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On the Burnside Problem

for Groups of Even Exponent

Sergei V. Ivanov1

Abstract. The Burnside problem about periodic groups asks whether any
finitely generated group with the law xn ≡ 1 is necessarily finite. This
is proven only for n ≤ 4 and n = 6. A negative solution to the Burnside
problem for odd n≫ 1 was given by Novikov and Adian. The article presents
a discussion of a recent solution of the Burnside problem for even exponents
n≫ 1 and related results.
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Recall that the notorious Burnside problem about periodic groups (posed in
1902, see [B]) asks whether any finitely generated group that satisfies the law
xn ≡ 1 (n is a fixed positive integer called the exponent of G) is necessarily finite.
A positive solution to this problem is obtained only for n ≤ 4 and n = 6. Note
the case n ≤ 2 is obvious, the case n = 3 is due to Burnside [B], n = 4 is due to
Sanov [S], and n = 6 to M. Hall [Hl] (see also [MKS]). A negative solution to the
Burnside problem for odd exponents was given in 1968 by Novikov and Adian [NA]
(see also [Ad]) who constructed infinite m-generator groups with m ≥ 2 of any odd
exponent n ≥ 4381 (later Adian [Ad] improved on this estimate bringing it down
to odd n ≥ 665). A simpler geometric solution to this problem for odd n > 1010

was later given by Ol’shanskii [Ol1] (see also [Ol2]). We remark that attempts to
approach the Burnside problem via finite groups gave rise to a restricted version
of the Burnside problem [M] that asks whether there exists a number f(m,n) so
that the order of any finite m-generator group of exponent n is less than f(m,n).
The existence of such a bound f(m,n) was proven for prime n by Kostrikin [K1]
(see also [K2]) and for n = pℓ with prime p by Zelmanov [Z1]-[Z2]. By a reduction
theorem due to Ph. Hall and Higman [HH] it then follows from this Zelmanov
result that, modulo the classification of finite simple groups, the function f(m,n)
does exist for all m,n.

However, the Burnside problem for even exponents n without odd divisor ≥ 665,
being especially interesting for n = 2ℓ ≫ 1, remained open. The principal differ-
ence between odd and even exponents in the Burnside problem can be illustrated
by pointing out that, on the one hand, for every odd n ≫ 1 there are infinite
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2-generator groups of exponent n all of whose proper subgroups are cyclic [IA]
(see also [Ol2]) and, on the other hand, any 2-group the orders of whose finite (or
abelian) subgroups are bounded is itself finite [Hd].

A negative solution to the Burnside problem for even exponents n≫ 1 is given
in recent author’s article [Iv] and based on the following inductive construction
(which is analogous to Ol’shanskii’s construction [Ol1] for odd n > 1010).

Let Fm be a free group of rank m over an alphabet A = {a±1
1 , . . . , a±1

m }, m > 1,
n ≥ 248 and n be divisible by 29 provided n is even (from now on we impose these
restrictions onm and n unless otherwise stated; note this estimate n ≥ 248 has been
improved on by Lysënok [L] to n ≥ 213). By induction on i, let B(m,n, 0) = Fm

and, assuming that the group B(m,n, i− 1) with i ≥ 1 is already constructed as a
quotient group of Fm, define Ai to be a shortest element of Fm (if any) the order
of whose image (under the natural epimorphism ψi−1 : Fm → B(m,n, i − 1)) is
infinite. Then B(m,n, i) is constructed as a quotient group of B(m,n, i − 1) by
the normal closure of ψi−1(A

n
i ). Clearly, B(m,n, i) has a presentation of the form

(1) B(m,n, i) = 〈 a1, . . . , am ‖ An
1 , . . . , A

n
i−1, A

n
i 〉,

where An
1 , . . . , A

n
i−1, A

n
i are the defining relators of B(m,n, i).

The quotient group Fm/F
n
m, where Fn

m is the subgroup of the free group Fm

generated by all nth powers, is denoted by B(m,n) and called the freem-generator
Burnside group of exponent n. Now we give a summary of basic results of [Iv].

Theorem 1 ([Iv]). Let m > 1, n ≥ 248, and 29 divide n provided n is even. Then
the following hold.

(a) The free m-generator Burnside group B(m,n) of exponent n is infinite.
(b) The word Ai does exist for each i ≥ 1.
(c) The direct limit B(m,n,∞) of the groups B(m,n, i), i = 1, 2, . . . , is the

free m-generator Burnside group B(m,n) of exponent n, that is, B(m,n)
has the presentation

(2) B(m,n) = 〈 a1, . . . , am ‖ An
1 , . . . , A

n
i , A

n
i+1, . . . 〉.

