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§1. Introduction

(A.) The Fuchsian Uniformization

A hyperbolic curve is an algebraic curve obtained by removing r points from a
smooth, proper curve of genus g, where g and r are nonnegative integers such that
2g − 2 + r > 0. If X is a hyperbolic curve over the field of complex numbers C,
then X gives rise in a natural way to a Riemann surface X . As one knows from
complex analysis, the most fundamental fact concerning such a Riemann surface
(due to Köbe) is that it may be uniformized by the upper half-plane, i.e.,

X ∼= H/Γ

where H
def
= {z ∈ C | Im(z) > 0}, and Γ ∼= π1(X ) (the topological fundamental

group of X ) is a discontinuous group acting on H. Note that the action of Γ on H

defines a canonical representation

ρX : π1(X ) → PSL2(R)
def
= SL2(R)/{±1} = AutHolomorphic(H)

The goal of the present manuscript is to survey various work ([Mzk1-5]) devoted
to generalizing Köbe’s uniformization to the p-adic case.

First, we observe that it is not realistic to expect that hyperbolic curves
over p-adic fields may be literally uniformized by some sort of p-adic upper half-
plane in the fashion of the Köbe uniformization. Of course, one has the theory
of Mumford ([Mumf]), but this theory furnishes a p-adic analogue not of Köbe’s
Fuchsian uniformization (i.e., uniformization by a Fuchsian group), but rather
of what in the complex case is known as the Schottky uniformization. Even in
the complex case, the Fuchsian and Schottky uniformizations are fundamentally
different: For instance, as the moduli of the curve vary, its Schottky periods vary
holomorphically, whereas its Fuchsian periods vary only real analytically. This fact
already suggests that the Fuchsian uniformization is of a more arithmetic nature
than the Schottky uniformization, i.e., it involves
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real analytic structures ⇐⇒ complex conjugation ⇐⇒
Frobenius at the infinite prime

Thus, since one cannot expect a p-adic analogue in the form of a literal global
uniformization of the curve, the first order of business is to reinterpret the Fuch-
sian uniformization in more abstract terms that generalize naturally to the p-adic
setting.

(B.) The Physical Interpretation

The first and most obvious approach is to observe that the Fuchsian uniformization
gives a new physical, geometric way to reconstruct the original algebraic curve X.
Namely, one may think of the Fuchsian uniformization as defining a canonical
arithmetic structure ρX : π1(X ) → PSL2(R) on the purely topological invariant
π1(X ). Alternatively (and essentially equivalently), one may think of the Fuchsian
uniformization as the datum of a metric (given by descending to X ∼= H/Γ the
Poincaré metric on H) – i.e., an arithmetic (in the sense of arithmetic at the infinite
prime) structure – on the differential manifold underlying X (which is a purely
topological invariant). Then the equivalence

X ⇐⇒ SO(2)\PSL2(R)/Γ

between the algebraic curve X and the physical/analytic object
SO(2)\PSL2(R)/Γ obtained from ρX is given by considering modular forms
on H = SO(2)\PSL2(R), which define a projective (hence, algebraizing) embed-
ding of X .

(C.) The Modular Interpretation

Note that ρX may also be regarded as a representation into PGL2(C) =
GL2(C)/C×, hence as defining an action of π1(X ) on P 1

C . Taking the quotient
of H × P 1

C by the action of π1(X ) on both factors then gives rise to a projective
bundle with connection on X . It is immediate that this projective bundle and con-
nection may be algebraized, so we thus obtain a projective bundle and connection
(P → X,∇P ) on X. This pair (P,∇P ) has certain properties which make it an
indigenous bundle (terminology due to Gunning). More generally, an indigenous
bundle on X may be thought of as a projective structure on X , i.e., a subsheaf
of the sheaf of holomorphic functions on X such that locally any two sections of
this subsheaf are related by a linear fractional transformation. Thus, the Fuchsian
uniformization defines a special canonical indigenous bundle on X.

In fact, the notion of an indigenous bundle is entirely algebraic. Thus, one has
a natural moduli stack Sg,r → Mg,r of indigenous bundles, which forms a torsor
(under the affine group given by the sheaf of differentials on Mg,r) – called the
Schwarz torsor – over the moduli stack Mg,r of hyperbolic curves of type (g, r).
Moreover, Sg,r is not only algebraic, it is defined over Z[ 12 ]. Thus, the canonical
indigenous bundle defines a canonical real analytic section

s : Mg,r(C) → Sg,r(C)
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of the Schwarz torsor at the infinite prime. Moreover, not only does s “contain”
all the information that one needs to define the Fuchsian uniformization of an
individual hyperbolic curve (indeed, this much is obvious from the definition of
s!), it also essentially “is” (interpreted properly) the Bers uniformization of the
universal covering space (i.e., “Teichmüller space”) of Mg,r(C) (cf. the discussions
in the Introductions of [Mzk1,4]). That is to say, from this point of view, one
may regard the uniformization theory of hyperbolic curves and their moduli as
the study of the canonical section s. Alternatively, from the point of view of
Teichmüller theory, one may regard the uniformization theory of hyperbolic curves
and their moduli as the theory of (so-called) quasi-fuchsian deformations of the
representation ρX .

