
Doc.Math. J.DMV 33

Meager Forking and m-Independene
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Abstract. We describe meager forking, m-independence and related
notions of geometric model theory relevant for Vaught’s conjecture and
more generally for classifying countable models of a superstable theory.
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0 Introduction

Throughout, T = T eq is a complete theory in a countable first-order language L
and we work within a large saturated model C of T (a monster model). Until
section 5 we assume that T is stable. Often we assume that T is small, i.e. Sn(∅)
is countable for every n < ω. The general references are [Bu5, Pi].

The main motivation here is Vaught’s conjecture for superstable theories.
Vaught’s conjecture says that if T has < 2ℵ0 countable models, then T has count-
ably many of them. If T is not small, then T has 2ℵ0 countable models. So the
assumptions that T is small or even that T has < 2ℵ0 countable models appear
naturally in many theorems in this paper. Thus far Vaught’s conjecture is proved
for ω-stable theories [SHM] and superstable theories of finite U -rank [Bu4]. The
main tools of Shelah in [SHM] are forking of types and forking independence.
These tools are combinatorial in nature. Forking is also the main tool in [Sh].
[Bu4, Ne1, Ne3] indicate that in order to approach Vaught’s conjecture for su-
perstable theories we may need some new ideas and tools, of more geometric and
algebraic character.

In a series of papers I introduced meager forking, m-independence and other
notions intended for a fine analysis of countable models. Meager forking relates
forking to the topological structure of the space of types. It is used to show that the
topological character of forking is related to the geometry of forking. An important
problem arising in the context of Vaught’s conjecture is to describe the ways in
which a type in a superstable theory may be non-isolated, and also to describe
the sets of stationarizations of such a type. Here m-independence and the calculus
of traces of types are useful. Apart from their relevance to Vaught’s conjecture,
these notions may be important for model theory in general. Indeed, in a small
stable theory m-independence is the strongest natural notion of independence (on
finite tuples) refining forking independence. So there is a hope that with sharper
tools we can better describe countable models. The theory of m-independence is
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34 Ludomir Newelski

in many ways parallel to the theory of forking independence of Shelah [Sh]. Also,
restricted to ∗-algebraic tuples, m-independence may be defined in an arbitrary
(small) theory T .

Usually, a, b, c, . . . denote finite tuples and A,B,C, . . . finite sets of elements
of C. x, y, z, . . . denote finite tuples of variables.

1 Meager forking and meager types

Assume s(x) is a (possibly incomplete) type over C. [s] denotes the class of types
in variables x containing s(x). s(C) denotes the set of tuples from C realizing s.
We define the trace of s over A as the set TrA(s) = {tp(a/acl(A)) : a ∈ s(C)},
a closed subset of S(acl(A)). In particular, for p ∈ S(A), TrA(p) is the set of
stationarizations of p over A.

Assume P is a closed subset of S(acl(A)). We say that forking is meager on
P if for every formula ϕ(x) forking over A, the set TrA(ϕ) ∩ P is nowhere dense
in P (equivalently: for every finite B ⊃ A, the set of types r ∈ P with a forking
extension in S(acl(B)) is meager in P ). For p ∈ S(A) we say that forking is meager
on p, if forking is meager on TrA(p).

Assume r is a stationary regular type. We say that ϕ(x) ∈ L(A) is an r-
formula (over A) if

• every type in S(acl(A))∩ [ϕ] is either hereditarily orthogonal to r or regular
non-orthogonal to r,

• the set Pϕ = {p ∈ S(acl(A)) ∩ [ϕ] : p 6⊥r} is closed and non-empty,

• r-weight 0 is definable on ϕ, that is whenever a ∈ ϕ(C) and wr(a/Ac) = 0,
then for some formula ψ(x, y) over acl(A), true of (a, c), if ψ(a′, c′) holds,
then wr(a′/Ac′) = 0.

