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Abstract. The present survey covers the known results on the groups
of birational automorphisms, rationality problem and birational classifi-
cation for Fano fibrations.
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0. Birational geometry starts with M.Nöther’s paper [45] on Cremona transforma-
tions. The problems of birational geometry of algebraic varieties, that is, birational
classification, the rationality and unirationality problems, structure of the group
of birational automorphisms, formed a subject of exclusive attention for the Ital-
ian classics, including C.Segre, Castelnuovo, Enriques, Comessatti, B.Segre, Fano,
Morin, Predonzan and many others, see, for instance, [59]. Italian geometers, first
of all — G.Fano, laid the foundation of the modern birational geometry, outlined
solutions to certain hard problems, gave surprisingly exact forecasts and suggested
some crucial ideas.

The modern period of birational geometry started with Yu.I.Manin’s pa-
pers on geometry of surfaces over non-closed fields [38,39]. The breakthrough
into higher dimensions was made in 1970 in the papers of V.A.Iskovskikh and
Yu.I.Manin [29] and H.Clemens and Ph.Griffiths [7], where the Lüroth problem
got its negative solution (both the techniques and the final results of these papers
were absolutely independent of each other). In [29] Iskovskikh and Manin, using
certain classical ideas of Nöther and Fano, developed a new method of study of
birational correspondences between algebraic varieties (which have no nontrivial
differential-geometric birational invariants) — the method of maximal singulari-
ties. The results which were obtained by means of this method in 70s were summed
up 15 years ago in [24,25]. Since that day, a considerable progress has been made
in the field. It is worth noting that, although we have now new approaches and
concepts [34,35], this method up to this day is the most effective tool in birational
geometry. The contemporary state of the theory form the subject of the present
survey.
1. The aim of birational geometry is birational classification of algebraic varieties.
In the most general sense, for two given varieties V , V ′ we should be able to say,
whether their function fields k(V ) and k(V ′) are isomorphic, and if yes, how such
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an isomorphism can be obtained (here k is an algebraically closed field of charac-
teristic zero; the principal case is k = C). We may understand the classification
problem also as the problem of investigating birational geometry of the given va-
riety V , that is, those geometric properties which are independent of the concrete
model of the field k(V ).

Birational geometry is most interesting, rich and also hard to study for Fano
fibrations π:V → S, the generic fiber Fη of which is a Fano variety over the non-
closed field k(S), that is, the canonical class KFη

is negative. In other words, the
fiber Ft over a point t ∈ S of general position is a Fano variety over the field k.
For this class of objects we can specify the following particular cases in the general
problem of birational classification.

(1) Describe all the structures of a Fano fibration on the given variety V (in
the birational sense). In many cases this problem can be transformed into the
following question: is a birational map χ:V − − → V ′ between two given Fano
fibrations π:V → S and π′:V ′ → S′ fiber-wise?

(2) Compute the group of birational automorphisms BirV = Aut k(V ). If
V = Pm, we get the m-dimensional Cremona group.

(3) The rationality problem: whether V is birational to Pm (in algebraic
terms: whether k(V ) is a purely transcendent extension k(t1, . . . , tm) of the field
of constants)?

The problem of birational classification naturally generalizes to rational cor-
respondences: for two given algebraic varieties V, V ′ describe the set of ratio-
nal (p, q)-correspondences between them, p, q ≥ 1. For V ′ = Pm, p = 1 we get
the classical unirationality problem (whether the field k(V ) can be embedded in
k(t1, . . . , tm)?). Unfortunately, today we have got no methods, which could make
it possible to study the subject, only direct constructions of unirationality of the
type of B.Segre [64], U.Morin [44] and A.Predonzan [46], see also the modern
papers [9,41].

2. Fano fibrations satisfy the classical termination condition for canonical ad-
junction, the importance of which was understood by the Italian classics: for any
divisor D the linear system |D + nKV | is empty for n sufficiently high. The
threshold of canonical adjunction

c(V,D) = sup{
b

a

∣

∣

∣

∣

a, b ∈ Z+\{0}, |aD + bKV | 6= ∅}.

is a quantitative characteristic of termination. To study a birational map χ:V −
− → V ′, we compare the corresponding thresholds on V and V ′: let |D′| be
a linear system of divisors on V ′, free in codimension 1, and |D| = |D(χ)| =
(χ−1)∗|D

