
Doc.Math. J.DMV 121

The Abelian Defet Group Conjeture

Jeremy Rickard

Abstract. Let G be a finite group and k an algebraically closed field of
characteristic p > 0. If B is a block of the group algebra kG with defect
group D, the Brauer correspondent of B is a block b of kNG(D). When D
is abelian, the blocks B and b, although they are rarely isomorphic or even
Morita equivalent, seem to be very closely related. For example, Alperin’s
Weight Conjecture predicts that they should have the same number of
simple modules. Broué’s Abelian Defect Group Conjecture gives a more
precise prediction of the relationship between B and b: their module
categories should have equivalent derived categories. In this article we
survey this conjecture, some of its consequences, and some of the recent
progress that has been made in verifying it in special cases.
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1 Notation and terminology

Throughout this article, G will denote a finite group.
We shall be dealing with the characteristic p representation theory of G,

where p is a prime. We shall use three coefficient rings. The ring O will be a
complete discrete valuation ring with residue field k of characteristic p and field of
fractions K of characteristic zero. Since we shall not be concerned with rationality
questions, we shall assume that these coefficient rings are all ‘large enough’ in that
they contain enough roots of unity.

As well as the group algebras OG, kG and KG, we shall be concerned with
various direct factors. We shall choose our notation so that if we denote an O-
algebra by OA, we shall use the notation kA and KA for OA⊗O k and OA⊗O K
respectively. It is well-known that the natural surjection OG → kG induces a
bijection between the primitive central idempotents of OG and kG, so that if

OG ∼= OA1 × · · · × OAn,

where OA1, . . . ,OAn are the blocks (i.e., the minimal direct factors) of OG, then

kG ∼= kA1 × · · · × kAn,
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where kA1, . . . , kAn are the blocks of kG.
Here we shall only be concerned with finitely-generated modules, and if R is

any ring, we shall denote the category of finitely-generated right R-modules by
mod(R). By a ‘module’ for a ring R we shall always mean a right module.

2 Local representation theory and Alperin’s Weight Conjecture

There are two major themes running through much of the modular representation
theory of general finite groups that relate the representation theory of a group G
to that of smaller groups.

The first of these is Clifford theory, which relates the representation theory
of a group G with a normal subgroup N to that of N and G/N . This is an area
that has been studied systematically and intensively, but we shall not say much
about it here.

The second theme is sometimes known as local representation theory, which
describes the relationship between the representation theory of G and of local
subgroups: normalizers of non-trivial p-subgroups in G. This relationship has
been exploited in a more ad hoc way than Clifford theory; this is partly because,
as we shall see, the precise relationship is unclear or at best conjectural.

One classical example of a theorem of local representation theory is Brauer’s
First Main Theorem. Recall that the defect group of a block kA of kG is a minimal
subgroup D of G such that every kA-module is a direct summand of a module
induced from kD. The defect group is always a p-subgroup and is determined
uniquely up to conjugacy in G.

Theorem 2.1 (Brauer’s First Main Theorem) If D is a p-subgroup of G,
there is a natural bijection between the blocks of kG with defect group D and the
blocks of kNG(D) with defect group D.

The block of kNG(D) corresponding to a block kA of kG with defect group
D is called the Brauer correspondent of kA. The principal block of kG (i.e., the
unique block that is not contained in the augmentation ideal of kG) has a Sylow p-
subgroup P of G as its defect group, and its Brauer correspondent is the principal
block of kNG(P ).

The most famous example of a general conjecture in local representation the-
ory is the following, due to Alperin [A], known as Alperin’s Weight Conjecture,
which has inspired a great deal of interest since it was formulated in the 1980s.

Conjecture 2.2 (Alperin’s Weight Conjecture) The number of isomor-
phism classes of simple kG-modules is equal to the number of pairs (Q,S), where
Q runs over a set of representatives of conjugacy classes of p-subgroups of G and,
for each Q, S runs over a set of representatives of isomorphism classes of simple
projective k[NG(Q)/Q]-modules.