If Pϕ = {p} is a singleton, then we say that p is strongly regular. Strongly regular
types were an essential ingredient in describing countable models of an ω-stable
theory in [SHM].

For a stationary regular type r ∈ S(B), forking induces a closure operator
cl on r(C) defined by a ∈ cl(X) iff a 6⌣| X(B), where {a} ∪ X ⊆ r(C). cl is a
(combinatorial) pregeometry on r(C) (this is in fact equivalent to regularity of r),
which we call the forking geometry on r. We say that r is [locally] modular, if
this geometry is [locally] modular. We say that r is non-trivial, if this geometry
is non-trivial [Pi].

Locally modular regular types are important in geometric model theory. If
r is non-trivial and locally modular, then the associated geometry is either affine
or projective over some division ring [Hr1]. By [HS], in a superstable T , for any
non-trivial regular type r, r-formulas exist.

Definition 1 ([Ne5]) We say that a regular stationary type r is meager if for
some (equivalently: any) r-formula ϕ, forking is meager on Pϕ.

For instance, every properly weakly minimal non-trivial type is meager.
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Theorem 1 ([Ne5]) Every meager type is non-trivial and locally modular.

This theorem improves [Bu1, LP]. It shows that the topological character of
forking on a regular type is relevant to its geometric properties. Hrushovski and
Shelah proved in [HS] that in a superstable theory without the omitting types
order property

(∗) every regular type is either locally modular or non-orthogonal to a strongly
regular type.

So in this case either the forking geometry on a type is nice or the situation is
similar to the ω-stable case. Hrushovski [Hr2] gave an example of a regular type
in a superstable theory, for which (∗) fails.

Question 1 Does (∗) hold in any superstable theory with < 2ℵ0 countable mod-
els ?

Following [Ta] we say that a regular type p ∈ S(A) is eventually strongly
non-isolated (esn), if some non-forking extension p′ of p over a finite A′ ⊃ A is
strongly non-isolated, that is, for every finite B ⊃ A′, p′ is almost orthogonal to
any isolated type in S(B). Also we say that p is almost strongly regular (asr), via
ϕ ∈ p, if ϕ is a p-formula over A and Pϕ = TrA(p). Since by Theorem 1 every
meager type is locally modular, the following characterization of non-trivial esn
types is relevant for Question 1.

Theorem 2 ([Ne7]) Assume T is small superstable and p is a non-trivial regular
type. Then p is esn iff (1) or (2) below holds. Moreover, (1) and (2) are mutually
exclusive.
(1) p is non-orthogonal to an almost strongly regular non-isolated type.
(2) p is meager.

2 M-rank and m-independence

In this section T is small and stable. For p ∈ S(A), T rA(p) is either finite or
homeomorphic to the Cantor set. We measure traces of types by comparing topo-
logically traces of their various extensions. This is done by means of M-rank and
m-independence.

Assume q ∈ S(B) is a non-forking extension of p ∈ S(A) (A ⊆ B). Then
TrA(q) is a closed subset of TrA(p) and either is open in TrA(p) or is nowhere
dense in TrA(p). In the former case we call q an m-free and in the latter a meager
extension of p. So q is an m-free extension of p iff q is isolated in the set of
non-forking extensions of p in S(B).

Definition 2 ([Ne3]) The rank function M is the minimal function defined on
the set of all complete types over finite sets, with values in Ord ∪ {∞}, such that
for every α ∈ Ord we have
M(p) ≥ α+ 1 iff M(q) ≥ α for some meager non-forking extension q of p.
M(a/A) abbreviates M(tp(a/A)). We say that T is m-stable if M(p) < ∞ for
every p.
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36 Ludomir Newelski

Definition 3 ([Ne8]) We say that a is m-independent from B over A (symboli-
cally: a

m

⌣| B(A) ) if tp(a/A ∪B) is an m-free extension of tp(a/A).

m-independence has similar properties as forking independence.