′| be its proper inverse image on V , then we get two numbers c(V,D)
and c(V ′, D′). In a certain natural sense the threshold c(V,D) characterizes the
“complexity” or “size” of the linear system |D|. Decreasing the threshold by means
of an “elementary” birational map τ :V1− − → V , where V1 is, generally speaking,
another model of the field k(V ), we “simplify” the system |D| and thus the map
χ itself: c(V1, D(χ ◦ τ)) < c(V,D(χ)). This is the general idea of simplification (in
the traditional terminology, untwisting) of a birational map.
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Definition 1. (i) A Fano fibration π:V → S is said to be birationally rigid,
if for any V ′, D′, χ′ there exists a birational automorphism of the generic fiber
χ∗ ∈ BirFη ⊂ BirV such that the composition χ ◦ χ∗:V − − → V ′ satisfies the
monotonicity condition: c(V,D) ≤ c(V ′, D′).

(ii) A Fano fibration is said to be birationally superrigid, if the monotonicity
condition is always true (i.e. we can take χ∗ = id.)

The property of being (super)rigid characterizes birational geometry of a va-
riety in an exhaustive way.

Proposition 1. Assume that the Fano fibration π:V → S satisfies the fol-
lowing condition: for any divisor D and the induced divisor Dη on the generic fiber
Fη the thresholds c(V,D) and c(Fη, Dη) coincide, and, moreover, that PicFη

∼= Z.
Assume the Fano fibration π:V → S to be birationally rigid. Then any birational
map χ:V − − → V ′, where π′:V ′ → S′ is a Fano fibration of the same dimension,
is fiber-wise, that is, π′ ◦ χ = α ◦ π for some (dominant rational) map of the base
α:S − − → S′.

Corollary 1. In the assumptions of Proposition 1 the variety V is non-
rational. Any birational automorphism χ ∈ BirV is fiber-wise.

Corollary 2. Birationally rigid Fano variety V with PicV ∼= Z cannot
be fibered (by a rational map) into rationally connected varieties over a positive-
dimensional base.

Corollary 3. For a birationally superrigid smooth Fano variety V with
PicV ∼= Z the groups of birational and biregular automorphisms coincide, BirV =
AutV .

3. Fix a smooth (or with Q-factorial terminal singularities) Fano fibration π:V →
S. Let χ:V − − → V ′ be a birational map onto another Fano fibration. Assume
that the monotonicity condition does not hold: n = c(V,D) > c(V ′, D′).

Proposition-Definition 2.There exists a geometric (that is, realizable by
a prime Weil divisor on a certain projective model of the function field) discrete
valuation ν: k(V ) → Z, which satisfies the Nöther-Fano(-Manin-Iskovskikh) in-
equality

ν(|D|) > na(ν, V ),

where a(·) is the discrepancy. These valuations are called maximal singularities
of the map χ or the system |D|. If ν is of the form νB = multB, where B ⊂ V
is an irreducible cycle of codimension≥ 2, then B is said to be a maximal cycle.
Otherwise, ν is said to be infinitely near.

The general scheme of arguments which prove (super)rigidity looks as follows.
It turns out that (in all the cases that can be succefully studied by this method)
the maximal singularities are an exceptional phenomenon. Only very special cycles
B ⊂ V can appear as maximal (in many cases they do not occur at all), and if
there is no maximal cycle, there is no infinitely near maximal singularities, either.
Exclusion of the infinitely near case is based upon the following key

Proposition 3. Let D1,2 ∈ |D| be general divisors and the centre B of ν
on V be of codimension≥ 3, and assume that B is not contained in the singular
locus of V . Let Z = (D1 • D2) be the algebraic cycle of their scheme-theoretic
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intersection (it is an effective cycle of codimension 2). Then

multB Z ≥ 4
ν(|D|)2

a(ν, V )2
> 4n2.

This very inequality makes the essence of the test class method of Iskovskikh-
Manin, which was developed in [29]. Gradually [48-55] it was discovered that this
fact has a very general character.

After all the potentially maximal cycles B have been detected, for each of them
one constructs an “untwisting” automorphism τB ∈ BirV . Taking the composition
χ ◦ τB , we simplify the map, that is, decrease the adjunction threshold n(χ) =
c(V,D(χ)). After a finite number of steps the composition χ◦τB1

◦ . . . τBN
satisfies

the monotonicity condition. Simultaneously we get a copresentation of the group
BirV (generators and relations). If maximal singularities do not occur at all, we
conclude that V is birationally superrigid.
4. Here is the list of Fano varieties, birational geometry of which has been suc-
cessfully studied by means of the method of maximal singularities.