(D.) The Notion of “Intrinsic Hodge Theory”

Note that both the physical and modular approaches to the Fuchsian uniformiza-
tion assert that there is a certain equivalence

algebraic geometry ⇐⇒ topology endowed with an arithmetic structure

That is, on the algebraic geometry side, we have the scheme (respectively, stack)
given by the curve X itself in the physical approach (respectively, its moduli
Mg,r in the modular approach), whereas on the “topology plus arithmetic struc-
ture” side, we have the theory of the canonical representation ρX of π1(X ) (i.e.,
SO(2)\PSL2(R)/Γ in the physical approach; quasi-fuchsian deformations of ρX
in the modular approach). This sort of equivalence is reminiscent of that given
by classical or p-adic Hodge theory between the de Rham or Hodge cohomology
of an algebraic variety (on the algebraic geometry side), and the singular or étale
cohomology (equipped with Galois action) on the topology plus arithmetic side.
In our case, however, instead of dealing with the cohomology of the curve, we are
dealing with “the curve itself” and its moduli. It is for this reason that we refer
to this sort of theory as the intrinsic Hodge theory of the curve X.

Finally, we note that this formal analogy with classical/p-adic Hodge theory
is by no means merely philosophical. Indeed, even in the classical theory reviewed
in (B.) and (C.) above, the methods of classical Hodge theory play an important
technical role in the proofs of the main theorems. Similarly, in the theory of [Mzk1-
5] – which constitute our main examples of intrinsic Hodge theory for hyperbolic
curves – the more recently developed techniques of p-adic Hodge theory play a
crucial technical role in the proofs of the main results.

§2. The Physical Approach in the p-adic Case

(A.) The Arithmetic Fundamental Group

Let K be a field of characteristic zero. Let us denote by K an algebraic closure

of K. Let ΓK
def
= Gal(K/K). Let XK be a hyperbolic curve over K; write X

K

def
=

X ×K K. Then one has an exact sequence

1 → π1(XK
) → π1(XK) → ΓK → 1
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of algebraic fundamental groups. (Here, we omit the base-points from the notation
for the various fundamental groups.)

We shall refer to π1(XK
) as the geometric fundamental group of XK . Note

that the structure of π1(XK
) is determined entirely by (g, r) (i.e., the “type” of

the hyperbolic curve XK). In particular, π1(XK
) does not depend on the moduli

of XK . Of course, this results from the fact that K is of characteristic zero; in
positive characteristic, on the other hand, preliminary evidence ([Tama2]) suggests
that the fundamental group of a hyperbolic curve over an algebraically closed field
(far from being independent of the moduli of the curve!) may in fact completely
determine the moduli of the curve.

On the other hand, we shall refer to π1(XK) (equipped with its augmentation
to ΓK) as the arithmetic fundamental group of XK . Although it is made up of two
“parts” – i.e., π1(XK

) and ΓK – which do not depend on the moduli of XK , it
is not unreasonable to expect that the extension class defined by the above exact
sequence, i.e., the structure of π1(XK) as a group equipped with augmentation to
ΓK , may in fact depend quite strongly on the moduli of XK . Indeed, according to
the anabelian philosophy of Grothendieck (cf. [LS]), for “sufficiently arithmetic”K,
one expects that the structure of the arithmetic fundamental group π1(XK) should
be enough to determine the moduli of XK . Although many important versions of
Grothendieck’s anabelian conjectures remain unsolved (most notably the so-called
Section Conjecture (cf., e.g., [LS], p. 289, 2)), in the remainder of this §, we shall
discuss various versions that have been resolved in the affirmative. Finally, we note
that this anabelian philosophy is a special case of the notion of “intrinsic Hodge
theory” discussed above: indeed, on the algebraic geometry side, one has “the
curve itself,” whereas on the topology plus arithmetic side, one has the arithmetic
fundamental group, i.e., the purely (étale) topological π1(XK

), equipped with the
structure of extension given by the above exact sequence.

(B.) The Main Theorem

Building on earlier work of H. Nakamura and A. Tamagawa (see, especially,
[Tama1]), the author applied the p-adic Hodge theory of [Falt2] and [BK] to prove
the following result (cf. Theorem A of [Mzk5]):

Theorem 1. Let p be a prime number. Let K be a subfield of a finitely generated
field extension of Qp. Let XK be a hyperbolic curve over K. Then for any smooth
variety SK over K, the natural map

XK(SK)dom → Homopen
ΓK

(π1(SK), π1(XK))

is bijective. Here, the superscripted “dom” denotes dominant (⇐⇒ nonconstant)
K-morphisms, while Homopen

ΓK
denotes open, continuous homomorphisms compati-

ble with the augmentations to ΓK , and considered up to composition with an inner
automorphism arising from π1(XK

).

