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ON THE BURNSIDE PROBLEM

FOR GROUPS OF EVEN EXPONENT

SERGEI V. Ivanov!

ABSTRACT. The Burnside problem about periodic groups asks whether any
finitely generated group with the law x™ = 1 is necessarily finite. This
is proven only for n < 4 and n = 6. A negative solution to the Burnside
problem for odd n > 1 was given by Novikov and Adian. The article presents
a discussion of a recent solution of the Burnside problem for even exponents
n > 1 and related results.
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Recall that the notorious Burnside problem about periodic groups (posed in
1902, see [B]) asks whether any finitely generated group that satisfies the law
2™ =1 (n is a fixed positive integer called the exponent of G) is necessarily finite.
A positive solution to this problem is obtained only for n < 4 and n = 6. Note
the case n < 2 is obvious, the case n = 3 is due to Burnside [B], n = 4 is due to
Sanov [S], and n = 6 to M. Hall [H]] (see also [MKS]). A negative solution to the
Burnside problem for odd exponents was given in 1968 by Novikov and Adian [NA]
(see also [Ad]) who constructed infinite m-generator groups with m > 2 of any odd
exponent n > 4381 (later Adian [Ad] improved on this estimate bringing it down
to odd n > 665). A simpler geometric solution to this problem for odd n > 1010
was later given by Olshanskii [Ol11] (see also [012]). We remark that attempts to
approach the Burnside problem via finite groups gave rise to a restricted version
of the Burnside problem [M] that asks whether there exists a number f(m,n) so
that the order of any finite m-generator group of exponent n is less than f(m,n).
The existence of such a bound f(m,n) was proven for prime n by Kostrikin [K1]
(see also [K2]) and for n = p’ with prime p by Zelmanov [Z1]-[Z2]. By a reduction
theorem due to Ph. Hall and Higman [HH] it then follows from this Zelmanov
result that, modulo the classification of finite simple groups, the function f(m,n)
does exist for all m,n.

However, the Burnside problem for even exponents n without odd divisor > 665,
being especially interesting for n = 2 > 1, remained open. The principal differ-
ence between odd and even exponents in the Burnside problem can be illustrated
by pointing out that, on the one hand, for every odd n > 1 there are infinite
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2-generator groups of exponent n all of whose proper subgroups are cyclic [IA]
(see also [012]) and, on the other hand, any 2-group the orders of whose finite (or
abelian) subgroups are bounded is itself finite [Hd].

A negative solution to the Burnside problem for even exponents n > 1 is given
in recent author’s article [Iv] and based on the following inductive construction
(which is analogous to Ol’shanskii’s construction [Ol11] for odd n > 10%°).

Let F,, be a free group of rank m over an alphabet A = {alil, e m> 1,
n > 2% and n be divisible by 22 provided n is even (from now on we impose these
restrictions on m and n unless otherwise stated; note this estimate n > 248 has been
improved on by Lysénok [L] to n > 213). By induction on i, let B(m,n,0) = F,,
and, assuming that the group B(m,n,i—1) with ¢ > 1 is already constructed as a
quotient group of F,,, define A; to be a shortest element of F,, (if any) the order
of whose image (under the natural epimorphism ;_; : F,,, — B(m,n,i — 1)) is
infinite. Then B(m,n,) is constructed as a quotient group of B(m,n,i — 1) by
the normal closure of 1,1 (A?). Clearly, B(m,n,i) has a presentation of the form

(1) B(m,n,i) ={a,...,am || AT,..., A7 1, AT ),

where A7, ..., A" |, A are the defining relators of B(m,n,1).

The quotient group F,,/F, where F is the subgroup of the free group F,
generated by all nth powers, is denoted by B(m, n) and called the free m-generator
Burnside group of exponent n. Now we give a summary of basic results of [Iv].

THEOREM 1 ([IV]). Letm > 1, n > 2% and 2° divide n provided n is even. Then
the following hold.

(a) The free m-generator Burnside group B(m,n) of exponent n is infinite.

(b) The word A; does exist for each i > 1.

(¢) The direct limit B(m,n,oc0) of the groups B(m,n,i), i = 1,2,..., is the
free m-generator Burnside group B(m,n) of exponent n, that is, B(m,n)
has the presentation

(2) B(m,n) = (a1,...,am | AT, ..., A7, AL, .0 ).

