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Se
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Estimates Near the Boundary for Solutions

of Se
ond Order Paraboli
 Equations

Mikhail Safonov

Abstract. We discuss different forms of the Harnack inequality for
second order, linear, uniformly parabolic differential equations, and their
applications to the estimates of solutions near the boundary. These appli-
cations include some Gaussian estimates and doubling properties for the
caloric measure, and estimates for the quotient of two positive solutions
vanishing on a portion of the boundary of a Lipschitz cylinder. A genera
approach to all these problems is demonstrated, which works for both
the divergence and non-divergence equations and is based only on the
“standard” Harnack inequality and elementary comparison arguments.
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1 Introduction. Preliminary results

In this paper, we deal with the estimates of solutions to second order parabolic
equations, which do not depend on the smoothness of coefficients. Such estimates
have many important applications, especially in the theory of nonlinear equations
(see [K], [LSU], [T], [PE]). Here we treat simulteneously the equations in the
divergence form

Lu =
n
∑

i,j=1

Di(aijDju)− ut = 0, (D)

and in the non-divergence form

Lu =

n
∑

i,j=1

aijDiju− ut = 0, (ND)
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where Dj = ∂/∂xj , Dij = DiDj . We assume that the functions u = u(X) and the
coefficients aij = aij(X) are defined and smooth for all X = (x, t) ∈ R

n+1, and
the operators L are uniformly parabolic, i.e. aij satisfy

ν|ξ|2 ≤
∑

i,j

aijξiξj for all ξ = (ξ1, · · · , ξn) ∈ R
n, max

i,j
|aij(X)| ≤ ν−1, (1.1)

with a constant ν ∈ (0, 1]. However, our estimates do not depend on the extra
smoothness of u and aij , and by standard approximation procedures, they are
extended to measurable aij in the divergence case (D) and to continuous aij in
the non-divergence case (ND).

At present, the equation (D) are investigated much better than (ND). For
example, under natural boundary conditions, the solution u of the equations (D)
with measurable aij are well approximated by the solutions uε of equations with
smooth aεij → aij as ε → 0 (a.e.) A recent striking example by Nicolai Nadirashvili
[N] (see also [S]) shows that this procedure fails to give a unique solution even
for elliptic equations

∑

aijDiju = 0 with measurable aij in the unit ball B1 ⊂
R

n, n ≥ 3: different subsequences {uεk} may converge to different functions.

Nevertheless, some properties of solutions look similar for the equations (D)
and (ND), though their proofs are essentially different in these two cases. It
turns out that two such statements, the comparison principle (Theorem 1.1) and
the interior Harnack inequality (Theorem 1.2), provide the background for many
others. From this “unifying ” point of view, we present different versions of the
Harnack inequality, estimates of quotients of positive solutions, doubling properties
for L−caloric measure, and other related results. The proofs of these results are
very “compressed”, for some statements we only give an outline of the main ideas.
In the elliptic case, i.e. when aij and u in (D) or (ND) do not depend on t, most
of these results are known from [CFMS], [B], [FGMS]. They were extended to the
parabolic equation with time-independent coefficients in [S], [G], [FGS] , and to
general parabolic equations (D), (ND) in recent papers [FS], [FSY], [SY].

For an arbitrary domain V ⊂ R
n+1, we define its parabolic boundary ∂pV

as the set of all the points Y = (y, s) ∈ ∂V , such that there is a continuous
curve X(t) = (x(t), t) lying in V ∪ {Y } with initial point Y , along which t is
non-decreasing. In particular, for Q = Ω× (t0, T ) we have

∂pQ = ∂xQ ∪ ∂tQ, where ∂xQ = ∂Ω× (t0,T), ∂tQ = Ω× {t0} . (1.2)

For y ∈ R
n, r > 0, Y = (y, s), Q = Ω× (t0, T ), and small δ > 0, we denote

Br = Br(y) = {x ∈ R
n : |x− y| < r}, Cr = Cr(Y ) = Br(y)× (s− r2, s+ r2),

Qr = Qr(Y ) = Q ∩ Cr(Y ), ∆r = ∆r(Y ) = (∂pQ) ∩ Cr(Y ),

Ωδ = {x ∈ Ω : dist(x, ∂Ω) > δ}, Qδ = Ωδ × (t0 + δ2, T ).

