brown [H-B] and Szemerédi [Sz3], which gives an upper
bound for N(3, δ) of exp(δ−C), but this still greatly exceeds the lower bound just
mentioned. In particular, the value of C that comes from the argument exceeds
1, which means that it does not prove the first non-trivial case of Conjecture 3.
Finding the correct asymptotic behaviour of N(3, δ) is a fascinating problem, not
just for its own sake, but because any methods used to solve it are almost certain
to have important further applications.

As mentioned in the introduction, several generalizations of Szemerédi’s theo-
rem have been proved using ergodic theory and do not (yet) have any other proofs.
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Thus, the question of obtaining any bounds for them, not just reasonable ones,
is open. We mention three such results. The first is the density version, due to
Furstenberg, of a theorem of Gallai.

Theorem 7. Let X ⊂ Z
d and let δ > 0. If N is sufficiently large then every set

A ⊂ {1, 2, . . . , N}d of size at least δNd has a subset homothetic to X.

It seems likely that our methods can be used to give a quantitative version of
Theorem 7, but so far this has not been done.

The next result is the density version of the Hales-Jewett theorem, which itself
is one of the central results of Ramsey theory. To state it, we need a small amount
of notation. Let Q(k,N) be the N -dimensional grid {1, 2, . . . , k}N . (One can think
of elements of Q(k,N) as words of length N in the alphabet {1, 2, . . . , k}.) Given
x = (x1, . . . , xN ) ∈ Q(k,N), r ∈ {1, 2, . . . , k} and a set W ⊂ {1, 2, . . . , N}, define
x⊕ rW to be the sequence obtained from x by replacing xj by r whenever j ∈W
and otherwise leaving it unchanged. A Hales-Jewett line in Q(k,N) is a set of the
form {x ⊕ rW : 1 ≤ r ≤ k}. The density version of the Hales-Jewett theorem,
proved by Furstenberg and Katznelson [FK], is the following result. (The original
theorem of Hales and Jewett [HJ] is of course the colouring version.)

Theorem 8. Let δ > 0 and k ∈ N. If N is sufficiently large, then every set
A ⊂ Q(k,N) of cardinality at least δkN contains a Hales-Jewett line.

One can easily deduce Szemerédi’s theorem by projectingQ(k,N) to Z in a sensible
way. Even the case k = 3 of the Furstenberg-Katznelson theorem is very hard and
was open for a long time. In fact, unlike with Szemerédi’s theorem, the case k = 2
is not quite obvious either, but it follows easily from a lemma of Sperner [Sp].

Because of the difficulty of the case k = 3, there seems to be no immedi-
ate prospect of a quantitative version of Theorem 8. If one could somehow find a
reasonably simple analytic argument when k = 3, then our methods might conceiv-
ably suggest a way of extending this to the general case. I would guess, however,
that the problem will remain open for a long time.

Finally, we mention a beautiful generalization of Szemerédi’s theorem due to
Bergelson and Leibman [BL], which solved a problem that had attracted a great
deal of interest for several years.

Theorem 9. Let δ > 0 and let p1, . . . , pk be polynomials with integer coefficients
such that pi(0) = 0 for every i. If N is sufficiently large, then for every set
A ⊂ {1, 2, . . . , N} of size at least δN there exist integers a and d (with d 6= 0) such
that a+ pi(d) ∈ A for every i.

Interestingly, the main obstacle for Bergelson and Leibman was obtaining a proof
of the colouring version of Theorem 6. They could then use Furstenberg’s methods
to deduce the density version. Their proof of the colouring version also used ergodic
theory, but it can be done purely combinatorially (see [M] or [W]).

The most elementary case of Theorem 9 that does not follow from Szemerédi’s
theorem is when k = 2, p1(x) = 0 and p2(x) = x2. Then the result states
that A contains a pair of the form (a, a + d2). This result was first proved by
Furstenberg [Fu] and Sárközy [S]. Sárközy’s argument used exponential sums and
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gave a sensible bound, which has subsequently been improved by Pintz, Steiger
and Szemerédi [PSS] so that it is now known that a density of C(logN)−c(N)

will suffice, where c(N) = log log log logN/12. (It is still not known whether
one can get away with a density of N−ǫ for some ǫ > 0.) It is quite possible,
therefore, that some sort of mixture of our methods and other existing methods
would give a quantitative version of Theorem 9. This would undoubtedly be a
difficult project to carry out, not least because the methods to be mixed are all
individually complicated. However, I expect it will be done by somebody in the
next ten or fifteen years, if not sooner.

Let me close by saying that in this paper I have concentrated on my recent
work because most of the rest is described in the proceedings of the 1994 Congress
[G3], and also by Bollobás in this volume.
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[We] H. Weyl, Über die Gleichverteilung von Zahlen mod Eins, Math. Annalen
77 (1913), 313-352.

W. T. Gowers
University of Cambridge
Department of Pure Mathematics
and Mathematical Statistics
16 Mill Lane
Cambridge CB2 1SB
England
wtg10@dpmms.cam.ac.uk

Documenta Mathematica · Extra Volume ICM 1998 · I · 617–629



630 Curtis T. McMullen

Editor's Remark:

Due to a failure of the printing device, Figure 1 in the article of Curtis T. McMullen
on page 841 of Volume II of these Proceedings is slightly scrambled. We therefore
reproduce it here in correct form:

Figure 1. Dynamical systems with deep points: a totally degenerate Kleinian group,

the Feigenbaum polynomial, a critical circle map and the golden mean Siegel disk.
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