If we ignore the simple kG-modules that are projective, this conjecture claims
that the number of non-projective simple kG-modules is equal to the number of
pairs (Q,S) where Q is a non-trivial p-subgroup of G. In other words, it claims
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that the number of non-projective simple kG-modules is ‘locally determined’ (i.e.,
determined by local subgroups) in a precise fashion.

There is a more precise ‘blockwise’ version [A] of Alperin’s Weight Conjecture,
dealing with the number of simple modules for a single block of kG in terms
of suitable blocks of local subgroups. We shall not state the general conjecture
here, but only the special case for a block with abelian defect group, which has a
particularly simple form.

Conjecture 2.3 Let kA be a block of kG with an abelian defect group D. Then
kA and its Brauer correspondent have the same number of isomorphism classes of
simple modules.

For principal blocks, this has the following special case.

Conjecture 2.4 Suppose G has an abelian Sylow p-subgroup P . Then the prin-
cipal blocks of kG and kNG(P ) have the same number of isomorphism classes of
simple modules.

3 Broué’s Abelian Defect Group Conjecture

Since Alperin’s Weight Conjecture reduces, for a block with abelian defect group,
to the claim that the block and its Brauer correspondent have the same number of
simple modules, it is natural to wonder whether there is some structural relation-
ship between the two blocks that explains this. It is certainly not true in general
that the blocks are isomorphic or even Morita equivalent. Broué [B] conjectured
such a relationship in terms of derived categories.

There are now several accessible introductions to the theory of derived cate-
gories, such as the one contained in Weibel’s book [W]. If R is a noetherian ring,
we shall denote by Db(R) the bounded derived category of mod(R). Recall that
the objects of Db(R) are the chain complexes of finitely-generated R-modules with
only finitely many non-zero terms. As usual we shall think of mod(R) as embedded
in Db(R) by identifying an R-module M with the complex whose only non-zero
term is M in degree zero. The morphisms of Db(R) are obtained from the chain
maps by formally adjoining inverses to all chain maps that induce isomorphisms in
homology. Recall finally that Db(R) has the structure of a ‘triangulated category’:
in particular, for each object X of Db(R) we can form an object X[n] for n ∈ Z

by shifting the complex X to the left by n places.

Conjecture 3.1 (Broué’s Abelian Defect Group Conjecture) Let OA
be a block of OG with abelian defect group D and let OB be its Brauer correspon-
dent (hence a block of ONG(D)). Then Db(OA) and Db(OB) are equivalent as
triangulated categories.

If R and S are noetherian rings such that Db(R) and Db(S) are equivalent
as triangulated categories, we say that R and S are derived equivalent. Derived
equivalence is clearly implied by Morita equivalence, but the converse is not true.

We have stated the conjecture over O; it is not hard to prove that this implies
the corresponding statement over k.
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The Grothendieck group K0(T ) of a triangulated category T can be de-
fined [G] in a similar way to that of an abelian category, and if T = Db(R)
for some finite-dimensional k-algebra R, then K0(T ) is a free abelian group whose
rank is equal to the number of isomorphism classes of simple R-modules. Hence
the Abelian Defect Group Conjecture implies the blockwise version of the Weight
Conjecture for blocks with abelian defect group. An important open problem is
to formulate a generalization of Broué’s conjecture that would imply the Weight
Conjecture for a general block.

4 Proving derived equivalence

Given two rings R and S, how does one go about proving that they are derived
equivalent? I shall assume that either R and S are both finite-dimensional k-
algebras or they are both O-free O-algebras of finite rank over O, although every-
thing that follows applies much more generally.

Most of the classical theory of Morita equivalence has generalizations to de-
rived equivalence.

Recall first that R and S have equivalent module categories if and only if
S is isomorphic to the endomorphism algebra of a finitely-generated projective
generator for R. This has the following analogue [R1] for derived equivalence.