Theorem 1. (Comparison principle). Let V be a bounded domain in R
n+1,

functions u, v ∈ C2(V ) ∩ C(V ) and satisfy Lu ≤ Lv in V, u ≥ v on ∂pV .
Then u ≥ v on V .
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This theorem is well-known and its proof is elementary. The next one is far
from obvious. In the divergence case, it was discovered by Moser [M] in 1964. In in
the non-divergence case, it was proved in [KS] in 1978-79, see also [K], Chapter 4.

Theorem 2. (Interior Harnack inequality). Let u be a nonnegative solution of
Lu = 0 in a bounded cylinder Q = Ω × (t0, T ), and let positive constants δ, λ
be such that Ωδ is a connected set, and diamΩ +

√
T − t0 ≤ λδ. Then for all

x, y ∈ Ωδ and s, t satisfying t0 + δ2 ≤ s < s+ δ2 ≤ t < T , we have

u(y, s) ≤ Nu(x, t) (1.3)

with a constant N = N(n, ν, λ).

From now on we assume that Ω is a bounded domain in R
n satisfying the

following Lipschitz condition with some positive constants r0, m : for each y ∈
∂Ω, there is an orthonormal coordinate system (centered at y), with coordinates
x = (x1, · · · , xn−1, xn) = (x′, xn), such that

Ω ∩ {|x′| < r0, |xn| < (m+ 1)r0} = {|x′| < r0, ϕ(x
′) < xn < (m+ 1)r0}, (1.4)

and |∇ϕ| ≤ m on the ball {|x′| < r0} ⊂ R
n−1. Then for any continuous function g

on R
n+1, there exists a unique solution u ∈ C2(Q) ∩ C(Q) of the boundary value

problem

Lu = 0 in Q = Ω× (t0,T), u = g on ∂pQ. (1.5)

This is a well-known fact for smooth Ω, and it is easily extended to Lipschitz
domains Ω by their approximation with smooth domains Ωj ց Ω. From Theorem
1.1 it follows that g −→ u(X) is a linear continuous functional on C(∂pQ). By
the Riesz representation theorem, there exists of a unique probability measure
(L-caloric measure) ωX = ωX

Q on ∂pQ, such that the solution of the problem (1.5)
has the form

u(X) = u(x, t) =

∫

∂pQ

g(Y )dωX(Y ). (1.6)

The above representation is also valid for unbounded domains Q under some
natural restrictions on the growth of solutions for |x| → ∞. For example, if the
function g is bounded, we restrict ourselves to the bounded solutions u.

Lemma 3. Let Ω be a bounded Lipschitz domain in R
n with constants r0

and m, and let Q = Ω × (t0,∞). Then for any Y = (y, s) ∈ ∂xQ = ∂Ω × (t0,∞),
and r ∈ (0, r0], we have

ωX(△r) ≥ N−1 on Qr/2 (1.7)

with a constant N = N(n, ν,m) > 1. If Y = (y, t0) ∈ ∂tQ = Ω × {t0} , then the
estimate (1.7) holds for all r > 0 with a constant N = N(n, ν) > 1.
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Proof. Without loss of generality, we may assume t0 = 0. First we consider a
simpler case Y = (y, 0) ∈ ∂tQ. In this case,

C = Cr(Y ) = Br(y)× (−r2, r2) ⊃ C+ = Br(y)× (0, r2) ⊃ Qr = Q ∩ C.

The function

u(X) = ωX
C+(∂tC

+) on C+, u ≡ 1 on C \ C+

can be treated as a solution of the problem (1.5) in the cylinder C with g ≡ 1 for
t ≤ 0, g ≡ 0 for t > 0. Therefore, applying Theorem 1.1 in Qr = Q ∩ C and then
Theorem 1.2 in C, we obtain the desired estimate with a constant N = N(n, ν) >
1 :

ωX(△r) ≥ u(X) ≥ N−1u(y,−r2/2) = N−1 on Qr/2.