Proposition 1 ([Ne3, Ne8]) (1)(symmetry) If a
m

⌣| b(A), then b
m

⌣| a(A).
(2) (transitivity) a

m

⌣| B ∪ C(A) iff a
m

⌣| B(A) and a
m

⌣| C(A ∪B).
(3) a

m

⌣| B(A) is invariant under automorphisms of C and under changes of enu-
merations of a,A,B.
(4)(acl-triviality) If B ⊆ acl(A), then a

m

⌣| B(A).
(5) In a small theory,

m

⌣| has an extension property, i.e. every type p ∈ S(A) has
an m-free extension over any finite B ⊃ A.

Theorem 3 ([Ne10]) In a small stable theory m-independence is the strongest
notion of independence on finite tuples and finite sets of elements of C, which
refines forking independence and has the properties exhibited in Proposition 1.

In a small stable theory, in the following Lascar-style inequalities

(L) M(a/Ab) + M(b/A) ≤ M(ab/A) ≤ M(a/Ab) ⊕M(b/A)

the right side is always true, while the left side holds if a⌣| b(A) (that is, if a, b are
forking-independent over A).

In a small superstable theory M-rank may be used to find meager types
[Ne6] (similarly as U -rank considerations lead to regular types [Ls]). To find many
such types we need types of large (infinite, but < ∞) M-rank, to begin with.
Unfortunately, no such types are known in a small stable theory.

Conjecture 1 ([Ne7, the M-gap Conjecture]) In a small stable theory
there is no type p with ω ≤ M(p) <∞.

This conjecture is true for superstable theories under the few models assumption.

Theorem 4 ([Ne5, Ne7]) If T is superstable with < 2ℵ0 countable models, then
T is m-stable. Moreover, for every type p, M(p) is finite and ≤ U(p).

The proof of this theorem relies on the construction of some meager types
and the analysis of traces of some types in the associated meager groups (defined
below). The special case of theorem 4, where T is weakly minimal and U(p) = 1,
was conjectured by Saffe and proved in [Ne1]. It was decisive in the proof of
Vaught’s conjecture for weakly minimal theories [Bu3, Ne1].

Using the notions of M-rank and m-independence we get the following de-
scription of traces of types.

Theorem 5 ([Ne8, the Trace Theorem]) If T is superstable with < 2ℵ0

countable models, then for every p ∈ S(A) there is a formula ϕ(x) (usually not in
p) with TrA(ϕ) = TrA(p). In particular, if p is regular and forking is meager on
p, then p is isolated and meager.
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[Ne8, Theorem 2.6] contains more information on traces of meager types.
Regarding Theorem 3 we should mention that there is a notion of indepen-

dence intermediate between
m

⌣| and ⌣| . Namely, assume again q ∈ S(B) is a
non-forking extension of p ∈ S(A). On TrA(p) there is a natural probabilistic
Haar measure, invariant under Aut(C/A). We say that q is a µ-free extension
of p if TrA(q) has positive measure in TrA(p). This leads to the notion of µ-
independence

µ

⌣| (implicitly used in [LS]), having the properties from Proposition
1 [Ne8]. Also,

m

⌣| ⇒
µ

⌣| ⇒⌣| .
Tanovic proved that m-independence and µ-independence are equal in an m-

stable theory [Ne8], and I proved there that they are equal in an m-normal theory
(defined below). In particular, by Theorem 4 we could say that in a superstable
theory with < 2ℵ0 countable models, “measure equals category”. No theory is
known in which these two notions of independence differ.

3 The M-gap conjecture and m-normal theories

In this section we assume T is small stable. In an attempt to refute the M-gap
conjecture I constructed in [Ne8] small weakly minimal groups with types of various
M-ranks. However the traces of types in these groups are not complicated, they
are just translates of traces of some generic subgroups. This leads to the definition
of an m-normal theory.

Definition 4 ([Ne8]) T is m-normal if for every finite A ⊆ B and a ∈ C, for
some E ∈ FE(A), the set TrA(a/B) ∩ [E(x, a)] has finitely many conjugates over
Aa.

