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Simple Groups, Permutation Groups, and Probability

Aner Shalev

Abstract. We survey recent progress, made using probabilistic meth-
ods, on several conjectures concerning finite groups.
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1 Random generation

In recent years probabilistic methods have proved useful in the solution of sev-
eral difficult problems concerning finite groups; these involve conjectures on finite
simple groups and on finite permutation groups. In some cases the probabilistic
nature of the problem is apparent from its very formulation; but in other cases
the use of probability, or counting, seems surprising, and cannot be anticipated by
the nature of the problem.

In some branches of mathematics it is quite common to use probabilistic meth-
ods, or related non-constructive methods, in order to prove existence theorems
(Cantor’s proof of the existence of transcendental numbers is a classical example).
However, this is less common in group theory. Indeed, it is our hope that the
probabilistic approach will have sufficiently many group-theoretic applications so
as to become a standard tool in group theory.

The roots of the subject lie in a series of 7 papers by Erdős and Turán (starting
with [ET1]) in which they study the properties of random permutations. For
example they show that most permutations in the symmetric group Sn have order
about n

1

2
logn, and have about log n cycles.

Dixon [D] used the Erdős-Turán theory to settle an old conjecture of Netto,
proving that two randomly chosen elements of the alternating group An generate
An with probability → 1 as n → ∞. He proposed the following generalization:

Conjecture 1 (Dixon, 1969): Two randomly chosen elements of a finite simple
group G generate G with probability → 1 as |G| → ∞.

Here G and its Cartesian powers are regarded as probability spaces with
respect to the uniform distribution.

At the time this was a rather daring conjecture, since the Classification of
Finite Simple Groups was not yet available. Invoking the Classification Theorem
(which we do throughout) it remained to prove the conjecture for the simple groups
of Lie type.
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A breakthrough was made in 1990 by Kantor and Lubotzky, who proved
Dixon’s conjecture for classical groups and for some small rank exceptional groups
of Lie type [KL]. The remaining exceptional groups were handled by Liebeck and
myself in 1995 [LiSh1], so we have:

Theorem 1 (Dixon, Kantor, Lubotzky, Liebeck, Shalev): Dixon’s conjecture
holds.

This result has quantitative versions. Let m(G) denote the minimal index of
a proper subgroup of G. Then it turns out that the probability that two randomly
chosen elements of a finite simple group G do not generate G is approximately
m(G)−1 (up to a multiplicative constant); see [Ba], [K], [LiSh3] for this and for
more refined estimates.

We also obtain results on random generation by special pairs of elements. In
their paper [KL] Kantor and Lubotzky pose the following:

Conjecture 2 (Kantor-Lubotzky, 1990): A randomly chosen involution and a
randomly chosen additional element of a finite simple group G generate G with
probability → 1 as |G| → ∞.

This was settled in [LiSh3], so we have:

Theorem 2 (Liebeck-Shalev, 1996): Kantor-Lubotzky’s conjecture holds.

We also show in [LiSh3] that a finite simple group which is not a Suzuki group
is almost surely generated by a random element of order 3 and a random additional
element.

A related question raised in [KL] is as follows. Let G be a finite simple group,
and let x ∈ G be a non-identity element. Let Px(G) denote the probability that x
and a randomly chosen element of G generate G. What can be said about Px(G)?
Guralnick, Kantor and Saxl constructed examples where Px(G) → 0. It is shown
in [GKS], [Sh1], [LiSh5], [GLSSh] that, unless G is alternating or a classical group
over a field of bounded size (in which case Px(G) may be bounded away from 1), we
have Px(G) → 1 as |G| → ∞ (regardless of the choices of x). Another interesting
result which was just established in [GK] is that Px(G) is always positive, namely,
every non-identity element of a finite simple group sits in some generating pair.

Recently G. Robinson asked if a finite simple group is randomly generated by
two conjugate elements. By [Sh2], [LiSh5], [GLSSh] we have:

Theorem 3 (Guralnick-Liebeck-Saxl-Shalev, 1998) Let G be a finite simple group
and let x, y ∈ G be randomly chosen elements. Then the elements x and y−1xy
generate G with probability tending to 1 as |G| → ∞.