Now it remains to consider the case Y = (y, s) ∈ ∂xQ, i.e. y ∈ ∂Ω, s ∈
(t0,∞). By the Lipschitz condition, the set Br(y) \Ω contains a ball Bµr(z) with
µ = µ(m) > 0. Then

Z = (z, s− r2/2) ∈ C ′ = Bµr(z)× (s− r2, s+ r2) ⊂ C \Q,

where C = Cr(Y ). We can apply Theorem 1.2 to the function u(X) = ωX
C (∂tC

′)
in C and to u′(X) = ωX

C′(∂tC
′) in C ′ extended as u′ ≡ 1 across ∂tC

′. This gives
us

ωX(△r) ≥ u(X) ≥ N−1
1 u(Z) ≥ N−1

1 u′(Z) ≥ N−1
2 on Qr/2,

where the constants N1 and N2 depend only on n, ν,m. Lemma 1.1 is proved.

Corollary 4. Let Lu = 0, u > 0 in Q, and u = 0 on ∆R(Y ) = (∂pQ) ∩ CR(Y )
for some Y ∈ ∂xQ and R ∈ (0, r0]. Then

sup
QR/2

u ≤ θ sup
QR

u, (1.8)

sup
Qr

u ≤ (2r/R)α sup
QR

u for all r ∈ (0, R] (1.9)

with constant θ = θ(n, ν,m) ∈ (0, 1), α = − log2 θ > 0. If Y ∈ ∂tQ, then (1.8) and
(1.9) hold for all R > 0 with θ, α depending only on n, ν.

Proof. Let ωX denote the L-caloric measure on ∂pQR. Then

ωX((∂pQR) \∆R) = 1− ωX(∆R) ≤ 1−N−1 = θ on QR/2,

and since u = 0 on ∆R(Y ),

sup
QR/2

u = sup
QR/2

∫

∂pQR

udωX ≤ sup
QR/2

ωX((∂pQR) \∆R) · sup
∂pQR

u ≤ θ sup
QR

u.

The estimate (1.8) is proved. Iterating this estimate, we also get (1.9).
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2 Gaussian Estimates for L-caloric Measure

For given cylinder Q = Ω × (t0, T ) ⊂ R
n+1, introduce the functions d(x) =

dist(x, ∂Ω) on Ω, and

ρ(X) = ρQ(X) = ρ(x, t) = d(x)/
√
t− t0 on Q, (2.1)

Theorem 5. There exist positive constants N, β, depending only on n and ν, such
that

ωX(∂xQ) ≤ Ne−βρ2(X) on Q. (2.2)

Proof. We fix Y0 = (0, 1) ∈ R
n+1, and for ρ > 0 define M(ρ) = supωY0

C (∂xC),
where C = Bρ(0)× (0, 1), and the supremum is taken with respect to all parabolic
operators L with coefficients aij satisfying (1.1). It is easy to see that M(ρ)
decreases on (0,∞), and moreover, applying Corollary 1.1 to u(X) = ωX

C (∂xC),
we have M(ρ) ց 0 as ρ ր ∞. This allows us to fix a constant A = A(n, ν) such
that M(A) ≤ 1/3. By substitution x → (x − y)/

√
h, t → 1 + (t − s)/h, we also

have ωY
C (∂xC) ≤ M(ρ) for all Y = (y, s) ∈ R

n+1 and C = Bd(y)× (s− h, s) with

d/
√
h ≥ ρ. If we take Y = X = (x, t) ∈ Q = Ω× (t0, T ), d = d(x), and h = t− t0,

then C = Bd(x)× (t0, t) ⊂ Q and ∂tC ⊂ ∂tQ, hence

ωX
Q (∂xQ) ≤ ωX

C (∂xC) ≤ M(d/
√
t− t0) = M(ρ(X)). (2.3)

Further, for natural j ≥ 5, set ρj = 4A
√
j, εj = 2/

√
j, Mj = M(ρj), and

consider the cylinders

Qj = Bρj
(0)× (0, 1) ⊃ Q′

j = BεjA(0)× (1− ε2j , 1).