1) Double spaces V → PM of index 1, branched over a hypersurface W2M ⊂
PM of degree 2M . The hypersurface can contain a singular point x ∈ W of general
position of multiplicity 2m, m ≤ M − 2, M ≥ 3.

2) Double quadrics V → Q ⊂ PM+1 of index 1, branched over a divisor, which
is cut out on Q by a hypersurface W2(M−1) of degree 2(M − 1). In dimensions
≥ 4 the branch divisor is smooth, in dimension 3 it may contain a non-degenerate
double point.

3) Hypersurfaces V = VM ⊂ PM of degree M , M ≥ 4. For M = 4 V is either
smooth or is allowed to have exactly one non-degenerate double point x ∈ V , lying
on exactly 24 distinct lines on V . For M = 5 V is arbitrary smooth, for M ≥ 6 V
is general in the following sense: for any point x ∈ V and any system (z1, . . . , zM )
of affine coordinates on PM with the origin at x the sequence of polynomials
(q1, . . . , qM−1) makes a regular sequence, where f = q1 + . . . + qM−1 + qM is the
equation of V with respect to z∗, qi are homogeneous degree i.

4) Double Veronese cone V → W ⊂ P6 of dimension three, that is, W is the
cone over the Veronese surface in P5, and the non-singular branch divisor is cut
out by a cubic, not passing through the vertex.

5) General complete intersections V2·3 = Q2 ∩ Q3 ⊂ P5 (the normal bundle
of any line L ⊂ V is NL/V

∼= OL ⊕ OL(−1) and there is no plane P ⊂ P5 such
that P ∩ V consists of three lines passing through a point).

6) General (in particular, quasismooth) hypersurfaces in the weighted pro-
jective space Vd ⊂ P(1, a1, a2, a3, a4), d = a1 + . . . + a4, which are Q-factorial
Fano threefolds with terminal singularities. There are 95 families of these vari-
eties [16], starting from V4 ⊂ P4 and ending by V66 ⊂ P(1, 5, 6, 22, 33). From
this list we should exclude the quartic V4 (which is already present in 3)) and
V6 ⊂ P(1, 1, 1, 1, 3), which is just the double space (class 1)).

Theorem 1. A) The following Fano varieties are birationally superrigid:
— all the members of the class 1) ( [24] for smooth 3-folds, [49] for smooth double
spaces of dimension ≥ 4, [53] for the singular case);
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— all the members of 2) of dimension ≥ 4 [49];
— all the smooth members of 3) ([29] for the quartic, [48] for the quintic, [55] for
the rest of the cases) and 4) [24,33].
Their groups of birational and biregular automorphisms coincide. For a general
member of the class 3) it is trivial, of the classes 1), 2) and 4) it is Z/2Z.

B) All the rest of Fano varieties from the list above are birationally rigid. For
each of them there is the exact sequence

1 → B(V ) → BirV → AutV → 1,

where B(V ) is the untwisting subgroup, that is, χ∗ from Definition 1 can be taken
from this subgroup. More exactly:
— for three-dimensional double quadrics (class 2), M = 3) B(V ) is the free product
of the one-dimensional family of involutions τL, associated with the lines L ⊂ V
(i.e., irreducible rational curves with (L·KV ) = −1), which do not lie in the branch
divisor ([24] for the smooth and [18] for the singular case);
— for the singular quartics B(V ) is the free product of 25 involutions τi, i =
0, . . . , 24, where τ0 is the reflection from the double point x and τi is the reflection
from x in the fibers of the elliptic fibration, generated by the net of planes contain-
ing Li ∋ x ([50]);
— for V = V2·3 the subgroup B(V ) is an “almost free” product of two one-
dimensional families of involutions αL, for all the lines L ⊂ V , and βY , for
all the irreducible conics Y ⊂ V such that the plane P (Y ) ⊃ Y lies in Q2. There
is a finite number of relations (αL1

αL2
αL3

)2 = 1, where the lines Li lie in the
same plane (the proof was started in [24] and completed in [51], for a complete
exposition see [31]);
— for the weighted hypersurfaces (class 6)) B(V ) is generated by a finite num-
ber of involutions, associated with the terminal singular points [12]. For some of
these varieties there are no birational involutions at all, so that they are actually
superrigid.
5. Here is the list of Fano fibrations over a non-trivial base, birational geometry
of which has been succefully studied by the method of maximal singularities.