The idea underlying this definition is that in an m-normal theory, locally TrA(a/B)
can be almost recovered from Aa alone. This corresponds to the condition
Cb(a/A) ⊆ acl(a), defining 1-based theories.

There is an evident analogy between the theory of m-independence and
the theory of forking independence: meager forking, M-rank, meager types, m-
stability correspond to forking, U -rank, regular types, superstability. (Unfortu-
nately in the theory of m-independence there is no good counterpart of the notion
of a stationary type.) m-normality corresponds to 1-basedness. In order to justify
this we need to introduce ∗-finite tuples, which play for m-independence a role
similar to imaginaries in forking.

Definition 5 ([Ne8]) (1) A ∗-finite tuple is a tuple aI = 〈ai, i ∈ I〉 of elements
of C (with the index set I countable), such that aI ⊆ dcl(a) for some finite tuple a
of elements of C. Moreover, we say that aI is ∗-algebraic over A if aI ⊆ acl(A).
(2) SI(A) denotes the space of complete types over A, in variables xI = 〈xi, i ∈ I〉.
If aI is ∗-finite [∗-algebraic over A], then we call tp(aI/A) ∗-finite [∗-algebraic].

Example 1 Let p = tp(a/A) ∈ S(A). Then a∗ = 〈a/E : E ∈ FE(A)〉 is a ∗-finite
∗-algebraic over A tuple naming tp(a/acl(A)) over A.
Example 2 Let G ⊆ C be a group definable over A and let Gn, n < ω, be a
sequence of A-definable subgroups of finite index in G with G0 = ∩nGn (G0 is the
connected component of G). Then an element a/G0 of G/G0 may be regarded as
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38 Ludomir Newelski

a ∗-finite ∗-algebraic over A tuple 〈a/Gn, n < ω〉. So G/G0 is a ∗-finite ∗-algebraic
group.

The definitions of forking, traces of types, M-rank and m-independence work
also for ∗-finite tuples and ∗-finite types. From now on we let a, b, c, . . . denote
∗-finite tuples and A,B,C, . . . finite sets of ∗-finite tuples of elements of C. Finite
tuples or sets of elements of C will be called standard.

Most importantly, in the new set-up Proposition 1 remains valid, also (L)
holds in the same way as for standard tuples. Theorem 4 is true, except that for
a ∗-finite type p, M(p) may be larger than U(p). Unfortunately Theorem 5 does
not hold for ∗-finite types. The change of the set-up does not affect the value
of the M-ranks of standard types. Also, in Example 1, M(a/A) = M(a∗/A).
This is an important point, showing that ∗-algebraic tuples are the backbone of
M-rank and m-independence. If p ∈ SI(A) is ∗-algebraic, then there is a natural
correspondence between TrA(p) and p(C), inducing on p(C) a compact topology.

The next theorem explains the definition of an m-normal theory with the help
of ∗-algebraic tuples, making it similar to the definition of a 1-based theory using
imaginaries.

Theorem 6 ([Ne7, Ne12]) T is m-normal iff for every finite A and a, b ∗-
algebraic over A, there is a c ∈ aclA(a) ∩ aclA(b) with a

m

⌣| b(Ac).

Here c ∈ aclA(a) means that c has finitely many Aa-conjugates. For an infinite
set I of ∗-finite tuples, c ∈ acl(I) means that c ∈ acl(I0) for some finite I0 ⊂ I.

Buechler characterized 1-based theories among superstable theories of finite
rank as those where every U -rank 1 type is locally modular [Bu2]. This explains
the geometric importance of 1-basedness. In the case of m-normality we can give a
similar description. Since ∗-algebraic types are the backbone of m-independence,
this description refers to some geometries on ∗-algebraic types of M-rank 1.