The function ρ = ρ(X) = ρ(x, t) = (ρj − |x|)/
√
t corresponds by the equality (2.1)

to Q = Qj . One can easily verify the inequalities ρ ≥ ρj−1 on ∂xQ
′
j and ρ ≥ ρj+1

on ∂tQ
′
j . Therefore, the caloric measure ωX for L in Qj satisfies

ωX(∂xQj) =

∫

∂pQ′

j

ωY (∂xQj)dω
X(Y ) ≤ Mj−1 · ωX(∂xQ

′
j) +Mj+1 · ωX(∂tQ

′
j)

for all X ∈ Q′
j . By the choice of A, we have ωY0(∂xQ

′
j) = 1 − ωY0(∂tQ

′
j) ≤ 1/3,

and the previous estimate yields

Mj ≤ 1

3
Mj−1 +

2

3
Mj+1,

Mj −Mj+1 ≤ 2−1(Mj−1 −Mj) ≤ · · · ≤ 25−j(M5 −M6) ≤ 25−j .

For arbitrary ρ ≥ ρ5, we choose j ≥ 5 such that ρj ≤ ρ < ρj+1, so that

M(ρ) ≤ M(ρj) = Mj =
∑

k≥j

(Mk −Mk+1) ≤ 26−j ≤ Ne−βρ2
j+1 ≤ Ne−βρ2

,
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by appropriate choice of constants N, β, depending only on n and ν. If N is chosen
large enough, the estimate M(ρ) ≤ Ne−βρ2

also holds for 0 < ρ < ρ5. Together
with (2.3), these estimates imply the desired estimate (2.2).

Remark 2.1. From Theorem 2.1 it follows immediately the uniqueness of
the Cauchy problem

Lu = 0 in R
n × (0, T ), u(x, 0) ≡ g(x) (2.4)

in the class of functions satisfying |u(x, t)| ≤ NeN |x|2 , and the proof does not
depend on the structure (divergence or non-divergence) of the operator L. Using
some arguments in the papers by Moser [M] and Aronson [A1], one can prove a
stronger statement: there is at most one solution of the problem (2.4) satisfying a

one-sided inequality u(x, t) ≥ −NeN |x|2 for all (x, t) ∈ R
n × (0, T ).

Remark 2.2. In the divergence case, from Moser’s Harnack inequality it
follows the Hölder continuity of solutions, which was proved ealier by Nash [Ns].
Aronson [A2] also essentially used the Harnack inequality in the proof of the Gaus-
sian estimates for the fundamental solution Γ(x, t; y, s) of the divergence operator
L: for s < t,

1

N
(t− s)−n/2 exp

(

−N |x− y|2
t− s

)

≤ Γ(x, t; y, s) ≤ N(t− s)−n/2 exp

(

− |x− y|2
N(t− s)

)

,

(2.5)

with a constant N = N(n, ν). Fabes and Stroock [FS] gave another proof of the
estimates (2.5) which is based on some ideas of Nash instead of the Harnack
inequality, and they also showed that the Harnack inequality follows easily from
(2.5). Thus all these facts are mutually related.

3 Harnack Inequalities

As before, let Ω be a bounded domain in R
n satisfying the Lipschitz condition

with constants r0,m, and let Q = Ω × (t0,∞). For y ∈ Ω and r ∈ (0, r0], the set
Ωr(y) = Ω ∩ Br(y) contains a ball Bµr(yr), where µ = µ(m) ∈ (0, 1/2]. We fix
such yr depending on y and r, and for Y = (y, s), denote Y ±

r = (yr, s± 2r2). The
following result is often referred to as a boundary Harnack inequality, or Carleson
type estimate. For parabolic equations, it was first proved by Salsa [S] (in the
divergence case) and Garofalo [G] (in the non-divergence case), see also [FSY].

Theorem 6. Let Q = Ω × (t0,∞), Y ∈ ∂pQ, 0 < r ≤ r0/2, and let u be a
nonnegative solution of Lu = 0 in Q, satisfying u = 0 on ∆2r(Y ) = (∂pQ)∩C2r(Y ).
Then

u ≤ N(n, ν,m)u(Y +
r ) on Qr = Qr(Y ). (3.1)
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In the elliptic case, when aij and u do not depend on t, the interior Harnack
inequality (1.3) is equivalent to

sup
Ωδ

u ≤ N(n, ν, λ) inf
Ωδ

u, (3.2)

provided u ≥ 0, Lu = 0 in Ω, Ωδ is a connected set, and (diam Ω)/δ ≤ λ. An easy
example of the function

u(x, t) = t−1/2 exp[−(x− 2)2/4t] for t > 0, u(x, t) ≡ 0 for t ≤ 0,

which satisfies u ≥ 0, Lu = uxx − ut = 0 in Q = (−1, 1)× (−1, 1), shows that we
cannot simply replace Ωδ by Qδ in the parabolic case. However, this is possible
under the additional assumption u = 0 on ∂xQ. As in [G], [FGS], Theorem 3.1
yields the following interior elliptic-type Harnack inequality.

