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When is an Equivalen
e Relation Classifiable?

Greg Hjorth

Abstract. One finds in certain branches of analysis the idea that a
classifiable equivalence relation is one for which we can assign points in
a very concrete space as a complete invariant. Results by Effros, Glimm,
and Mackey, and then later Harrington, Kechris, and Louveau, have given
a thorough analysis of when such a classification is possible. In the last
few years a similar analysis has been undertaken by descriptive set the-
orists regarding when an equivalence relation is classifiable by countable

structures considered up to isomorphism. There is a kind of parallel the-
ory of which equivalence relations can be assigned countable structures
as complete invariants.
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§0 One answer The question posed in the title of this talk is admittedly a
vague one. Not only is the question itself vague, but moreover any answer to this
question will necessarily be subjective, since a classification theorem will only be
satisfactory if it is judged as such for some specific purposes.

Nevertheless, in certain branches of mathematics, especially those influenced
by the works of George Mackey, one finds the idea that a classifiable equiva-
lence relation is one for which points in some very concrete spaces – such as R,
C,T, C([0, 1]) – can be assigned in some reasonably ‘nice’, preferably Borel, man-
ner. Ultimately I will discuss some alternative notions of classifiable and present
motivating examples for this line of research. Before continuing we should under-
stand the following definition.

0.1 Definition Let E be an equivalence relation on a Polish space X. E is smooth

or tame if there is Polish space Y and a Borel function

θ : X → Y

such that for all x, y ∈ X
xEy ⇔ θ(x) = θ(y).

Just so there are no confusions about the definitions, a Polish space is a
separable topological space that admits a complete compatible metric – and so
the class of Polish spaces includes objects like the reals, the complex numbers,
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Hilbert space, and so on. A function between Polish spaces is said to Borel if the
pullback of any open set is Borel.

It is also customary in this context to refer to a Polish space stripped down
to its Borel structure as a standard Borel space; that is to say, (Y,B) is a standard
Borel space if there is a Polish topology τ on Y with respect to which B is the
σ-algebra generated by the τ -open sets.

In definition 0.1 we could just as well insist that Y be R, since any Polish
space allows a Borel injection into the reals.

It may then be helpful to think of the function

θ : X → R

from 0.1 as lifting to an injection

θ̂ : X/E → R,

and that in this sense the Borel cardinality of X/E is less than or equal to the Borel
cardinality of R. Indeed this is an important theme in this branch of descriptive
set theory: Determine the effective cardinality of quotients of the form X/E.

An another equivalent formulation of smoothness is that the space of equiv-
alence classes, X/E = {[x]E : x ∈ X}, be a subspace of a standard Borel space

in the quotient Borel structure – that is to say, if we let BE be the collection of
subsets of X/E of the form {[x]E : x ∈ A} for A ⊂ X an E-invariant (any x ∈ A
has [x]E ⊂ A) Borel set, then there is some standard Borel space (Y,B) with
Y ⊃ X/E and BE = {A∩X/E : A ∈ B}. Finally, E is smooth if and only if there
is a countable sequence (An)n∈N of E-invariant such that for all x, y ∈ X

xEy ⇔ ∀n(x ∈ An ⇔ y ∈ An).

I suppose that for a mathematician approaching this from another area the
restriction to the Borel category may seem rather arbitrary. It turns out that
many mathematically objects can be naturally realized as either points in some
Polish space or as equivalence classes in some Polish space, and in fact the context
of these problems is far wider than it may initially appear. The theorems stated
below in §4 for Borel functions all pass to much more general classes of reasonably
definable functions.

Historically the notion of smoothness as classifiability is extremely important.
Not only does one find the notion in papers such as [2], [3], and [5], and perhaps
[15]. These papers suggest a wider project to determine which equivalence rela-
tions are smooth and which classification problems are no harder than that of the
equality relation on R.

§1 Examples: Smooth

1.1 Example: Compact Riemann surfaces A very natural classification prob-
lem is that of compact Riemann surfaces considered up conformal equivalence. In
this case there exists a reduction to the equality relation on the reals. The classical
theory, as at say [11], obtains points in some standard Borel space as a complete
invariant.
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When is an Equivalence Relation Classifiable? 25

Of course one can ask how this sits with the original definition at 0.1. Here it
is routine (but see [13] for details) to obtain a standard Borel space parameterizing
(separable) complex manifolds in some natural manner. In this context one has
that the set of points parameterizing the compact complex surfaces is Borel and
the equivalence relation of conformal equivalence restricted to this Borel set is
indeed smooth in exactly the sense of 0.1.