Assume p ∈ SI(A) is ∗-algebraic, of M-rank 1. We say that I ⊆ p(C) is a flat
Morley sequence in p if I is countably infinite, m-independent over A and dense
in p(C) (by [Ne10], such an I is unique up to Aut(C/A)). Now aclA induces a
pregeometry on p(C) (just like acl induces the forking geometry on a U -rank 1
type). We say that p is locally modular if for some flat Morley sequence I in p,
the localized aclAI -geometry on p(C) is modular.

We define the notion of [almost] m-orthogonality analogously to the cor-
responding definition in the theory of forking. We say that T has weak m-
coordinatization if every ∗-algebraic type of M-rank > 0 is m-nonorthogonal to
a ∗-algebraic type of M-rank 1. We say that T has full m-coordinatization if for
every A and a ∗-algebraic over A with M(a/A) > 0, there is some b ∈ aclA(a)
with M(b/A) = 1.

The next three theorems justify our interest in m-normal theories.

Theorem 7 ([Ne12]) Assume T is small, of finite M-rank. Then the following
are equivalent.
(1) T is m-normal.
(2) T has full m-coordinatization and every ∗-algebraic M-rank 1 type is locally
modular.
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Meager Forking and m-Independence 39

(3) T has weak m-coordinatization and every ∗-algebraic M-rank 1 type is locally
modular.

Theorem 8 ([Ne8, Ne12]) In an m-normal theory there is no type p with ω ≤
M(p) <∞.

So for m-normal theories the M-gap conjecture is true. The small weakly minimal
groups referred to at the beginning of this section are m-normal. I know no small
theory, which is not m-normal.

Theorem 9 ([Ne11, Ne12]) If T is superstable with < 2ℵ0 countable models,
then T is m-normal.

Regarded as properties of m-independence, Theorems 4,7 and 9 correspond to
the result from [CHL] saying that every ℵ0-stable ℵ0-categorical theory has finite
Morley rank and is 1-based. [Ne11] contains more information on ∗-algebraic types
of M-rank 1 in superstable theories with < 2ℵ0 countable models.

4 Meager groups

Meager groups are some definable groups of standard elements of C. First we
shall define however the notion of a ∗-finite group. We say that G is a ∗-finite
group if G is a type-definable group consisting of uniformly ∗-finite tuples, that
is for some finite set A and a tuple fI = 〈fi, i ∈ I〉 of A-definable functions,
G = {fI(a) : a ∈ X} for some set X ⊆ C type-definable over A. G ⊆ SI(acl(A))
denotes the set of generic types of G. For B ⊇ A we say that aI ∈ G is m-
generic over B (and tp(aI/B) is m-generic) if aI

m

⌣| B(A), tp(aI/acl(A)) ∈ G and
TrA(aI/B) is open in G. We define M(G) as M(p) for any m-generic type p of
elements of G. Also there is a natural group structure on G, given by independent
multiplication of types [Ne2]. G is called ∗-algebraic if elements ofG are ∗-algebraic
over A (the group from Example 2 is a good example here).

Now assume G ⊆ C is an A-definable regular abelian group in a stable theory.
As above, G ⊆ S(acl(A)) denotes the set of generic types of G. Let p ∈ G be the
generic type of G0, the connected component of G. Notice that G is a p-formula
and G = PG. So p is meager iff forking is meager on G. In this case we call G a
meager group.

By [Hr1], for any locally modular regular type q there is a regular group non-
orthogonal to q, so every meager type is non-orthogonal to a meager group. We
will say more on such groups.

Assume G is a locally modular regular abelian group definable over A. Let
Gm denote the set of modular types in G (so p ∈ Gm and Gm is a subgroup of
G). Let Gm (the modular component of G) be the subgroup of G generated by
the realizations of types in Gm. In a small theory, Gm is closed in G and G \ Gm
is open in S(acl(A)) [Ne5].