We conclude this section with a remark on profinite groups. A profinite group
G has a canonical normalized Haar measure which turns it into a probability
space. If, for some positive integer k, G is generated with positive probability
by k randomly chosen elements, we say that G is positively finitely generated.
The first examples of such groups occurred in the context of field arithmetic, and
their research was continued in [KL], [Bh], [M], [MSh], [BPSh]. Positively finitely
generated groups have been characterized as profinite groups in which the number
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of index n maximal subgroups grows polynomially with n [MSh]. However, we
are still unable to find a structural characterization of such groups, or even to
formulate a reasonable conjecture.

2 The modular group

We now turn to some recent applications of the probabilistic approach. The first
concerns the longstanding problem of finding the finite simple quotients of the
modular group PSL2(Z), namely the finite simple groups that can be generated
by two elements of orders 2 and 3 respectively. Groups with this property are
termed (2, 3)-generated. The interest in this problem arose in geometric contexts,
namely actions of finite groups on Riemann surfaces. Partial answers were provided
throughout this century. For example, Miller showed in 1901 that the alternating
groups of degree at least 9 are (2, 3)-generated. The (2, 3)-generation problem for
PSL2(q) was studied by Brahana and Sinkov in the 20s and 30s and was solved
by Macbeath in the 60s. Some classical groups with large Lie rank were handled
by Tamburini and others. In 1996 Di Martino and Vavilov showed that the simple
groups PSLn(q) are (2, 3)-generated provided q is odd and (n, q) 6= (2, 9).

The proofs of these and many other results in the field are based on explicit
constructions of generators of orders 2 and 3. This approach seems to fail for
various families of classical groups, for example those with “intermediate” Lie
rank. While some simple groups are not (2, 3)-generated, the following conjecture
was recently posed (see [W]).

Conjecture 3 (Di Martino-Vavilov, Wilson): All finite simple groups of Lie type
except some of low rank in characteristic 2 or 3 are quotients of PSL2(Z).

In [LiSh2] we address this problem for classical groups, using a probabilistic
approach. Let P2,3(G) denote the probability that a random involution and a
random element of order 3 generate G.

Theorem 4 (Liebeck-Shalev, 1996): Let G 6= PSp4(q) be a finite simple classical
group. Then P2,3(G) → 1 as |G| → ∞. If G = PSp4(pk) (p ≥ 5) then P2,3(G) →
1/2 as |G| → ∞.

This gives rise to the following.

Theorem 5 (Liebeck-Shalev, 1996): Except for PSp4(2k), PSp4(3k) and finitely
many other groups, all finite simple classical groups can be obtained as quotients
of PSL2(Z).

The groups PSp4(2k) and PSp4(3k) turn out to be genuine exceptions.

The (2, 3)-generation problem for exceptional groups of Lie type has just
been solved by Lübeck and Malle [LM]. Using character theory (and computer
calculations) they show that, except for the Suzuki groups and the group G2(2)′,
all simple exceptional groups of Lie type are obtained as quotients of the modular
group. Combining this with Theorem 5 we see that Conjecture 3 is now confirmed
up to finitely many exceptions.
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3 Free groups

It is interesting that results on random generation, and Theorem 1 in particular,
can be applied in the study of residual properties of free groups.

Let Fd be the free group on d generators (d ≥ 2). It is well known that Fd

is residually finite, and even residually p for any prime p. The following problem
concerning residual properties of free groups was raised by Magnus, and then by
Gorchakov and Levchuk.

Magnus problem: is Fd residually X for any infinite collection X of finite simple
groups?

In other words, suppose X is an infinite collection of finite simple groups;
does it follow that

∩{N ✁ Fd : Fd/N ∈ X} = 1?

Since Fd is residually F2, the question is reduced to the case d = 2. Several
partial answers were given in the past three decades, and a complete positive
solution to the problem was given by T. Weigel in 1993 [We1-We3].