Theorem 4.1 R and S are derived equivalent if and only if S is isomorphic to
the endomorphism algebra, in Db(R), of an object T such that

(i) T is a bounded complex of finitely-generated projective R-modules,
(ii) HomDb(R)(T, T [i]) = 0 for i 6= 0, and

(iii) If X is an object of Db(R) such that HomDb(R)(T,X[i]) = 0 for all i ∈ Z,
then X ∼= 0.

An object T satisfying conditions (i) to (iii) of the theorem is called a (one-
sided) tilting complex. Condition (iii) has equivalent forms that are easier to check
directly in practice.

Another well-known criterion for R and S to be Morita equivalent is that there
should be an R-S-bimoduleX and an S-R-bimodule Y (which is in fact isomorphic
to HomR(X,R)) such that X and Y are finitely-generated and projective as right
modules and as left modules (but not usually projective as bimodules) and such
that X ⊗S Y ∼= R and Y ⊗R X ∼= S as bimodules. Then the functor ?⊗R X is an
equivalence of module categories. This also has an analogy for derived categories,
first proved in [R2] but with a better subsequent proof by Keller [K].

Theorem 4.2 R and S are derived equivalent if and only if there is a bounded
complex X of R-S-bimodules and a bounded complex Y = HomR(X,R) of S-R-
bimodules such that

(i) All the terms of X and Y are finitely-generated and projective as left
modules and as right modules,

(ii) As a complex of R-bimodules, X ⊗S Y ∼= R⊕C for some acyclic complex
C, and
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(iii) As a complex of S-bimodules, Y ⊗RX ∼= S⊕C ′ for some acyclic complex
C ′.

A complex X that satisfies the conditions of the theorem is called a two-sided
tilting complex. If we forget the left action of S on Y , then Y becomes a one-sided
tilting complex for R.

If X is a two-sided tilting complex, then the functor

?⊗R X : Db(R) −→ Db(S)

is an equivalence of triangulated categories.
As we shall see in Section 6, a two-sided tilting complex seems to be the

natural object to seek in order to prove the Abelian Defect Group Conjecture,
although in small examples it is easier to do calculations with one-sided tilting
complexes.

5 Character-theoretic consequences

If OA and OB are derived equivalent blocks and X is a two-sided tilting complex,
then it is easy to check that X ⊗O K is also a two-sided tilting complex for the
semisimple algebras KA and KB.

The Grothendieck group ofDb(KA) can be naturally identified with the group
K0(KA) of generalized characters of KA, so X induces an isomorphism

θ : K0(KA) ∼= K0(KB).

The indecomposable objects of Db(R) for a semisimple K-algebra R are all of the
form M [i] for some irreducible R-module M and some integer i. It follows that
θ maps each irreducible character χ of KA to ±φ for some irreducible character
φ of KB: in other words, θ is an isometry. Since the functors ? ⊗R X and
?⊗S HomR(X,R) take projective modules to complexes of projective modules, it
follows that θ restricts to an isomorphism

θp : K0,p(KA) −→ K0,p(KB)

between the subgroups of the groups of generalized characters generated by the
characters of projective modules for OA and OB. Such an isometry is called a
perfect isometry by Broué [B] and can be characterized in terms of arithmetic
properties of character values.

A consequence of the Abelian Defect Group Conjecture is therefore the fol-
lowing weaker character-theoretic conjecture, which is however still strong enough
to imply the Weight Conjecture for blocks with abelian defect group.

Conjecture 5.1 If OA is a block of OG with abelian defect group and with
Brauer correspondent OB, then there is a perfect isometry

K0(KA) −→ K0(KB).
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It is easier to perform calculations with characters than with derived cate-
gories, and so it is no surprise that this weaker conjecture has been verified in many
more cases than the Abelian Defect Group Conjecture. One of the most impressive
examples is the following, proved by Fong and Harris [FH] using the classification
of finite simple groups. In fact, they proved an even stronger character-theoretic
statement.

Theorem 5.2 (Fong, Harris) If p = 2 and G has an abelian Sylow p-subgroup
P , there is a perfect isometry between the principal blocks of OG and ONG(P ).