Theorem 7. Let Lu = 0, u > 0 in Q = Ω × (t0, T ), u = 0 on ∂xQ = ∂Ω ×
(t0, T ), and let positive constants δ ∈ (0, r0) and λ > 1 be such that (diamΩ +√
T − t0)/δ ≤ λ. Then

sup
Qδ

u ≤ N(n, ν,m, λ) inf
Qδ

u. (3.3)

Proof follows from Theorems 1.2 and 3.1 and the maximum principle:

sup
Qδ

u ≤ sup
x∈Ω

u(x, δ2/4) ≤ N1 sup
x∈Ωµδ

u(x, δ2/2) ≤ N inf
Qδ

u,

where N1 = N1(n, ν,m), µ = µ(m) > 0.

The next theorem is called a boundary elliptic-type Harnack inequality, be-
cause the constant N in (3.4) does not depend on the distance between Cr(Y ) and
∂xQ. In equivalent forms, this result is contained in [FS], [FSY].

Theorem 8. Under the assumptions of the previous theorem, let Y = (y, s) ∈ Q
and r > 0 be such that s− t0 ≥ 4δ2 > 0 and Cr(Y ) ⊂ C2r(Y ) ⊂ Q. Then

sup
Cr(Y )

u ≤ N(n, ν,m, λ) inf
Cr(Y )

u. (3.4)

Proof. If r > δ, from C2r(Y ) ⊂ Q it follows Cr = Cr(Y ) ⊂ Qδ, and (3.4)
follows from the previous theorem. Therefore, we may restrict ourselves to the
case 0 < r ≤ δ. Iterating the interior Harnack inequality, one can get the estimate

u(Y −
R ) ≤ N0(R/r)γ inf

Cr

u for 0 < r ≤ R ≤ δ (3.5)

with positive constants N0, γ, depending only on n, ν,m. We take

R = max{ρ : r ≤ ρ ≤ δ, sup
Cr

u ≤ (r/ρ)γ sup
Qρ

u},
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where Qρ = Qρ(Y ) = Q ∩ Cρ(Y ). By this choice of R and (3.5), the proof of the
desired estimate (3.4) is now reduced to the following one:

MR = sup
QR

u ≤ Nu(Y −
R ). (3.6)

For the proof of (3.6), we first consider the case R ≤ δ/K, where K = const ≥
2. Introduce the cylinders

C ′ = BKR(y)× (s− 4R2, s+ 4R2) ⊂ CKR(Y ), Q′ = Q ∩ C ′ ⊂ QKR.

By definition of R,

sup
∂xQ′

u ≤ MKR < (KR/r)γMr = KγMR.

Moreover, by Theorem 2.1, ωX
C′(∂xQ

′) ≤ K−γ/2 on QR,provided K = K(n, ν,m)
is large enough. Using the representation (1.6) in Q′, we have

MR = sup
QR

∫

∂pQ′

udωX ≤ sup
∂xQ′

u · sup
QR

ωX
C′(∂xQ

′) + sup
∂tQ′

u ≤ 1

2
MR + sup

∂tQ′

u,

and MR ≤ 2u(Z) for some point Z = (z, s− 4R2) ∈ ∂tQ
′, which lies strictly below

Y −
R . By Theorems 1.2 and 3.1, we get the estimate (3.6) in the case R ≤ δ/K.

If δ/K < R ≤ δ, then by the maximum principle MR ≤ u(Z) for some point
Z = (z, s − δ2), and since diamΩ ≤ λδ < KλR, the previous argument is still
valid. Thus we have (3.6) in any case, and so Theorem 3.3 is proved.