In order to outline our approach to the problem, first note that it suffices to
show that for every 1 6= w = w(u, v) ∈ F2, almost all finite simple groups G have
a generating pair x, y such that w(x, y) 6= 1. To prove this we establish a stronger
result of a probabilistic nature [DPSSh].

Theorem 6 (Dixon-Pyber-Seress-Shalev): Fix 1 6= w = w(u, v) ∈ F2. Let G be
a finite simple group, and let x, y ∈ G be randomly chosen elements. Then, as
|G| → ∞ we have Prob(〈x, y〉 = G ∧ w(x, y) 6= 1) → 1.

The proof of Theorem 6 starts with the following reduction. Applying The-
orem 1, we know that Prob(〈x, y〉 = G) → 1. Hence it suffices to prove that the
probability that w(x, y) 6= 1 tends to 1 as |G| → ∞. The last statement has the
advantage that it no longer deals with generating pairs. We just have to show that
(as |G| → ∞) most pairs in G2 do not satisfy a given relation. This can be proved
using some algebraic geometry and suitable combinatorial tricks. Recently Py-
ber developed these ideas further in his study of dense free subgroups of profinite
groups.

4 Permutation groups

Several of the recent applications of the probabilistic approach involve permutation
groups. Let me start with a counting problem. How many maximal subgroups
does the symmetric group Sn have up to conjugacy? In 1989 Babai showed, using
the Classification Theorem, that Sn has at most n(1+o(1)) log3 n conjugacy classes
of maximal subgroups [Ba].

In [LiSh4] this is improved as follows.

Theorem 7 (Liebeck-Shalev, 1996): Sn has n/2 + o(n) conjugacy classes of max-
imal subgroups.
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Note that the intransitive subgroups, which have the form Sk×Sn−k, already
yield n/2 classes of maximal subgroups. Therefore Theorem 7 asserts that, in
some sense, almost all maximal subgroups of Sn are the obvious intransitive ones.

The methods of [LiSh4] are also relevant in counting all maximal subgroups
of Sn. In this context let me mention the following general conjecture.

Conjecture 4 (Wall, 1961): The number of maximal subgroups of a finite group
G is less than |G|.

This conjecture was confirmed by Wall for soluble groups [Wa]. We show in
[LiSh4] that it also holds for symmetric groups of sufficiently large degree.

We now turn to other applications involving permutation groups. Recall that
a base for a permutation group is a subset of the permutation domain whose
pointwise stabilizer is trivial. Bases play an important role in computational group
theory and in estimating orders of primitive permutation groups. The base size
b(G) of G is defined as the minimal size of a base for G, and is the subject of
several conjectures. We start with

Conjecture 5 (Babai, 1982): There is a function f such that, if G ≤ Sn is a
primitive group not involving Ad as a section, then b(G) ≤ f(d).

See Pyber’s excellent survey [P1]. First positive evidence was provided in
1996 by Seress, who showed that b(G) ≤ 4 for G soluble. Then, in the joint work
[GSSh] with Gluck and Seress, we show the following.

Theorem 8 (Gluck-Seress-Shalev, 1998): Babai’s conjecture holds.

This provides a structural explanation for the celebrated Babai-Cameron-
Pálfy theorem, stating that the order of the groups above is polynomial in n
[BCP]. The original proof in [GSSh] yields f(d) = O(d2). A modified proof from
[LiSh5] yields f(d) = O(d); this implies the best bounds in the Babai-Cameron-
Pálfy theorem, recently obtained by Pyber [P2].

We also settle another base conjecture, posed by Cameron in [Ca].

Conjecture 6 (Cameron, 1990): Let G be an almost simple primitive permuta-
tion group. Then b(G) ≤ c with known exceptions.

Here c denotes an absolute constant (not depending on G). The exceptions are
Am, Sm acting on subsets or partitions, and subspace actions of classical groups.
Conjecture 6 has just been settled in [LiSh5].