(d) There are algorithms that solve the word and conjugacy problems for the
group B(m,n) given by presentation (2).

(e) Let n = n1n2, where n1 is odd and n2 is a power of 2. If n is odd,
then every finite subgroup of B(m,n) is cyclic. If n is even, then every
finite subgroup of B(m,n) is isomorphic to a subgroup of the direct product
D(2n1)×D(2n2)

ℓ for some ℓ, where D(2k) is a dihedral group of order 2k.
(f) For every i ≥ 0 the group B(m,n, i) given by presentation (1) is hyperbolic

(in the sense of Gromov [G]).

Note that the part (a) of Theorem 1 is immediate from part (b) because if
B(m,n) were finite it could be given by finitely many defining relators and so Ai

would fail to exist for sufficiently large i. To prove part (d) the word and conjugacy
problems for the group B(m,n) are effectively reduced to the word problem for
some B(m,n, i) and it is shown that every B(m,n, i) satisfies a linear isoperimetric
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inequality and so is hyperbolic. It should be pointed out that for odd exponents
n ≫ 1 all parts of Theorem 1 had been known due to Novikov and Adian (parts
(a), (e), (f); see [Ad]) and Ol’shanskii (parts (b), (c), (f); see [Ol1], [Ol2]).

It is worth noting that the structure of finite subgroups of the free Burnside
group B(m,n) and B(m,n, i) is very complex when the exponent n is even and, in
fact, finite subgroups of groups B(m,n, i), B(m,n) turn out to be so important in
proofs of [Iv] that at least a third of article [Iv] is an investigation of their various
properties and another third is a preparation of necessary techniques to conduct
this investigation. Part (e) of Theorem 1 may be regarded as a central result on
finite subgroups of B(m,n). To state more results on finite subgroups of groups
B(m,n, i), B(m,n), denote by F(Ai) a maximal finite subgroup of B(m,n, i −
1) relative to the property that Ai (that is, the image of Ai in B(m,n, i − 1))
normalizes F(Ai). A word U is called an F(Ai)-involution if U2 ∈ F(Ai), U
normalizes the subgroup F(Ai) of B(m,n, i− 1), and

UAiU
−1 = A−1

i F

in B(m,n, i− 1), where F ∈ F(Ai).
For example, if Ai is a letter then F(Ai) = {1} and there are no F(Ai)-

involutions. If n ≫ 1 is odd then for every i one has F(Ai) = {1} and there

are no F(Ai)-involutions. If now Ai = a
n/2
1 a

n/2
2 then F(Ai) = {1} and a

n/2
1 , a

n/2
2

are F(Ai)-involutions. An example when F(Ai) 6= {1} is provided by

Ai = (a
n/2
1 (a1a2)

n/2)n/2(a
n/2
2 (a1a2)

n/2)n/2

for (a1a2)
n/2 ∈ F(Ai).

Next, define
G(Ai) = 〈 Ui, Ai,F(Ai) 〉

to be a subgroup in B(m,n, i−1) generated by Ai, by the subgroup F(Ai), and by
a word Ui, where Ui is an F(Ai)-involution provided there are F(Ai)-involutions
and Ui = 1 otherwise. It follows from definitions that G(Ai) is either an extension
of F(Ai) by an infinite dihedral group generated by elements Ui, Ai of order 2, ∞,
respectively, modulo F(Ai) provided there are F(Ai)-involutions or G(Ai) is an
extension of F(Ai) by an infinite cyclic group generated by Ai provided there are
no F(Ai)-involutions. Basic properties of finite subgroups of groups B(m,n, i),
B(m,n) are collected in the following.

Theorem 2 ([Iv]). Let B(m,n) be a free m-generator Burnside group of even
exponent n ≥ 248 given by presentation (2), where n is divisible by 29. Then the
following are true.

(a) The subgroup F(Ai) is defined uniquely and is a 2-group.

(b) The word A
n/2
i centralizes in B(m,n, i−1) the subgroup F(Ai) and hence

the quotient G(Ai)/〈A
n
i 〉, denoted by K(Ai) is either an extension of F(Ai)

by a dihedral group of order 2n generated by elements Ui, Ai, or K(Ai) is
an extension of F(Ai) by a cyclic group of order n generated by Ai. In
addition, the group K(Ai) naturally embeds in B(m,n, i) and B(m,n).
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(c) Every wordW of finite order in B(m,n, i−1) is conjugate in B(m,n, i−1)
to a word of the form Ak

jT with some integers k, j < i and T ∈ F(Ai).
Moreover, the conjugacy in B(m,n, i − 1) of nontrivial in B(m,n, i − 1)

words Ak1

j1
T1 and Ak2

j2
T2, where T1 ∈ F(Aj1) and T2 ∈ F(Aj2), j1, j2 < i,

yields j1 = j2 and k1 ≡ ±k2 (mod n). (Therefore, given a nontrivial in
B(m,n, i− 1) word W of finite order such number j is defined uniquely in
B(m,n, i− 1) as well as in B(m,n) and called the height of the word W .)