1) Standard conic bundles π:V → S, dimV ≥ 3, with a big discriminant
divisor D ⊂ S: |D + 4KS | 6= ∅.

2) Smooth threefolds π:V → P1, fibered into del Pezzo surfaces, PicV =
ZKV ⊕ ZF , where F is the class of a fiber, Fη is a del Pezzo surface of degree
d = 1, 2, 3 over the non-closed field k(t), satisfying theK2-condition: the numerical
class MK2

V − f in not effective for any M ∈ Z, f ∈ A2(V ) is the class of a line
in a fiber (for d = 3 it is also assumed that if Ft is a singular fiber, then it has
exactly one singular point lying on exactly six lines on Ft).

3) General smooth 4-folds π:V → P1, fibered into quartic threefolds, sat-
isfying the K2-condition: MK2

V − f is not effective, where f is the class of a
hyperplane section of a fiber, M ∈ Z.

4) Smooth higher-dimensional varieties π:V → P1, fibered into double spaces
of index 1 (class 1) from Sec. 4 above), satisfying the K2-condition.

5) Certain varieties with a pencil of double quadrics of index 1 (class 2) from
Sec. 4), satisfying the K2-condition.
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6) The general double cone V → Q2 ⊂ P4, where Q2 is the non-degenerate
quadric cone and the branch divisor is cut out by a quartic, which does not pass
through the vertex. The variety V has two obvious pencils of del Pezzo surfaces
of degree 2, induced by the pencils of planes on Q2.

Theorem 2. A) Any birational map of a variety from the class 1) above onto
another conic bundle is fiber-wise [61,62].

B) Fano fibrations from the class 2) for d = 1 and from the classes 3)-5)
are superrigid. For a general variety from the class 3) BirV is a trivial group,
otherwise (for a general variety) it is isomorphic to Z/2Z [54,56].

C) Fano fibrations from the class 2) for d = 2, 3 are birationally rigid. The
following exact sequence holds

1 → BirFη → BirV → G → 1,

where G is a finite, generically trivial group of fiber-wise birational automorphisms.
(See [54]. The group BirFη was described by Yu.I.Manin [38-40]. It is generated
by involutions, associated to sections of π for d = 2, and for d = 3 — to sections
and bisections of π.)

D) Varieties of the type 6) are birationally rigid as Fano varieties. For any
pencil |Λ| of rational surfaces on V there is a birational automorphism χ∗, which
transforms |Λ| into one of the two “default” pencils. The group BirV is gener-
ated by the subgroups BirFηi

, i = 1, 2 (Fηi
are the generic fibers of the “default”

pencils). Their intersection BirFη1
∩ BirFη2

is generated by a finite number of
involutions [19].
6. Conjectures and open problems.

1) Let Vm1·...·mk
⊂ Pm1+...+mk be a Fano complete intersection of index 1

with sufficiently mild singularities. Then V is birationally (super)rigid.
2) By analogy with the weighted 3-fold hypersurfaces, we should expect that

1) is true for the weighted case, either.
3) The rigidity facts about Fano fibrations can be looked at as a realization

of the following informal principle:
if a Fano fibration is “sufficiently twisted” over the base, then
birational geometry of V reduces to birational geometry of the
generic fiber Fη.

It seems that this principle holds in a much more general situation than A)-C)
of Theorem 2. For instance, if V →֒ P(E), where E is a locally free sheaf on S
of rank m1 + . . . + mk + 1 and the generic fiber Fη is a complete intersection
Vm1·...·mk

⊂ Pm1+...+mk
η , then “sufficient twistedness” over the base implies that

the Fano fibration π:V → S is birationally (super)rigid. As in 2) above, this
statement should be true for the weighted case, too.