(d) There are algorithms that solve the word and conjugacy problems for the
group B(m,n) given by presentation (2).

(e) Let n = ning, where ny is odd and no is a power of 2. If n is odd,
then every finite subgroup of B(m,n) is cyclic. If n is even, then every
finite subgroup of B(m,n) is isomorphic to a subgroup of the direct product
D(2n1) x D(2n3)t for some £, where D(2k) is a dihedral group of order 2k.

(f) For everyi > 0 the group B(m,n,i) given by presentation (1) is hyperbolic
(in the sense of Gromov [G]).

Note that the part (a) of Theorem 1 is immediate from part (b) because if
B(m,n) were finite it could be given by finitely many defining relators and so A;
would fail to exist for sufficiently large . To prove part (d) the word and conjugacy
problems for the group B(m,n) are effectively reduced to the word problem for
some B(m,n,4) and it is shown that every B(m,n, ) satisfies a linear isoperimetric
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inequality and so is hyperbolic. It should be pointed out that for odd exponents
n > 1 all parts of Theorem 1 had been known due to Novikov and Adian (parts
(a), (e), (f); see [Ad]) and Ol'shanskii (parts (b), (c), (f); see [Ol1], [O12]).

It is worth noting that the structure of finite subgroups of the free Burnside
group B(m,n) and B(m,n, 1) is very complex when the exponent n is even and, in
fact, finite subgroups of groups B(m,n, i), B(m,n) turn out to be so important in
proofs of [Iv] that at least a third of article [Iv] is an investigation of their various
properties and another third is a preparation of necessary techniques to conduct
this investigation. Part (e) of Theorem 1 may be regarded as a central result on
finite subgroups of B(m,n). To state more results on finite subgroups of groups
B(m,n,t), B(m,n), denote by F(A4;) a maximal finite subgroup of B(m,n,i —
1) relative to the property that A; (that is, the image of A; in B(m,n,i — 1))
normalizes F(A;). A word U is called an F(A;)-involution if U? € F(A;), U
normalizes the subgroup F(A4;) of B(m,n,i — 1), and

UAU ' = A'F

in B(m,n,i— 1), where F' € F(A;).

For example, if A; is a letter then F(A;) = {1} and there are no F(4;)-
involutions. If n > 1 is odd then for every 4 one has F(A;) = {1} and there
are no F(A;)-involutions. If now A4; = a?mag/z then F(A;) = {1} and a?/2, ag/2
are F(A;)-involutions. An example when F(A4;) # {1} is provided by

A; = (a?/2(alag)"/2)"/2(a;/z(alag)n/2)"/2

for (a1a2)™/? € F(A;).
Next, define
G(A:i) = (Ui, Ai, F(As) )

to be a subgroup in B(m,n,i—1) generated by 4;, by the subgroup F(4;), and by
a word U;, where U; is an F(A;)-involution provided there are F(A;)-involutions
and U; = 1 otherwise. It follows from definitions that G(A4;) is either an extension
of F(A;) by an infinite dihedral group generated by elements U;, A; of order 2, oo,
respectively, modulo F(A;) provided there are F(A;)-involutions or G(4;) is an
extension of F(A;) by an infinite cyclic group generated by A; provided there are
no F(A;)-involutions. Basic properties of finite subgroups of groups B(m,n,1),
B(m,n) are collected in the following.

THEOREM 2 ([Iv]). Let B(m,n) be a free m-generator Burnside group of even
exponent n > 2% given by presentation (2), where n is divisible by 2°. Then the
following are true.

(a) The subgroup F(A;) is defined uniquely and is a 2-group.