(d) Every finite subgroup of B(m,n), consisting of words of heights ≤ i and
containing a word of height i, is conjugate to a subgroup of K(Ai) =
〈 Ui, Ai,F(Ai) 〉 ⊆ B(m,n).

(e) The words Ai and Ui act on the subgroup F(Ai) of B(m,n, i−1) by conju-
gations in the same way as some words VAi

and VUi
act respectively, where

VAi
and VUi

are such that the subgroup 〈 VAi
, VUi

,F(Ai) 〉 of B(m,n, i−1)

is finite and the equality U2
i = V 2

Ui
(as well as (UiAi

2
= (VUi

VAi
)
2
provided

Ui 6= 1) holds in B(m,n, i− 1).

Let us see how the algebraic description of finite subgroups of B(m,n) of The-
orem 1 (e) can be derived from Theorem 2 by induction on the height h(G) of a
finite subgroup G of B(m,n) (h(G) is the maximum of heights of elements of G).
Let G be a finite subgroup of B(m,n) with h(G) = i. By Theorem 2 (d), one may
assume that G is a subgroup of K(Ai). It follows from definitions and Theorem 2
(e) that there are homomorphisms

κ1 : K(Ai) → D(2n), κ2 : K(Ai) → G0

such that

Kerκ1 = F(Ai), G0 = 〈 F(Ai), VAi
, VUi

〉 ⊆ B(m,n, i− 1)

and h(G0) < i. Since Kerκ1 ∩ Kerκ2 = {1}, the group G embeds in the direct
product D(2n)×G0. By the induction hypothesis, G0 embeds in D(2n1)×D(2n2)

ℓ

for some ℓ. By Theorem 2 (a), F(Ai) is a 2-group, therefore the subgroup ofD(2n1)
of index 2 has the trivial intersection with the image of F(Ai) in D(2n)×D(2n1)×
D(2n2)

ℓ and hence D(2n1) can be replaced by D(2n2). Since D(2n) embeds in
D(2n1)×D(2n2), we have thatG is embeddable inD(2n1)×D(2n2)

ℓ+1 as required.
This algebraic description of finite subgroups is very important in many parts of
article [Iv], especially, in making the inductive step from the group B(m,n, i− 1)
to B(m,n, i). For example, this description helps a great deal in proving one of
the hardest and absolutely crucial for the whole work technical results: If the
subgroup

〈 Ak
i TA

−k
i | k = 0, 1, . . . , 7 〉

of B(m,n, i − 1) is finite then Ai normalizes this subgroup. We will make an
informal remark that if a similar claim (where instead of 7 one could put a number
as large as n1/2) were false then An

i would not have to centralize F(Ai) and
imposing the relation An

i = 1 on B(m,n, i − 1) would result in extra relations
of type R = 1 where R is a nontrivial element of F(Ai) (R has the form R =
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An
i FA

−n
i F−1 6= 1 with F ∈ F(Ai)). This secondary factorization would make

a complete mess implying that one could be far better off trying to solve the
Burnside problem for n = 2ℓ in the affirmative.

The proofs in [Iv] are based on geometric techniques of van Kampen diagrams
(which are labelled planar 2-complexes representing consequences of defining rela-
tors of group presentations; see [Ol2], [LS], [IO1]) and may be regarded as a further
development of Ol’shanskii’s method [Ol1] for solving the Burnside problem for
odd exponents n ≫ 1. The main obstacle in carrying over Ol’shanskii’s proof to
even exponents is in making the inductive step from B(m,n, i − 1) to B(m,n, i).
Curiously, in odd case the inductive step from B(m,n, i− 1) to B(m,n, i) is being
made in [Ol1] by boiling everything down to an elementary fact that the fun-
damental group of an annulus is cyclic (however, the reduction itself is highly
nontrivial). The same fact is ultimately responsible for the cyclicity of finite sub-
groups of B(m,n) with odd n ≫ 1. This reduction naturally fails in even case
due to the existence of self-compatible cells in nonsimply connected diagrams over
B(m,n, i− 1). (A self-compatible cell is a 2-cells that surrounds hole(s) of a dia-
gram and has two long arcs of its boundary with a narrow strip squeezed between
the arcs.) Informally, turning these self-compatible cells from the main obstacle
into a source of new information is what the article [Iv] is all about. However,
extracting gems from this mine is quite a challenge and that partially explains an
extraordinary length (over 300 pages) of the article and its complex logical struc-
ture (over 110 lemmas are proved by simultaneous induction on the parameter i
with quite a few back references; note a similar simultaneous induction is carried
out in [NA], [Ol1]).