1.2 Example: Bernoulli shifts Let S = {s1, ..., sn} be a finite alphabet,
σ : SZ → SZ be the shift map, and for p1, p2, ..., pn a finite sequence of positive
numbers summing to 1 let µ the product measure resulting from giving si the
weight pi. We may choose to think of two such systems as being equivalent if
there is an invertible measure preserving map that conjugates them: that is, set
(S1, σ1, µ1) ∼ (S2, σ2, µ2) if there is a measurable preserving bijection

π : (S1)
Z → (S2)

Z

such that

σ1 = π−1 ◦ σ2 ◦ π

∀A ⊂ (S2)
Z(µ2(A) = µ1(π

−1(A))).

Ornstein in [16] shows a single real number, the entropy of the system (S, σ, µ),
provides a complete invariant. Moreover in a suitable standard Borel structure,
this invariant can be calculated in a Borel fashion. Here as a suitable Borel struc-
ture one may represent the shift by the sequence p1, p2, ..., pn ∈ R

n for various
n; the point is that a countable union of standard Borel spaces, such as

⋃
n
R

n is
again standard Borel.

1.3 Example: Group representations Consider the irreducible representa-
tions of the group Z. Given a complex Hilbert space H with associated unitary
group U of all inner product respecting transformations, we can let Irr(Z, H) be
the space of homomorphisms

τ : Z → U

where U has no non-trivial invariant subspaces under τ [Z]. It is natural to think of
τ1 and τ2 as somehow presenting equivalent representations if there is some T ∈ U
with

τ1(g) = T ◦ τ2(g) ◦ T
−1

for all g ∈ Z.
The space of all representations may be naturally identified with a closed

subspace of HZ, and hence it is a Polish space. Furthermore the equivalence
relation of interest here is induced by the continuous action of the group H.

Here Irr(Z, H) is non-empty if and only if H is one dimensional. Moreover
we may identify the elements of Irr(Z, H) with characters, and thus a complete
classification of these objects may be given by points in T, and hence R.

On the other hand if G is finite the space Irr(G,H) will be non-empty only
when H is finite dimensional. Then the above equivalence relation will be induced
by the a continuous action of the now compact group U on the Polish space
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Irr(G,H). In general such orbit equivalence relations are always classifiable by
points in R.

§2 Examples: Non-smooth

2.1 Example: General Complex Domains One can view Becker, Henson, and
Rubel in [1] as obtaining non-classifiability by a process tantamount to embedding
the equivalence relation E0 of eventual agreement on infinite sequences of 0’s and
1’s into conformal equivalence on complex domains – so that for f, g : N → {0, 1}
we have fE0g if there is some N ∈ N such that

∀n > N(f(n) = g(n)).

Here E0 is an Fσ equivalence relation on {0, 1}N, the space of all infinite binary
sequences in the product topology, and is in some ways (compare [9]) the canonical
example of a non-smooth equivalence relation.

In fact if we assign D, the space of open subsets of C, with the Effros standard
Borel structure – under which it does have a natural Borel structure – then their
argument can be seen as showing that there is a Borel function

θ : {0, 1}N → D

such that fE0g if and only if θ(f) and θ(g) are biholomorphic. Since E0 is non-
smooth we obtain non-smoothness of conformal equivalence on arbitrary complex
surfaces, even with respect to the Borel structure articulated in [13].

2.2 Example: Arbitrary measure preserving transformations Consider
M∞ the group of all invertible measure preserving transformations of the unit
interval . In the topology it inherits from its action on L2([0, 1]) this is a topological
group that is Polish as a space – that is to say, it is a Polish group. For instance, if
(Un) enumerates the basic open subsets of [0, 1] we obtain a complete metric with

d(π1, π2) =
∑

n∈N

2−nλ(π1(Un)∆π2(Un)) + λ(π−1

1 (Un)∆π−1

2 (Un)).

The obvious classification problem is for the conjugacy equivalence relation – it is
natural to say that π1, π2 : [0, 1] → [0, 1] are equivalent if they are conjugate, in
the sense of their being some σ ∈ M∞ such that

σ ◦ π1 = π2 ◦ σ a.e.

This equivalence relation was observed by Feldman [5] to be non-smooth. As
with 2.1 the proof rested on embedding E0.

2.3 Example: Group representations again Let G be a countable discrete
group that it not abelian-by-finite. Let H∞ be a separable infinite dimensional
Hilbert space and U∞ the unitary group on H∞. Again take Irr(G,H∞) to be
space of irreducible representations τ : G → U∞ with the equivalence relation of
conjugacy –

τ1 ≈ τ2 ⇔ ∃A ∈ U∞∀g ∈ G(τ1(g) = A−1 ◦ τ2(g) ◦A).
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When is an Equivalence Relation Classifiable? 27

It is known from [17] and [8] that Irr(G,H∞) is non-empty and ≈ is not smooth:
there is no Borel assignment of reals as complete invariants to Irr(G,H∞)/ ≈.