4 Estimates for Quotients of Solutions

Let Ω be a bounded Lipschitz domain, and let y ∈ ∂Ω and Y = (y, s) be fixed.
We will use a local coordinate system which provides the representation (1.4) of
a portion of Ω in r0-neighborhood of y = 0. In this neighborhood, the distance
function d = d(x) = dist{x, ∂Ω} is equivalent to d′ = d′(x) = d′(x′, xn) = xn −
ϕ(x′). For r ∈ (0, r0] and K > 1, we introduce the sets

Dr = {x = (x′, xn) : |x′| < r, 0 < d′(x) < r} × (s− r2, s+ r2),

Sr = (∂pDr) ∩ {d′ = r}, Γr = (∂pDr) ∩ {0 < d′ < r},
D+

r = Dr ∩ {d′ ≥ r/K}, D−
r = Dr ∩ {0 < d′ < r/K},

S′
r = Dr ∩ {d′ = r/K}, Γ′

r = (∂pDr) ∩ {0 < d′ < r/K}.

For K ≫ 1, S′
r is a “wide” portion of ∂pD

′
r lying in {d′ > 0}, Γ′

r is a “narrow”
portion of ∂pD

′
r. Using Lemma 1.1 and Corollary 1.1, one can obtain the estimates

inf
D+

r/K

ωX
D−

r
(S′

r) ≥ pK =
1

N
K−γ , sup

Dr/K

ωX
D−

r
(Γ′

r) ≤ qK = Ne−βK (4.1)

with some positive constants N, γ, β depending only on n, ν,m. The bounds pK
and qK have different decay rates as K → ∞, because one needs to apply the
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estimate (1.7) O(lnK) times in order to get the first inequality in (4.1), while the
second one is obtained by application of the estimate (1.8) O(K) times. We will
fix K = K(n, ν,m) ≥ 1 large enough to guarantee the inequality pK ≥ 2qK . These
inequality helps to prove the following results.

Lemma 9. Let ωX be L-caloric measure in the domain D2r for some r ∈ (0, r0/2].
Then there exists a constant N = N(n, ν,m) ≥ 1, such that

N−1ωX(S2r) ≤ ωX(Γ2r) ≤ NωX(S2r) on Dr. (4.2)

Theorem 10. Let Q = Ω× (t0,∞) and Y = (y, s) ∈ ∂xQ be fixed. Let u1 and u2

be two positive solutions of Lu = 0 in Q, and u1 = 0 on ∆4r(Y ) = (∂pQ)∩C4r(Y ),
where 0 < 4r ≤ min(r0,

√
s− t0). Then

u1

u2
≤ N(n, ν,m)

u1(Y
+
r )

u2(Y
−
r )

on Qr = Qr(Y ). (4.3)

If also u2 = 0 on ∆4r(Y ), we can interchange u1 and u2 in (4.3), and this
yields a lower estimate for u1/u2 on Qr. If u2 = 0 on ∂xQ, we can also use the
elliptic-type Harnack inequality, which gives the estimate of oscillation and the
Hölder continuity of u1/u2. For more details, see [FSY].

5 Doubling Properties

The following doubling property in the divergence case follows easily from Aron-
son’s estimate (2.3). In the non-divergence case, this estimate is not valid. Our
methods work for both the divergence and non-divergence cases.

Theorem 11. Let a constant ε ∈ (0, 1/2) be given. Then for all r > 0, we have

ωX(∆r) ≤ NωX(∆r/2) on P = {ε|x|2 ≤ t} (5.1)

with a constant N = N(n, ν, ε), where ∆r = Br(0) × {0} ⊂ R
n × {0}, and ωX is

the L-caloric measure for Q = R
n × (0,∞).

Theorem 12. Let Q = Ω × (t0,∞), Y = (y, s) ∈ ∂pQ, and constants ε ∈
(0, 1/2), λ ≥ 1 be given. Then the estimate (5.1) holds for ∆r = ∆r(Y ) for all
r ∈ (0, λr0/4] and X = (x, t) ∈ Q satisfying ε|x− y|2 ≤ t− s, 4r ≤

√
t− s ≤ λr0.

These theorems are proved in [SY]. One of its applications is the Fatou theorem
which states that any positive solution of Lu = 0 in Q has finite non-tangential
limits at almost every (with respect to the L-caloric measure) point Y ∈ ∂pQ. In
the time-independent case, this result was proved in [FGS].
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