(b) The word A?/Q centralizes in B(m,n,i— 1) the subgroup F(A;) and hence
the quotient G(A;)/(AL), denoted by IC(A;) is either an extension of F(A;)
by a dihedral group of order 2n generated by elements U;, A;, or K(A;) is
an extension of F(A;) by a cyclic group of order n generated by A;. In
addition, the group K(A;) naturally embeds in B(m,n,i) and B(m,n).
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(¢) Every word W of finite order in B(m,n,i—1) is conjugate in B(m,n,i—1)
to a word of the form A;?T with some integers k, j < i and T € F(A;).
Moreover, the conjugacy in B(m,n,i — 1) of nontrivial in B(m,n,i — 1)
words AS'Ty and AY Ty, where Ty € F(A;,) and Ty € F(Ay,), ji,j2 < i,
yields j1 = jo and ki = £ko (mod n). (Therefore, given a nontrivial in
B(m,n,i—1) word W of finite order such number j is defined uniquely in
B(m,n,i—1) as well as in B(m,n) and called the height of the word W.)

(d) Every finite subgroup of B(m,n), consisting of words of heights < i and
containing a word of height i, is conjugate to a subgroup of K(4;) =
(Ui, Ai, F(A;) ) € B(m,n).

(e) The words A; and U; act on the subgroup F(A;) of B(m,n,i—1) by conju-
gations in the same way as some words Va, and Vi, act respectively, where
Va, and Vi, are such that the subgroup ( Va,,Vu,, F(A;) ) of B(m,n,i—1)
is finite and the equality U? = V3. (as well as (U; A = (Vu,Va,)? provided
U; # 1) holds in B(m,n,i—1).

Let us see how the algebraic description of finite subgroups of B(m,n) of The-
orem 1 (e) can be derived from Theorem 2 by induction on the height h(G) of a
finite subgroup G of B(m,n) (h(G) is the maximum of heights of elements of G).
Let G be a finite subgroup of B(m,n) with h(G) = i. By Theorem 2 (d), one may
assume that G is a subgroup of K(A;). It follows from definitions and Theorem 2
(e) that there are homomorphisms

K1 : K:(A,) — D(2n), Ko @ ’C(A,L) — Gy
such that
Kerkys = F(A;), Go={(F(A:),Va,,Vu, ) C B(m,n,i—1)

and h(Go) < i. Since Kerxy N Kerky = {1}, the group G embeds in the direct
product D(2n) x Gg. By the induction hypothesis, Gy embeds in D(2n) x D(2n2)*
for some ¢£. By Theorem 2 (a), F(A;) is a 2-group, therefore the subgroup of D(2n;)
of index 2 has the trivial intersection with the image of F(A;) in D(2n) x D(2n1) X
D(2n3)* and hence D(2n;) can be replaced by D(2ns). Since D(2n) embeds in
D(2n1)x D(2n3), we have that G is embeddable in D(2n1)x D(2n2)**! as required.
This algebraic description of finite subgroups is very important in many parts of
article [Iv], especially, in making the inductive step from the group B(m,n,i — 1)
to B(m,n,i). For example, this description helps a great deal in proving one of
the hardest and absolutely crucial for the whole work technical results: If the
subgroup
(ARTATF |k =0,1,...,7)

of B(m,n,i — 1) is finite then A; normalizes this subgroup. We will make an
informal remark that if a similar claim (where instead of 7 one could put a number
as large as n'/2) were false then A? would not have to centralize F(A;) and
imposing the relation A? = 1 on B(m,n,i — 1) would result in extra relations
of type R = 1 where R is a nontrivial element of F(A4;) (R has the form R =
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APFA;"F~! # 1 with F € F(4;)). This secondary factorization would make
a complete mess implying that one could be far better off trying to solve the
Burnside problem for n = 2¢ in the affirmative.

The proofs in [Iv] are based on geometric techniques of van Kampen diagrams
(which are labelled planar 2-complexes representing consequences of defining rela-
tors of group presentations; see [012], [LS], [IO1]) and may be regarded as a further
development of Ol'shanskii’s method [Ol1] for solving the Burnside problem for
odd exponents n > 1. The main obstacle in carrying over Ol’shanskii’s proof to
even exponents is in making the inductive step from B(m,n,i — 1) to B(m,n,1).
Curiously, in odd case the inductive step from B(m,n,i— 1) to B(m,n,1) is being
made in [Ol1] by boiling everything down to an elementary fact that the fun-
damental group of an annulus is cyclic (however, the reduction itself is highly
nontrivial). The same fact is ultimately responsible for the cyclicity of finite sub-
groups of B(m,n) with odd n > 1. This reduction naturally fails in even case
due to the existence of self-compatible cells in nonsimply connected diagrams over
B(m,n,i —1). (A self-compatible cell is a 2-cells that surrounds hole(s) of a dia-
gram and has two long arcs of its boundary with a narrow strip squeezed between
the arcs.) Informally, turning these self-compatible cells from the main obstacle
into a source of new information is what the article [Iv] is all about. However,
extracting gems from this mine is quite a challenge and that partially explains an
extraordinary length (over 300 pages) of the article and its complex logical struc-
ture (over 110 lemmas are proved by simultaneous induction on the parameter 4
with quite a few back references; note a similar simultaneous induction is carried
out in [NA], [O11]).