§3 More Examples: Puzzling cases The above were deliberately chosen with
the view to supporting the intuition that classifiable means smooth. In the cases
where there is a proof of smoothness, it is generally accepted as a classification
theorem. In the cases where the equivalence relation does not admit points in R

as a complete invariant, the authors seemed to take that as a proof of at least
some manner of non-classifiability. Consequently I hope the position that takes
classifiable to mean smooth will seem an initially attractive one.

This much said, let us consider some examples where there is a more generous
notion of classifiability implicit; these in turn have motivated the search for new
tools in the study of Borel and analytic equivalence relations.

3.1 Question: Complex surfaces Becker, Henson, and Rubel in [1] explicitly
ask: is there some reasonably non-pathological way to assign to every domain
D ⊂ C some countable set of complex numbers SD such that

D ∼= D′

if and only if

SD = SD′?

3.2 Example: Discrete spectrum mpt’s Halmos and von Neumann in [10]
showed that for discrete spectrum elements of M∞, we may assign a countable
collection {ci(π) : i ∈ N} of complex numbers that completely describe the equiva-
lence class of π. While conjugacy on discrete measure preserving transformations
is not smooth, the Halmos-von Neumann theorem would seem to constitute some
sort of weaker notion of classification, and it certainly appears to be accepted as
such.

3.3 Example: C∗-algebras and topological dynamics (This is not quite
analogous to examples 1.3 and 2.3, but derives from roughly the same area.) Gior-
dano, Putnam, and Skau in [6] consider the problem of classifying minimal Cantor

systems up to orbit equivalence. Two continuous

ϕ1 : X1 → X1,

ϕ2 : X2 → X2

which are minimal in the sense of having no non-trivial closed invariant sets and
are Cantor in the sense of X1, X2 being compact, uncountable and completely
disconnected metric spaces, are said to be orbit equivalent if there is a homeomor-
phism F : X1 → X2 which respects the orbit structure set wise, in that for all
x

{ϕi

2(F (x)) : i ∈ Z} = F [{ϕi

1(x) : i ∈ Z}].

This problem is in turn equivalent to classifying a certain class of C∗-algebras.
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Here they produce countable ordered abelian groups as complete invariants.
One similarly finds discussion of the classification of certain C∗ by countable dis-
crete structures considered up to isomorphism in papers such as [4].

It is important to note a link between the kind of classification one finds in
3.1-2 and 3.3: Any equivalence relation that can be classified by a countable set
of reals can be classified by countable structures considered up to isomorphism.
For instance, if we let (qn) enumerate the rationals, then to a countable unordered
set A ⊂ R we can associate the model MA = {xa : a ∈ A} with unary predicates
(Pn) governed by the rule that

MA |= Pn(xa)

if and only if qn < a. Trivially then reduction to the equality relation on R im-
plies classification by countable sets of reals, and hence classification by countable
structures.

Thus we may be led to formulate a more generous notion of classifiability.

3.4 Question For which E can we provide some kind of countable structure
considered up to isomorphism as a complete invariant?

Letting L be a countable language, we form Mod(L), the space of all L-
structures on N with the topology generated by quantifier free formulas. This is a
Polish space, and therefore there is a precise version of the question.

For which equivalence relations E on Polish X can we find a Borel θ : X →
Mod(L) such that for all x, y ∈ X

xEy ⇔ θ(x) ∼= θ(y)?

In very general terms these examples may illustrate the kinds of concerns
driving the descriptive set theory of equivalence relations, as well as the particular
problem of classification by countable structures. I should add to these general
remarks that the isomorphism relation on countable structures is historically im-
portant in logic, and that for someone in my area it seems intriguing to ask which
classification problems may be simply reduced to that of countable models con-
sidered up to isomorphism.

§4 Some theorems I will begin with two sufficient conditions for classifiability,
the first of which is trivial.

4.1 Theorem(folklore) Let G be a compact metrizable group acting continuously
on a Polish space X with induced orbit equivalence relation EG. Then EG is
smooth.

4.2 Theorem (Kechris [14]) Let G be a locally compact Polish group acting
continuously on a Polish space X. Then there is a countable sequence of Borel
functions (fi)i∈N such that for all x, y ∈ X

xEGy ⇔ {fi(x) : i ∈ N} = {fi(y) : i ∈ N}.
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In other words, we may classify by countable unordered sets of reals.