6 Splendid equivalences

Here we shall briefly summarize some of the main results of [R3], giving some extra
conditions that the two-sided tilting complexes predicted by the Abelian Defect
Group Conjecture are expected to satisfy. We shall restrict our attention to the
case of principal blocks, although Harris [H] and Puig [P] have given generalizations
to non-principal blocks.

Suppose then that G has an abelian Sylow p-subgroup and that OA and OB
are the principal blocks of OG and ONG(P ) respectively. We can consider a two-
sided tilting complex X for OA and OB as a complex of O[G×NG(P )]-modules.
We say that X is a splendid tilting complex if it satisfies the following conditions,
where as before Y = HomOA(X,OA).

• X is a complex of O[G × NG(P )]-modules whose restrictions to O[P × P ]
are permutation modules of the form OΩ, where the point stabilizers of Ω
are conjugate to subgroups of the diagonal embedding of P in P × P .

• X ⊗OB Y ∼= OA⊕ C, where C is a contractible complex of OA-bimodules.

• Y ⊗OA X ∼= OB⊕C ′, where C ′ is a contractible complex of OB-bimodules.

A derived equivalence induced by a splendid tilting complex is called a splendid
equivalence.

Of course, we can make a similar definition over k. The second and third
conditions are of course stronger than the conditions in the definition of a two-
sided tilting complex, where C and C ′ were only required to be acyclic. Known
examples suggest that Broué’s Abelian Defect Group Conjecture should still be
true if we require the derived equivalences it predicts to be splendid.

The main property that motivates the introduction of the idea of splendid
equivalence is given in the next theorem [R3].

Theorem 6.1 If G has an abelian Sylow p-subgroup P and there is a splendid
equivalence between the principal blocks of OG and N = ONG(P ), then for each
subgroup Q ≤ P there is a splendid equivalence between the principal blocks of
OCG(Q) and OCN (Q).

In fact, a more precise statement can be made about the relationship be-
tween the two perfect isometries induced by the splendid equivalences: a splendid
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equivalence induces what Broué [B] calls an ‘isotypy’: a compatible family of per-
fect isometries between principal blocks of OCG(Q) and OCN (Q), one for each
subgroup Q ≤ P .

7 Recent progress in verifying the Abelian Defect Group Conjec-
ture

A complete proof of the conjecture still seems a long way off. For several years
after Broué formulated the conjecture, it could only be proved for fairly simple
blocks, such as those with cyclic defect group, where a lot was known about the
precise structure of the blocks. However, in the last few years there has been
significant progress in developing techniques to verify it for particular groups.

The most complex infinite family of examples for which the conjecture has
been verified is given by the following theorem [C].

Theorem 7.1 (Chuang) The Abelian Defect Group Conjecture is true for all
blocks of symmetric groups whose defect group has order p2. Moreover, the derived
equivalence is splendid.

In particular, Chuang’s theorem proves the conjecture for all blocks of the
symmetric group Sn if n < 3p.

Consider, for simplicity, the principal block of kG, where G has an abelian
Sylow p-subgroup P . The main obstacle to performing calculations to verify the
Abelian Defect Group Conjecture in this case has been that the precise structure
of the projective kG-modules is hard to calculate for all but the simplest examples,
so it is hard to calculate one-sided tilting complexes. In contrast, the structure of
projective kNG(P )-modules is relatively easy to understand. In as yet unpublished
work, Okuyama has introduced an ingenious technique, based on a theorem of
Linckelmann [L], that allows him to verify the conjecture for several groups G
without knowing the precise structure of the projective kG-modules. In fact, as
a byproduct of his verifications, it is possible to calculate the structure of these
modules.

Here are a few examples of the cases that Okuyama has settled.

Theorem 7.2 (Okuyama, 1997) For p = 3, the Abelian Defect Group Conjec-
ture is true for the principal blocks of the groups M11,M21,M22,M23 and HS.
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