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An analysis of a given class S of structures in this area frequently splits into two
natural parts. One part consists in recognizing the critical members of S while the
other is in showing that a given list of critical members is in some sense complete.
These kinds of problems tend to be interesting even in cases when elements of S do
not have much structure or interest in themselves as they often appear as crucial
combinatorial parts of other problems abundant in structure. A typical example of
such a situation is the appearance of the Hausdorff gap (a critical substructure of
the reduced power NN/FIN; see [15]) at the crucial place in Woodin’s (consistency)
proof of Kaplansky’s conjecture about automatic continuity in Banach algebras
([34]). The purpose of this paper is to explain some of these problems and resulting
developments. Before we start describing specific Basis Problems some general
remarks are in order. Critical objects are almost always some canonical members of
S simple to describe and visualize. Sometimes, however, it may take a considerable
number of years (or decades) before an old object is identified as critical, or before
one finds a (simple!) definition of a new critical object. To show that a given list
S0 of critical objects is exhaustive one needs to relate a given structure from S to
one from the list S0. If the structure in question is explicitly given one usually has
no problems in finding the corresponding member of S0 and the connecting map.
However, if the given structure from S is “generic”, while one may still be able to
identify the member of S0 to which it is related, one can only hope for a “generic”
connecting map. Whenever we use this approach to show that a given list S0 is in
some sense complete, the corresponding Theorem or Conjecture will be marked by
[PFA]. The readers interested in the metamathematical aspects of this approach
will find a satisfactory explanation in the recent monograph of Woodin [35] where
it is actually shown that there is a certain degree of uniqueness in this approach.

1 Distance Functions

It is not surprising that many critical objects in families of uncountable structures
live on the domain ω1 of all countable ordinals as “critical” very often means
“minimal” in some sense. It is rather interesting that many such critical objects
can be defined on the basis of a single transformation α 7→ cα which for every
countable ordinal α picks a set cα of smaller ordinals of minimal possible order-
type subject to the requirement that α = sup(cα). This gives us a way to approach
higher ordinals from below in various recursive definitions. For example, given
two ordinals β > α one can step from β down towards α along the set cβ . More
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precisely, one can define the step from β towards α as the minimal point ξ of cβ
such that ξ ≥ α. Let cβ(α), or simply β(α), denote this ordinal. Now one can
step further from β(α) towards α and get β(α)(α) (= (β(α))(α)), and so on. This
leads us to the notion of a minimal walk from β to α

β > β(α) > β(α)(α) > · · · > β(α)(α) · · · (α) = α.

Let ⌈β(α)⌉ denote the weight of the step from β towards α, the cardinality of the
set of all ξ ∈ cβ such that that ξ < α. This gives us a way to define various
distances between α and β:

1. ‖αβ‖ = max{⌈β(α)⌉, ‖αβ(α)‖, ‖ξα‖ : ξ ∈ cβ , ξ < α},

2. ‖αβ‖1 = max{⌈β(α)⌉, ‖αβ(α)‖1},

3. ‖αβ‖2 = ‖αβ(α)‖+ 1.

Thus, ‖αβ‖2 is the number of steps in the minimal walk from β towards α,
and ‖αβ‖1 is the maximal weight of a single step in that walk. On the other
hand, ‖αβ‖ is a much finer distance function which has the following interesting
subadditivity properties for every triple γ > β > α of countable ordinals:

4. ‖αγ‖ ≤ max{‖αβ‖, ‖βγ‖},

5. ‖αβ‖ ≤ max{‖αγ‖, ‖βγ‖}.

Moreover, we also have the following important coherence properties for every pair
β > α of countable ordinals and every integer n (see §4 below where this is used):

6. ‖ξα‖ = ‖ξβ‖ and ‖ξα‖1 = ‖ξβ‖1 for all but finitely many ξ < α.

7. ‖ξα‖ > n and ‖ξα‖1 > n for all but finitely many ξ < α,

The minimal walk from β to α can be coded by the sequence ρ0(α, β) of weights
of the corresponding steps, or more precisely:

8. ρ0(α, β) = ⌈β(α)⌉̂ρ0(α, β(α)).

This leads us to another distance function whose values are countable ordinals
rather than non-negative integers:

9. ∆0(α, β) = min{ξ : ρ0(ξ, α) 6= ρ0(ξ, β)}.