And two sufficient conditions for non-classifiability:

4.3 Theorem (folklore) Let G be a Polish group and X a Polish space. Suppose
that

(i) some orbit is dense;
(ii) every orbit is meager (its complement includes the intersection of count-

ably many open dense sets). Then EG is not smooth.

4.4 Theorem (Hjorth [12]) LetG be a Polish group andX a Polish space. Suppose
that

(i) some orbit is dense;
(ii) every orbit is meager (its complement includes the intersection of count-

ably many open dense sets);
(iii) for some x ∈ X, the local orbits of x are all somewhere dense; that is

to say, if V is an open neighborhood of 1G, U is an open set containing x, and if
O(x, U, V ) is the set of all x̂ ∈ [x]G such that there is a finite sequence (xi)i≤k ⊂ U
such that x0 = x, xk = x̂, and each xi+1 ∈ V · xi, then the closure of O(x, U, V )
contains an open set.

Then there is no Borel (or even Baire measurable) θ : X → Mod(L) such
that for all x, y ∈ X

xEGy ⇔ θ(x) ∼= θ(y).

Consequently there is no sequence (fi)i∈N of Borel (or even reasonably defin-

able) functions
fi : X → R

such that
xEGy ⇔ {fi(x) : i ∈ N} = {fi(y) : i ∈ N}.

A Polish group action satisfying 4.4(i)-(iii) is called generically turbulent.
Again I will return to the motivation and examples in the next and final

section. These examples on their own may suggest that 4.4 is the right theorem

for showing this kind of non-classifiability.
However there are also results in [12] reinforcing this view. The presence

of a generically turbulent action is necessary for non-classifiability in the sense
that if EG arises from the continuous action of Polish G on Polish X then either
EG is reducible to isomorphism on countable structures (using say universally

Baire measurable functions) or there is a generically turbulent Polish G-space Y
which admits a continuous G-embedding into X. (Here a function θ is said to
be universally Baire measurable if for any Borel function ρ we have that θ ◦ ρ is
Baire measurable – in the sense of pulling back open sets to sets with the Baire
property.)

§5 Examples again

5.1 Example: Complex manifolds again By the uniformization theorem,
conformal equivalence on complex surfaces may be reduced to an appropriately
chosen locally compact group action.
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Theorem (Hjorth-Kechris [13]) Let D be the space of all complex domains. Then
there is a definable assignment

M 7→ SM

of countable sets of reals to domains such that for all M,N ∈ D

M ∼= N ⇔ SM = SN .

Moreover it is Borel in the sense of there existing a countable sequence (fn) of
Borel functions from D to R such that SM always equals the (unordered) set
{fn(M) : n ∈ N}.

But in higher dimensions one may embed a generically turbulent orbit equiv-
alence relation and obtain:

Theorem (Hjorth-Kechris [13]) Let M2 be the space of two dimensional com-
plex manifolds. Then there is no Borel assignment of countable structures up to
isomorphism as complete invariants. Consistently with ZFC there is no definable

assignment.

5.2 Example: Measure preserving transformations again

Theorem (Hjorth) Let M∞ be the space of invertible measure preserving trans-
formations on the unit interval. Consider the conjugacy equivalence relation ∼:
π1 ∼ π2 if there is σ ∈ M∞ such that

σ ◦ π1 = π2 ◦ σ a.e.

Then there is no sequence (fi)i∈N of Borel functions

fi : M∞ → R

such that
π1 ∼ π2 ⇔ {fi(π1) : i ∈ N} = {fi(π2) : i ∈ N}.

In fact, ∼ is strictly more complicated than isomorphism on countable models:
there is a Borel θ : Mod(L) → M∞ such that for all M,N ∈ Mod

M ∼= N ⇔ θ(M) ∼ θ(N),

but (for any choice of L) there is no Borel (or even universally Baire measurable)
ρ : M∞ → Mod(L) such that for all π1, π2 ∈ M∞

π1 ∼ π2 ⇔ ρ(π1) ∼= ρ(π2).

5.3 Example: Discrete group representations again

Theorem (Hjorth) Let G be a countable group that is not abelian-by-finite. Let
H∞ be an separable infinite dimensional Hilbert space, let Irr(G,H∞) be the space
of irreducible representations of G in H∞. Then there is no sequence (fi)i∈N of
Borel functions

fi : Irr(G,H∞) → R

such that
τ1 ≈ τ2 ⇔ {fi(τ1) : i ∈ N} = {fi(τ2) : i ∈ N}.

In fact there is no reasonably definable assignment of countable models con-
sidered up to isomorphism as complete invariants.
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