Theorem 9 (Liebeck-Shalev, 1998): Cameron’s conjecture holds. Moreover, there
is an absolute constant c such that, excluding the prescribed exceptions, almost all
c-tuples from the permutation domain form a base for G.

This establishes a probabilistic version of the conjecture, posed in the paper
[CK] by Cameron and Kantor, where the cases G = Am, Sm are settled.

The following challenging base conjecture is still open [P1].

Conjecture 7 (Pyber, 1993): The base size of a primitive subgroup G of Sn is
at most c log |G|/ log n.
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5 Hints of proofs

Since a subset X of a group G generates G if and only if it is not contained in
any maximal subgroup M of G, the proofs of the results on random generation
are intimately related with information concerning the subgroup structure of finite
simple groups. More specifically, for a real number s and a finite simple group G,
define

ζG(s) =
∑

M maxG

|G : M |−s.

Then it is easy to see that the probability that two randomly chosen elements x, y
of G do not generate G is bounded above by ζG(2). Hence, to prove Theorem 1 it
suffices to show that ζG(2) → 0 as |G| → ∞, which is what we do. Aschbacher’s
theorem for classical groups (see [A], [KLi]), and its analogs for exceptional groups
(see [LiSe1], [LST]), are the main tools in this proof.

The asymptotic behavior of ζG(s) for other values of s is crucial in proving
additional results on random generation. For example, the proof of Theorem 4,
which involves counting elements of orders 2 and 3 in classical groups and in
their maximal subgroups, eventually boils down to estimating ζG(66/65). Once
Theorem 4 is proved, it serves as an essential tool in the proofs of other results,
such as Theorems 2 and 3

Our results on base size rely on information concerning fixed point ratios for
permutation groups. This is a classical field of research which has been very active
in the past 120 years or so, since the days of Jordan [J]. Denote the number of fixed
points of a permutation x by fix(x). The basic question is how large fix(x) can be,
assuming x is a non-identity element of a primitive permutation group (satisfying
some mild conditions). The main tool in the proof of Cameron’s conjecture is the
following result from [LiSh5].

Theorem 10 (Liebeck-Shalev, 1998): There is a constant ǫ > 0 such that if G is
an almost simple classical group over a field with q elements with an n-dimensional
natural module, and G acts primitively on a set Ω in a non subspace action, then

(i) fix(x)/|Ω| < |xG|−ǫ for all elements x ∈ G of prime order, and
(ii) fix(x)/|Ω| < q−ǫn for all non-trivial elements x ∈ G.

Here |xG| denotes the size of the conjugacy class of x in G. For large n the
bound in part (ii) improves the 4/3q upper bound of [LS] (which holds with fewer
exceptions).

To demonstrate the relevance of Theorem 10 in the context of Cameron’s
conjecture let G be as above, and let B(G, k) denote the probability that a ran-
domly chosen k-tuple (ω1, . . . , ωk) of elements of Ω forms a base for G. Given a
permutation x ∈ G, the probability the x fixes a randomly chosen letter ω ∈ Ω
is fix(x)/|Ω|. Hence the probability that x fixes ω1, . . . , ωk is (fix(x)/|Ω|)k. Now,
if (ω1, . . . , ωk) is not a base for G, then some element x ∈ G of prime order fixes
ω1, . . . , ωk. Letting P denote the set of elements of prime order in G, and applying
part (i) of Theorem 10, we obtain

1 −B(G, k) ≤
∑

x∈P

(fix(x)/|Ω|)k <
∑

x∈P

|xG|−kǫ.
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Invoking information on conjugacy classes in classical groups, one can then show
that, with a suitable choice of k, the right hand side of the above inequality tends
to 0 as |G| → ∞; therefore B(G, k) → 1.

Theorem 10 has several other applications. For example, it is used in proving
Theorem 3 for classical groups. It also reduces the genus conjecture of Thompson
and Guralnick (see [GT]) to the case of subspace actions of classical groups.

The interested reader is referred to the more detailed survey [Sh3] and the
references therein.
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