Let Tr(α, β) denote the places visited during the walk from β to α i.e., the set of
all ξ ≤ β for which ρ0(ξ, β) is an initial segment of ρ0(α, β). This leads us now to
the first basic square-bracket operation on ω1:

10. [αβ] = min(Tr(ξ, β) \ α) where ξ = ∆0(α, β).

Thus [αβ] is the member βi on the path Tr(α, β) = {β = β0 > β1 > . . . > βn = α}
furthest from β subject to the requirement that there exists α = α0 > α1 > · · · >
αi such that ρ0(αj , α) = ρ0(βj , β) and cβj ∩ α = cαj

∩ αi for all j < i.
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Theorem 1 . [24] For every uncountable subset X of ω1, the set of all ordinals of
the form [αβ] for some α < β in X contains a closed and unbounded subset of ω1.

This operation has been used in constructions of various mathematical objects of
complex behavior such as groups, geometries, and Banach spaces ([20, 21], [7, 8]).
The usefulness of [·] in these constructions is based on the fact that [·] reduces
questions about uncountable subsets of ω1 (the subsets one usually talks about)
to questions about closed and unbounded subsets of ω1 which are much easier to
handle. Recent metamathematical results of Woodin [35] give some explanation
to this phenomenon.

2 Binary relations

For a given subset A of ω1, let RA denote the set of all pairs (α, β) of countable
ordinals such that [αβ] ∈ A. Then one can show that the family RA (A ⊆ ω1) of
binary relations exhibits a too complex behavior if we are to choose isomorphic
embeddings as connecting maps. It turns out that in this context the right choice
of connecting maps is a reduction introduced long time ago by J.W. Tukey [32] for
quite a different purpose. Given two binary relations R and S, we say that R is
Tukey reducible to S, and write R ≤T S, if there exist maps f : dom(R) → dom(S)
and g : ran(S) → ran(R) such that for every r ∈ R and s ∈ S,

11. (f(r), s) ∈ S implies (r, g(s)) ∈ R.

Tukey considered this reduction only in the case of directed sets as only they
are relevant to the theory of Moore–Smith convergence he was studying. The
definition is, however, as meaningful in the general case (see [33] and [31] for other
variations). While the square bracket operation [·] defined in the previous section
can be used to show the extreme complexity also in this generality, the critical
objects of the subclass of all transitive binary relations seem to remain critical
also in this bigger class. Some examples of critical transitive relations are the
usual well-ordering relation on ω1, which we denote by ω1, or the direct sum ω ·ω1

of countably many copies of ω1. The equality relation = on ω1 is of course the
maximal binary reflexive relation on ω1. Another critical structure is the family
FINω1

of all finite subsets of ω1 ordered by inclusion. That these are indeed some
of the critical structures for the whole class of binary relations would follow from
the positive answer to the following problem.

Conjecture 1 . [PFA] For every binary relation R on ω1, either R ≤T ω · ω1 or
FINω1

≤T R.

This seems to be a rather strong conjecture but it may not be so unreasonable since
we were able to prove it in the case of transitive relations ([27]). An essentially
equivalent Ramsey-theoretic reformulation of this conjecture has been around since
the early 1970’s in various correspondences between F. Galvin, K. Kunen, R. Laver
and others (see [12]): For every family G of unordered pairs of countable ordinals
either there exist an uncountable subset of ω1 which avoids G, or else there exist
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uncountable subsets A and B of ω1 such that {α, β} ∈ G whenever α ∈ A, β ∈ B
and α < β. There are a number of well-known open problems in other areas of
mathematics which are awaiting the solution to this conjecture. One of them is
the following duality conjecture between the closure and covering properties of
subsets of an arbitrary regular topological space X (see [25] or section 5 below).

Conjecture 2 . [PFA] A family of open subsets of X contains a countable sub-
family with the same union if and only if an arbitrary subset of X contains a
countable subset with the same closure.

3 Transitive relations

Tukey introduced his reduction in order to illuminate the theory of Moore-Smith
convergence, so he was concerned only with upwards-directed partially ordered
sets. He was already able to isolate the following five directed sets as pairwise
inequivalent under the equivalence relation induced by his reducibility:

1, ω, ω1, ω × ω1 and FINω1
.