It is implied by results of [Iv] that finite (as well as locally finite) subgroups of
B(m,n) with even n are very interesting subject for investigation on their own.
In particular, one might wonder if their description given in Theorem 1 (e) is
complete, that is, every group D(2n;) x D(2n2)¢ embeds in B(m,n). Another
natural question is to ask whether every locally finite subgroup of B(m,n) is
an F'C-group. Recall that a group G is locally finite if every finitely generated
subgroup of G is finite. A group G is termed an FC-group if every conjugacy
class of G is finite. Also, let D;, i = 1,2,..., be groups isomorphic to D(2ns),
D be the cartesian product of D;, i = 1,2,..., C; be the normal cyclic subgroup
of D; of order no, and b; € D; be an element of order 2 that together with Cj
generate D; = (C;, b;). By B denote the subgroup of D that consists of all elements
whose projection on every D; is either b; or 1. By C denote the direct product of
groups C; naturally embedded in D. At last, let £ = (B,C). Clearly, £ = BC is a
semidirect product of B and C.

The following Theorem 3 is a summary of joint with Ol’shanskii results on
(locally) finite subgroups of B(m,n).

THEOREM 3 ([IO2]). Let B(m,n) be a free m-generator Burnside group of even
exponent n, where m > 1 and n > 2%, n = niny, ny is odd, ny is a power of 2,
ng > 2°. Then the following hold:

(a) Suppose G is a finite 2-subgroup of B(m,n). Then the centralizer
CB(m,n)(G) of G in B(m,n) contains a subgroup M isomorphic to a free
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Burnside group B(oo,n) of infinite countable rank such that GNM = {1}.
In particular, (G, M) =G x M.

(b) The centralizer Cg(mn)(H) of a subgroup H of B(m,n) is infinite if and
only if H is a locally finite 2-subgroup. In particular, Cpm ) (H) is finite
provided H is not locally finite.

(¢) An arbitrary infinite group G embeds in B(m,n) as a locally finite subgroup
if and only if G is isomorphic to a countable subgroup of £.

(d) An arbitrary infinite group G embeds in B(m,n) as a maximal locally
finite subgroup if and only if G is isomorphic to a countable subgroup of £.

(e) An infinite locally finite subgroup L of B(m,n) is contained in a unique
mazximal locally finite subgroup. That is, the intersection of two distinct
mazximal locally finite subgroups of B(m,n) is always finite.

(f) Given a finite 2-subgroup G of B(m,n) there are continuously many pair-
wise nonisomorphic mazximal locally finite subgroups that contain G.

(¢) If a finite subgroup G of B(m,n) contains a nontrivial element of odd
order, then G is contained in a unique maximal finite subgroup. In partic-
ular, the intersection of two distinct maximal finite subgroups of B(m,n)
is always a 2-group.

Note the mutual disposition of infinite maximal locally finite subgroups stated
in Theorem 3 (e), (f) is reminiscent of a known puzzle-type problem: Find, in
a countably infinite set, continuously many subsets whose pairwise intersections
are all finite (note this is impossible if the cardinalities of the intersections are
bounded).

A couple of questions mentioned above can now be easily answered:

COROLLARY. Let B(m,n) be defined as in Theorem 2. Then the following are
true.
(a) A finite group G embeds in B(m,n) if and only if G is isomorphic to a
subgroup of the direct product D(2ny) x D(2ns)¢ for some £ > 0, where
D(2k) is a dihedral group of order 2k.
(b) The group B(m,n) contains (mazimal) locally finite subgroups that are
not FC-groups.
(¢) A subgroup S of B(m,n) is locally finite if and only if every 2-generator
subgroup of S is finite.