It is implied by results of [Iv] that finite (as well as locally finite) subgroups of
B(m,n) with even n are very interesting subject for investigation on their own.
In particular, one might wonder if their description given in Theorem 1 (e) is
complete, that is, every group D(2n1) × D(2n2)

ℓ embeds in B(m,n). Another
natural question is to ask whether every locally finite subgroup of B(m,n) is
an FC-group. Recall that a group G is locally finite if every finitely generated
subgroup of G is finite. A group G is termed an FC-group if every conjugacy
class of G is finite. Also, let Di, i = 1, 2, . . . , be groups isomorphic to D(2n2),
D be the cartesian product of Di, i = 1, 2, . . . , Ci be the normal cyclic subgroup
of Di of order n2, and bi ∈ Di be an element of order 2 that together with Ci

generate Di = 〈Ci, bi〉. By B denote the subgroup of D that consists of all elements
whose projection on every Di is either bi or 1. By C denote the direct product of
groups Ci naturally embedded in D. At last, let E = 〈B, C〉. Clearly, E = BC is a
semidirect product of B and C.

The following Theorem 3 is a summary of joint with Ol’shanskii results on
(locally) finite subgroups of B(m,n).

Theorem 3 ([IO2]). Let B(m,n) be a free m-generator Burnside group of even
exponent n, where m > 1 and n ≥ 248, n = n1n2, n1 is odd, n2 is a power of 2,
n2 ≥ 29. Then the following hold:

(a) Suppose G is a finite 2-subgroup of B(m,n). Then the centralizer
CB(m,n)(G) of G in B(m,n) contains a subgroup M isomorphic to a free
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Burnside group B(∞, n) of infinite countable rank such that G ∩M = {1}.
In particular, 〈G, M〉 = G ×M.

(b) The centralizer CB(m,n)(H) of a subgroup H of B(m,n) is infinite if and
only if H is a locally finite 2-subgroup. In particular, CB(m,n)(H) is finite
provided H is not locally finite.

(c) An arbitrary infinite group G embeds in B(m,n) as a locally finite subgroup
if and only if G is isomorphic to a countable subgroup of E.

(d) An arbitrary infinite group G embeds in B(m,n) as a maximal locally
finite subgroup if and only if G is isomorphic to a countable subgroup of E.

(e) An infinite locally finite subgroup L of B(m,n) is contained in a unique
maximal locally finite subgroup. That is, the intersection of two distinct
maximal locally finite subgroups of B(m,n) is always finite.

(f) Given a finite 2-subgroup G of B(m,n) there are continuously many pair-
wise nonisomorphic maximal locally finite subgroups that contain G.

(g) If a finite subgroup G of B(m,n) contains a nontrivial element of odd
order, then G is contained in a unique maximal finite subgroup. In partic-
ular, the intersection of two distinct maximal finite subgroups of B(m,n)
is always a 2-group.

Note the mutual disposition of infinite maximal locally finite subgroups stated
in Theorem 3 (e), (f) is reminiscent of a known puzzle-type problem: Find, in
a countably infinite set, continuously many subsets whose pairwise intersections
are all finite (note this is impossible if the cardinalities of the intersections are
bounded).

A couple of questions mentioned above can now be easily answered:

Corollary. Let B(m,n) be defined as in Theorem 2. Then the following are
true.

(a) A finite group G embeds in B(m,n) if and only if G is isomorphic to a
subgroup of the direct product D(2n1) × D(2n2)

ℓ for some ℓ > 0, where
D(2k) is a dihedral group of order 2k.

(b) The group B(m,n) contains (maximal) locally finite subgroups that are
not FC-groups.

(c) A subgroup S of B(m,n) is locally finite if and only if every 2-generator
subgroup of S is finite.

The machinery developed in [Iv] for solving the Burnside problem for even
exponents n≫ 1 has made it possible to prove a conjecture of Gromov on quotients
of hyperbolic groups of bounded exponent.