4) Hypersurfaces Vm ⊂ PM of index M + 1 −m ≥ 2 obviously have a lot of
structures of a Fano fibration. It seems natural to suggest that all these structures
come from the “natural” ones, the fibers of which are Fano complete intersections
in linear subspaces of PM . For instance, linear systems |Λi|, i = 1, . . . , k, cut out
on V by hypersurfaces of degrees m1, . . . ,mk, where m + m1 + . . . + mk ≤ M ,
determine a structure of a Fano fibration

π = (π1, . . . , πk):V − − → Pn1 × . . .×Pnk ,
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ni = dim |Λi|. Another example: for a quartic V = V4 ⊂ PM of dimension
≥ 4 we suggest that all the structures of a fibration into rational surfaces come
from the linear projections from the planes P ⊂ V and V can not be fibered
into rational curves (by a rational map). The general cubic V = V3 ⊂ PM ,
M ≥ 5, is non-rational. The coincidence BirV = AutV is very likely to be true
for all the hypersurfaces of degree 4 and higher, at least for general ones (for
ceratin special smooth quartics non-trivial birational automorphisms do exist, but
their construction only confirms that they represent an exceptional phenomenon).
Similarly for complete intersections.

5) Computation of the Cremona group BirPn, even for n = 3, and of the group
BirV3 for the higher-dimensional cubic still remains an open problem, seeming to
be inaccessible for the modern techniques. In [25] a complete description of the
group BirV2 for the double space P3 of index 2 (branched over a quartic) was
announced. Unfortunately, it also remains an open problem (although the fact
itself seems to be true).

6) We have got no rationality criterion for threefolds. The crucial problem here
is to prove the well-known (conjectural) Iskovskikh-Shokurov rationality criterion
for conic bundles, see [28].

7) It is important to study the structure of infinitely near maximal singular-
ities. There is a conjecture that if a linear system |D| has a maximal singularity
ν, it also has another maximal singularity µ (satisfying the same Nöther-Fano in-
equality), which can be realized as a weighted blow up. In dimension three this
conjecture describes all the extremal contractions to smooth points.

8) Up to this day we are unable to prove non-unirationality otherwise but
by producing differential forms. On the other hand, the general quartics in P4,
speaking not of double spaces or general hypersurfaces and complete intersections
of a small index and high dimension, seem to be non-unirational. Recently some
new direct constructions of unirationality appeared [9,41].

7. The prospects of birational classification.

The well-known achievements of the minimal model program (or Mori the-
ory) [8,32,36,47,42,43,57,65,66,70] generated some hope to convert the three-
dimensional birational geometry from a collection of separate results and con-
structions into a regular theory. The corresponding concept of factorization of
birational maps between (three-dimensional) Mori fiber spaces was developed by
Sarkisov [63] and got the name Sarkisov program [58]. It was exhaustively substan-
tiated by A.Corti [10], see also [11]. After it had been proved that any birational
map between Mori fiber spaces can be factorized into a chain of elementary links,
it was natural to apply this general theory to certain families of three-folds, in
order to re-think on a higher level the classical results of the method of maximal
singularities. As an object for this experiment the above-mentioned 95 families
[16] of weighted hypersurfaces were chosen [12]. However, the results turned out to
be rather unexpected: all the discovered elementary links were just involutions of
the classical type, which (so far) permits no explanation from the Mori-theoretic
viewpoint. On the other hand, now we have got Mori-theoretic analogs of the cru-
cial technical means of the classical method (A.Corti’s techniques of “reduction to
log canonical surfaces”, which in dimension three can replace the old techniques
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of counting multiplicities, although the latter still seems more transparent and
natural). All in all, the result of [12] turned out to be much more in the spirit of
the method of maximal singularities than the modern concepts.

Sarkisov program is different from the classical approach by its essentially
“dynamical” viewpoint: simplifying (untwisting) a birational map, we replace the
initial model by a new one, whereas the traditional approach makes use of auto-
morphisms (the model is always the same). For the weighted hypersurfaces the
dynamical viewpoint turned out to be useless. Of course, it goes without saying
that in the general case (for instance, for the projective space P3) it is impossible
to reduce all the ampleness of birational geometry to a single model. This can be
seen even in the two-dimensional case. However, in spite of all the perfection of
two-dimensional birational geometry, which can be looked at as an ideal object
of realization of Sarkisov program, there is still a feeling of dissatisfaction. For
instance, the modern proof of the Nöther theorem on Cremona transformations
formally makes use of all the minimal rational surfaces, whereas essentially only
three models are of real use: the very P2, F1 and P1 ×P1. This example and all
the higher dimensional ones suggest that the modern concept of a minimal model
is too fine for the rough purposes of birational classification. Sometimes (and even
in the “majority” of cases) the minimal model is unique (rigidity phenomenon).
But then we have no need in the dynamical viewpoint! In other cases we need
some new, essentially more rough approach to the problem of choice of a suitable
model for a given field of rational functions.
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