It turns out that this is indeed the list of all critical directed sets on the domain ω1

as the following result shows.

Theorem 2 . [23][PFA] Every directed set on ω1 is Tukey equivalent to one of the
basic five 1, ω, ω1, ω × ω1, FINω1

.

A number of years later we were able to extend this result to arbitrary transitive
relations on ω1. To simplify the notation, let D0 = 1, D1 = ω, D2 = ω1, D3 =
ω × ω1 and D4 = FINω1

, and let m ·D denote the direct sum of m copies of D.

Theorem 3 . [27][PFA] Every transitive relation on ω1 is Tukey equivalent to one
of the following where ni’s are all non-negative integers:

(a) n0 ·D0 ⊕ n1 ·D1 ⊕ n2 ·D2 ⊕ n3 ·D3 ⊕ n4D4,

(b) ω ·D0 ⊕ n2 ·D2 ⊕ n3 ·D3 ⊕ n4 ·D4,

(c) ω ·D2 ⊕ n4 ·D4,

(d) ω ·D4,

(e) =.

The class of transitive relations that one can associate with the reals is considerably
richer than the class of all transitive relations on the domain ω1 and the analogue
of Theorem 3 for this domain is false. For example, Isbell [16] showed that the
Banach lattice ℓ1 and the lattice N

N are not equivalent to either of the five basic
directed sets (and moreover, not equivalent to each other). In [10], Fremlin realized
that Tukey reductions (or non-reductions) between the classical objects of Real
Analysis and Measure Theory are meaningful even from the point of view of these
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areas of mathematics. Mathematical structures that one finds in these areas are
often associated with studies of certain notions of smallness, or more precisely,
ideals in Boolean rings such as, for example, the power-set of the reals or the
integers. Many of them can in fact be represented as analytic P-ideals on N i.e.,
ideals of the power-set of N, that are σ-directed modulo FIN, the ideal of finite
subsets of N, and given in some explicit way (or more precisely representable
as continuous images of the irrationals when viewed as subspaces of the Cantor
set 2N). Recently, a number of unexpected connections in this class of ideals have
been discovered (see, for example, [22], [28]). One of them is the following result
which shows that FIN, NN and ℓ1 (all representable as analytic P -ideals on N) are
indeed critical members of this class.

Theorem 4 . [29] If J is an analytic P -ideal on N, then either J is generated over
FIN by a single subset of N or else N

N ≤T J ≤T ℓ1.

4 Linear orderings

A basis for a class X of linear orderings is any of its subclasses Y with the property
that every member of X contains an isomorphic copy of a member of Y. Clearly ω1

and its converse ω∗

1
will be members of any basis for uncountable linear orderings

so we may restrict our attention to the class R of uncountable linear orderings
orthogonal to both ω1 and ω∗

1
. The classR itself naturally splits into the subclass S

of separable orderings and its relative orthogonal A = S⊥ ∩ R which turns out
to be nonempty. The Basis Problem for S was solved by Baumgartner [4] who
has actually proved the following more precise result where Sd denotes the family
of all L ∈ S with the property that every nontrivial interval of L has exactly ℵ1

many elements.

Theorem 5 . [4][PFA] Every two orderings from Sd are isomorphic.

The Ramsey-theoretic analysis of Baumgartner’s proof turned out to be quite
rewarding. Out of a number of closely related coloring principles discovered over
the years (see [1], [25]), the following asymmetric principle of open colorings turned
out to be quite useful even in problems far beyond the original scope (see e.g.
[25], [9]):

[OCA] For every separable metric space X and every open symmetric and irreflex-
ive relation R on X, either X can be decomposed into countably many sets that
avoid R, or else X contains an uncountable subset Y such that every two distinct
members of Y are related in R.