To state the results we recall several definitions. Let G be a finitely generated
group, A be a finite set of generators for G. By |g| = |W | denote the length of
a shortest word W in the alphabet A that represents an element g ∈ G. One of
definitions of a hyperbolic group G is given by means of the Gromov product

(g · h) = 1
2 (|g|+ |h| − |g−1h|)

as follows: A group G is called hyperbolic [G] if there exists a constant δ ≥ 0 such
that for every triple g, h, f ∈ G
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(3) (g · h) ≥ min((g · f), (h · f))− δ.

In turns out [G], [GH] that the property of being hyperbolic does not depend
on a particular generating set A (but the constant δ does depend on A). A
trivial example of hyperbolic group is the free group F = F (A) over A for which
inequality (3) is satisfied with δ = 0 because in this case (g · h) is the length of
the maximal common beginning of reduced words g, h in A. Perhaps, the most
complicated (in terms of proving that) examples of hyperbolic groups are provided
by the series of groups B(m,n, i) of Theorems 1–2.

Similar to free groups, an arbitrary nonelementary hyperbolic group has many
homomorphic images (recall a group G is termed in [G] elementary if G has a cyclic
subgroup of finite index). Discussing an approach to construction of an infinite
periodic quotient group Ḡ of a nonelementary hyperbolic group G, Gromov [G]
(see also [GH], [Ol4]) points out that his approach does not let bound the orders
of elements in Ḡ (and so Ḡ will not be of finite exponent). Nevertheless, Gromov
conjectures (see 5.5E, 5.5F in [G]) that it is possible in principle to bound the
orders of elements in Ḡ and obtain Ḡ of finite exponent n, that is, he conjectures
that for every nonelementary hyperbolic group G there is an n = n(G) such that
the quotient G/Gn is infinite. Thus Gromov suggested a natural expansion of the
Burnside problem to nonelementary hyperbolic groups. This Gromov conjecture
was proven by Ol’shanskii [Ol3] for torsion free hyperbolic groups. However, in
the general case of a hyperbolic group with torsion there are serious obstacles
connected with nonelementary centralizers of elements of G and noncyclic finite
subgroups in G/Gn that are essentially the same as those in solving the classical
Burnside problem for even exponents n.

The solution [Iv] of the ”even” Burnside problem discussed above combined with
ideas of [Ol3] enabled Ol’shanskii and the author to prove the Gromov conjecture
in full generality.

Theorem 4 ([IO3]). For every nonelementary hyperbolic group G there exists a
positive even integer n = n(G) such that the following are true:

(a) The quotient group G/Gn is infinite.
(b) The word and conjugacy problems are solvable in G/Gn.
(c) Let n = n1n2, where n1 is odd and n2 is a power of 2. Then every finite

subgroup of G/Gn is isomorphic to an extension of a finite subgroup K of
G by a subgroup of the direct product D(2n1)×D(2n2)

ℓ for some ℓ, where
D(2k) is a dihedral group of order 2k.

(d) The subgroup Gn is torsion free and
⋂∞

k=1G
kn = {1}.

When proving Theorem 4, we encounter several restrictions to be imposed on
n and end up with that n must be divisible by 2k0+5n0 (to say nothing of that
n ≫ δ = δ(G)), where n0

2 is the least common multiple of the exponents of
the holomorphs Hol(K) over all finite subgroups K of G and k0 is the minimal
integer with 2k0−3 > max |K| over all finite subgroups K of G. We note that
almost all lemmas of [Iv] are reproved in [IO3] with necessary modifications which
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are analogous to those made by Ol’shanskii [Ol3] to adjust his solution [Ol1] of
”odd” Burnside problem for proving Gromov conjecture for torsion free hyperbolic
groups. We also note that, just like in [Iv], information on finite subgroups ofG/Gn

is very important in proofs of [IO3] and their description (Theorem 4 (c)) is given
as in [Iv] (Theorem 1 (e)) modulo finite subgroups of G. Naturally, proofs in [IO3]
also make use of various facts of general theory of hyperbolic groups, see [G], [GH],
[CDP].

References

[Ad] S.I. Adian, The Burnside problem and identities in groups, Nauka, Moscow,
1975; English translation: Springer-Verlag, 1979.

[AI] V.S. Atabekian and S.V. Ivanov, Two remarks on groups of bounded ex-
ponent, # 2243-B87, VINITI, Moscow, 1987 (this is kept in the Depot of
VINITI, Moscow, and is available upon request), 23 pp.

[B] W. Burnside, On unsettled question in the theory of discontinuous groups,
Quart. J. Pure and Appl. Math. 33(1902), 230-238.

[CDP] E. Coornaert, T. Delzant, and A. Papadopoulos (ed’s), Géométric et
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