Theorem 10 ([Ne5, Ne7]) Assume T is superstable with < 2ℵ0 countable models
and G ⊆ C is a locally modular regular abelian group definable over ∅. Then:
(1) G is meager iff [G : Gm] = [G : Gm] is infinite iff Gm is nowhere dense in G.
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(2) If G is meager, then M(G) = M(Gm) + 1.
(3)(generalized Saffe’s condition) If G is meager and a ∈ G is generic over A,
then exactly one of the following conditions holds:
(a) Tr∅(a/A) is open in G (i.e. a is m-generic over A and tp(a/A) is isolated).
(b) Tr∅(a/A) is contained in finitely many cosets of Gm (so it is nowhere dense
and tp(a/A) is non-isolated).

Also, with every locally modular group G we associate a division ring FG of de-
finable pseudo-endomorphisms of G0, and forking dependence on G0 is essentially
the linear dependence over FG [Hr1]. Now if G is meager, then FG is a locally
finite field and every element of FG is definable over acl(∅) [Lo, Ne5].

Using the above ideas we can prove Vaught’s conjecture for some superstable
theories of infinite rank. For instance, we have the following theorem.

Theorem 11 ([Ne9]) Assume T = Th(G), where G is a meager group of U -rank
ω and M-rank 1, with FG being a prime field. Then Vaught’s conjecture is true
for T .

The proof of this theorem uses also ideas from [Bu3] and from [Ne3, Ne4] on
describing models piece-by-piece. This leads to some “relative Vaught’s conjec-
ture” results, which consist in the following.

Suppose Φ(x) is a countable disjunction of formulas in T . Then we can
consider the restricted (many-sorted) theory T ⌈Φ = Th(Φ(C)). Proving Vaught’s
conjecture for T relative to Φ means proving Vaught’s conjecture for T under the
assumption of Vaught’s conjecture for T ⌈Φ. [Ne9, Ne13] contain some results of
this form. T = Th(G) for some meager group G there and Φ(x) is a disjunction
of formulas such that Φ(G) = G− = {a ∈ G : a is non-generic}, or Φ(G) = Gm.

5 A generalization

As mentioned in section 3, ∗-algebraic tuples are the backbone of m-independence.
Definition 3 (of m-independence) makes sense in an arbitrary theory if a is ∗-
algebraic over A. m-independence restricted to ∗-algebraic tuples has all the prop-
erties from Proposition 1 (but smallness is needed to get (5)). Then (1)-(5) from
Proposition 1 imply (L), which for ∗-algebraic tuples holds fully (because when
a, b are ∗-algebraic over A, then a⌣| b(A)). Also, Theorems 7 and 8 hold for an
arbitrary small theory (or even just for a theory, where ∗-algebraic tuples sat-
isfy conditions (1)-(5) from Proposition 1) [Ne12]. This suggests a possibility of
applying m-independence in an unstable context.

Hrushovski and Pillay prove in [HP] that every 1-based group is abelian-by-
finite. In [Ne12] I develop a theory of ∗-algebraic groups in a small m-normal
theory parallel in some respects to [HP].

Theorem 12 ([Ne12]) Assume G is a ∗-algebraic group type-definable over ∅, in
a small m-normal theory. Assume a ∈ G and p = tp(a/A). Then p(G) is a finite
union of cosets of subgroups of G definable over parameters algebraic over ∅. Also,
G is abelian-by-finite.
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Meager Forking and m-Independence 41

Any ∗-algebraic group is a topological profinite group. It would be interesting
to extract the topological content of Theorem 12. Since the group G/G0 from
Example 2 is ∗-algebraic, we get the following surprising corollary.

Corollary 1 Assume G is a (standard) group interpretable in a superstable the-
ory with < 2ℵ0 countable models. Then G/G0 is abelian-by-finite.

Question 2 Is any ∗-algebraic group interpretable in a small (stable) theory
abelian-by-finite ?

Regarding this question we should mention that by the results from [Ba], if G is
a standard group interpretable in a superstable theory, then G/G0 is solvable-by-
finite, and if additionally M(G/G0) = 1, then G/G0 is abelian-by-finite.
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