To see the relevance of OCA to the Basis Problem of S consider two uncount-
able separable (dense) linear orderings A and B. Let X = A × B and let
R = {((a0, b0), (a1, b1)) : a0 6= a1, b0 6= b1, (a0 <A a1 ≡ b0 <B b1)}. This is
indeed an open relation with respect to the natural order topology on X. It is a
general fact that the cartesian product of two orderings from S(∪{ω1, ω

∗

1
}) can-

not be decomposed into countably many chains so the first alternative of OCA
fails in this situation. The second alternative of OCA gives us an embedding of
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an uncountable subset of A into B. This shows that no two members of S are
orthogonal to each other which is a half way towards the solution of the Basis
Problem for separable linear orderings. The progress on the Basis Problem for
the orthogonal A = (S ∪ {ω1, ω

∗

1
})⊥ has been much slower. It was initiated by

the following brilliant question of R.S. Countryman [6]: Is there an uncountable
linear ordering whose cartesian square is the union of countably many chains? We
have already remarked that the class C of Countryman’s orderings (if nonempty)
must be included in A. Note also that every C ∈ C is orthogonal to its reverse C∗

(which also belongs to C). Thus, unlike to the case of separable orderings, if the
class C is nonempty, we cannot hope for a single-element basis in this case. In [19],
Shelah established that C is indeed a nonempty class of orderings and posed the
following interesting conjecture.

Conjecture 3 . [PFA] The class C is a basis for A.

This together with Baumgartner’s result about the class of separable orderings
leads us to the following equivalent conjecture.

Conjecture 4 . [PFA] The class of all uncountable linear orderings has a 5-
element basis ω1, ω

∗

1
, B,C,C∗ where B is some uncountable set of reals and

where C is any uncountable linear ordering whose cartesian square is the union of
countably many chains.

While Shelah’s conjecture is still widely open one can still try to find the Ramsey-
theoretic principle that lies behind. This search turned out to be quite simple and
(unlike the case of OCA above) the resulting coloring principle turned out to be
equivalent to the statement that A has a 2-element basis. The analysis is based
on a fundamental concept introduced more than 60 years ago by -D. Kurepa [17], a
concept whose relevance in constructing critical uncountable structures has been
realized only in recent times. This is the concept of a (special) Aronszajn tree (A-
tree, in short). An A-tree is simply a transformation a which to every countable
ordinal ξ associates its enumeration aξ : ξ → ω (one-to-one or finite-to-one map)
with the property that for a given countable ordinal α the set of restrictions
{aξ ↾ α : ξ < ω1} is at most countable. The set Aa = {aξ : ξ < ω1}, ordered
lexicographically, is a typical member of the class A. Clearly we can view the
transformation a also as a two-place distance function a(α, β) = aβ(α) which
makes this concept relevant in descriptions of other critical structures as well. For
example, it can be seen that the distance functions ‖ · ‖, ‖ · ‖1 and ρ0 considered
in the first section are all Aronszajn. However, our analysis from that section also
suggests considering the notion of a coherent A-tree i.e., an A-tree aξ : ξ → ω1 of
finite-to-one mappings which has the following property for all α < β:

12. aα(ξ) = aβ(ξ) for all but finitely many ξ < α.

The importance of this notion can be seen from the following

Theorem 6 . [24] The cartesian square of any lexicographically ordered coherent
A-tree is the union of countably many chains.
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In other words, a coherent A-tree immediately gives us a critical member of the
class of uncountable linear orderings. It is therefore not surprising that this notion
will also give us a Ramsey-theoretic reformulation of Shelah’s Conjecture. Recall
the notion of distance function ∆(α, β) = min{ξ : aα(ξ) 6= aβ(ξ)} that one asso-
ciates to an A-tree aξ : ξ → ω of enumerations. Thus, ∆(β, γ) > ∆(α, β) reads as
“β is closer to γ than to α”. So it is natural to call a binary relation R on ω1 an
a-open relation if

13. R(α, β) and ∆(β, γ) > ∆(α, β) imply R(α, γ),

whenever α, β and γ are pairwise distinct countable ordinals. However, this is not
quite analogous to the situation in the Cantor set 2N since it easily follows that in
the present case the complement of an a-open relation on ω1 is also a-open.

Theorem 7 . [2][PFA] The class A of linear orderings has a 2-element basis if
and only if for every a-open symmetric relation R on ω1 there is an uncountable
subset X of ω1 such that X2\diagonal is included either in R or in its complement.

It should be remarked that if in this Ramsey-theoretic principle we use another
A-tree as a parameter which describes the notion of openness we get an equivalent
formulation.