The machinery developed in [Iv] for solving the Burnside problem for even
exponents n > 1 has made it possible to prove a conjecture of Gromov on quotients
of hyperbolic groups of bounded exponent.

To state the results we recall several definitions. Let G be a finitely generated
group, A be a finite set of generators for G. By |g| = |W/| denote the length of
a shortest word W in the alphabet A that represents an element g € G. One of
definitions of a hyperbolic group G is given by means of the Gromov product

(9-h) = 3(lgl+ |h] = lg~"Al)

as follows: A group G is called hyperbolic [G] if there exists a constant § > 0 such
that for every triple g, h, f € G
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3) (9-h) =z min((g - f), (h- f)) =0

In turns out [G], [GH] that the property of being hyperbolic does not depend
on a particular generating set A (but the constant § does depend on A). A
trivial example of hyperbolic group is the free group F = F(A) over A for which
inequality (3) is satisfied with ¢ = 0 because in this case (g - h) is the length of
the maximal common beginning of reduced words g, h in A. Perhaps, the most
complicated (in terms of proving that) examples of hyperbolic groups are provided
by the series of groups B(m,n,i) of Theorems 1-2.

Similar to free groups, an arbitrary nonelementary hyperbolic group has many
homomorphic images (recall a group G is termed in [G] elementary if G has a cyclic
subgroup of finite index). Discussing an approach to construction of an infinite
periodic quotient group G of a nonelementary hyperbolic group G, Gromov [G]
(see also [GH], [Ol4]) points out that his approach does not let bound the orders
of elements in G (and so G will not be of finite exponent). Nevertheless, Gromov
conjectures (see 5.5E, 5.5F in [G]) that it is possible in principle to bound the
orders of elements in G and obtain G of finite exponent n, that is, he conjectures
that for every nonelementary hyperbolic group G there is an n = n(G) such that
the quotient G/G™ is infinite. Thus Gromov suggested a natural expansion of the
Burnside problem to nonelementary hyperbolic groups. This Gromov conjecture
was proven by Olshanskii [O13] for torsion free hyperbolic groups. However, in
the general case of a hyperbolic group with torsion there are serious obstacles
connected with nonelementary centralizers of elements of G and noncyclic finite
subgroups in G/G™ that are essentially the same as those in solving the classical
Burnside problem for even exponents n.

The solution [Iv] of the ”even” Burnside problem discussed above combined with
ideas of [O13] enabled Ol’shanskii and the author to prove the Gromov conjecture
in full generality.

THEOREM 4 ([IO3]). For every nonelementary hyperbolic group G there exists a
positive even integer n = n(G) such that the following are true:
(a) The quotient group G/G™ is infinite.
(b) The word and conjugacy problems are solvable in G/G™.
(¢c) Let n =ning, where ny is odd and ns is a power of 2. Then every finite
subgroup of G/G™ is isomorphic to an extension of a finite subgroup K of
G by a subgroup of the direct product D(2n1) x D(2ns)* for some £, where
D(2k) is a dihedral group of order 2k.
(d) The subgroup G™ is torsion free and (-, GF" = {1}.

When proving Theorem 4, we encounter several restrictions to be imposed on
n and end up with that n must be divisible by 2¥0*5n, (to say nothing of that
n > 0 = 6(G)), where % is the least common multiple of the exponents of
the holomorphs Hol(K') over all finite subgroups K of G and kg is the minimal
integer with 2¥0=3 > max|K| over all finite subgroups K of G. We note that

almost all lemmas of [Iv] are reproved in [IO3] with necessary modifications which
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are analogous to those made by Olshanskii [O13] to adjust his solution [Ol1] of
”odd” Burnside problem for proving Gromov conjecture for torsion free hyperbolic
groups. We also note that, just like in [Iv], information on finite subgroups of G/G™
is very important in proofs of [I03] and their description (Theorem 4 (c)) is given
as in [Iv] (Theorem 1 (e)) modulo finite subgroups of G. Naturally, proofs in [IO3]
also make use of various facts of general theory of hyperbolic groups, see [G], [GH],
[CDP].
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