5 Topological spaces

While this is an area of considerable generality and wealth of examples there seem
to be some patterns in descriptions of these examples. Pathological spaces almost
always contain uncountable discrete subspace (a copy of D(ω1), the discrete space
on ω1) and this is usually at the root of their complexity. On the other hand, spaces
that do not contain D(ω1) are usually obtained as mild modifications of separable
metric topologies. A typical such example is the split-interval of Alexandroff and
Urysohn [3] or its subspaces. It is obtained by doubling each point of the unit
interval I = [0, 1], or more precisely the space I × 2 with the lexicographic order
topology. Note that the split-interval is a 2−to−1-preimage of the unit interval
so the two spaces share many properties in common. On the other hand, they are
orthogonal to each other since clearly the split-interval contains no uncountable
metrizable subspace.

Conjecture 5 . [PFA] The class of uncountable regular spaces has a 3-element
basis consisting of D(ω1), B and B × {0}, where B is some uncountable subset of
the unit interval and where B×{0} is considered as a subspace of the split-interval.

This is a rather bold conjecture based on a question first considered by Gruen-
hage [14]. Note that Conjecture 2, about the equivalence of certain closure and
covering properties in regular spaces considered above, is an immediate conse-
quence of Conjecture 5. In fact, Conjecture 5 has several other weakenings which
if true would still be of considerable interest. For example, if we restrict our-
selves to compact spaces we get the following consequence of Conjecture 5 which
is related to a problem first asked by D.H. Fremlin (see [11] or [14]).
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Conjecture 6 . [PFA] Every compact space which does not contain D(ω1) admits
an at most 2−to−1 continuous map onto a compact metric space.

It is easily seen that this conjecture is in fact equivalent to Conjecture 5 restricted
to regular spaces that can be compactified avoiding copies ofD(ω1). Note also that
this conjecture solves the Basis Problem for compact spaces: A compact space K
is either metrizable, or it contains a copy of D(ω1), or an uncountable subspace of
the split interval of the form B×2. Note that from such a subspace B×2 of K one
can easily build an uncountable biorthogonal system in the Banach space C(K) of
continuous real-valued functions on K i.e., a system (xb, x

∗

b) (b ∈ B) of elements
of C(K)× C(K)∗ with uniformly bounded norms such that

14. x∗

b(xb) = 1 and x∗

b(xa) = 0 whenever a 6= b.

Another interesting consequence of Conjecture 6 is the fact that if the product of
two compact spaces does not contain a copy of D(ω1) then one of the factors must
be metrizable.

It is interesting that the Ramsey-theoretic principles needed to solve these two
conjectures are some forms of OCA discussed above in connection with the Basis
Problem for separable linear orderings. This is not surprising since a separable
linear ordering shows up in Conjecture 5 as a member of a basis for uncountable
regular spaces. However, to solve these two conjectures one needs a much stronger
form of OCA valid for a class of spaces larger than the class of separable metric
spaces occurring in the original form (see [14], [25]). Lacking the methods to attack
these Ramsey-theoretic problems, it is natural to try to test these two conjectures
by either proving some of the consequences or by restricting ourselves to some
concrete class of spaces. We have two results of this sort that show a surprising
degree of accuracy in these conjectures.

Theorem 8 . [26][PFA] A compact space K is metrizable if and only if the Banach
space C(K) contains no uncountable biorthogonal system.

Pointwise compact sets of Baire class-1 functions showed up perhaps for the first
time in the two selection theorems of E. Helly about families of monotonic functions
on the unit intervals. In more recent years the interest was renewed after Odell
and Rosenthal [18] proved that a separable Banach space E contains no copy of ℓ1

if and only if the unit ball of E∗∗ with the weak* topology is such a compactum
when considered as a family of functions defined on the unit ball of E∗. A number
of deep general results about this class of spaces were established soon afterwards
by Bourgain, Fremlin, Talagrand [5] and Godefroy [13]. Since the split-interval
can be represented as a compactum lying inside the first Baire class, it is natural
to try to test the validity of Conjecture 6 on this class of compact spaces. The
following result shows that for this class of compact spaces Conjecture 6 is indeed
true even in some stronger form.

Theorem 9 . [30] Every pointwise compact subset of the first Baire class which
does not contain a copy of D(ω1) admits an at most 2−to−1 continuous map onto
a metric compactum, and moreover, it is either metric itself or it contains a full
copy of the split-interval.
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