Note that this result constitutes an analogue of the “physical aspect” of the
Fuchsian uniformization, i.e., it exhibits the schemeXK (in the sense of the functor
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defined by considering (nonconstant) K-morphisms from arbitrary smooth SK to
XK) as equivalent to the “physical/analytic object”

Homopen
ΓK

(−, π1(XK))

defined by the topological π1(XK
) together with some additional canonical arith-

metic structure (i.e., π1(XK)).
In fact, the proof of Theorem 1 was also motivated by this point of view: That

is to say, just as one may regard the algebraic structure of a hyperbolic curve over
C as being defined by certain (a priori) analytic modular forms on H, the proof
of Theorem 1 proceeds by considering certain p-adic analytic representations of
differential forms on XK . In the p-adic case, however, the domain of definition of
these analytic forms (i.e., the analogue to the upper half-plane) is the spectrum
of the p-adic completion of the maximal tame extension of the function field of
XK along various irreducible components of the special fiber of a stable model
X → Spec(OK) of XK (where OK is the ring of integers of a finite extension K of
Qp). It turns out that this object is, just like the upper half-plane, independent
of the moduli of XK .

In fact, various slightly stronger versions of Theorem 1 hold. For instance,
instead of the whole geometric fundamental group π1(XK

), it suffices to consider

its maximal pro-p quotient π1(XK
)(p). Another strengthening allows one to prove

the following result (cf. Theorem B of [Mzk5]), which generalizes a result of Pop
([Pop]):

Corollary 2. Let p be a prime number. Let K be a subfield of a finitely gener-
ated field extension of Qp. Let L and M be function fields of arbitrary dimension
over K. Then the natural map

HomK(Spec(L), Spec(M)) → Homopen
ΓK

(ΓL,ΓM )

is bijective. Here, Homopen
ΓK

(ΓL,ΓM ) is the set of open, continuous group homo-
morphisms ΓL → ΓM over ΓK , considered up to composition with an inner homo-
morphism arising from Ker(ΓM → ΓK).

(C.) Comparison with the Case of Abelian Varieties

Note that there is an obvious formal analogy between Theorem 1 above and Tate’s
conjecture on homomorphisms between abelian varieties (cf., e.g., [Falt1]). Indeed,
in discussions of Grothendieck’s anabelian philosophy, it was common to refer
to statements such as that of Theorem 1 as the “anabelian Tate conjecture,”
or the “Tate conjecture for hyperbolic curves.” In fact, however, there is an
important difference between Theorem 1 and the “Tate conjecture” of, say, [Falt1]:
Namely, the Tate conjecture for abelian varieties is false over local fields (i.e., finite
extensions of Qp). Moreover, until the proof of Theorem 1, it was generally thought
that, just like its abelian cousin, the “anabelian Tate conjecture” was essentially
global in nature. That is to say, it appears that the point of view of the author, i.e.,
that Theorem 1 should be regarded as a p-adic version of the “physical aspect” of
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the Fuchsian uniformization of a hyperbolic curve, does not exist in the literature
(prior to the work of the author).

§3. The Modular Approach in the p-adic Case

(A.) The Example of Shimura Curves

As discussed in §1, (C.), classical complex Teichmüller theory may be formulated
as the study of the canonical real analytic section s of the Schwarz torsor Sg,r →
Mg,r. Thus, it is natural suppose that the p-adic analogue of classical Teichmüller
theory should revolve around some sort of canonical p-adic section of the Schwarz
torsor. Then the question arises:

How does one define a canonical p-adic section of the Schwarz torsor?

Put another way, for each (or at least most) p-adic hyperbolic curves, we would
like to associate a (or at least a finite, bounded number of) canonical indigenous
bundles. Thus, we would like to know what sort of properties such a “canonical
indigenous bundle” should have.

The model that provides the answer to this question is the theory of Shimura
curves. In fact, the theory of canonical Schwarz structures, canonical differentials,
and canonical coordinates on Shimura curves localized at finite primes has been
extensively studied by Y. Ihara (see, e.g., [Ihara]). In some sense, Ihara’s theory
provides the prototype for the “p-adic Teichmüller theory” of arbitrary hyperbolic
curves ([Mzk1-4]) to be discussed in (B.) and (C.) below. The easiest example
of a Shimura curve is M1,0, the moduli stack of elliptic curves. In this case, the
projectivization of the rank two bundle on M1,0 defined by the first de Rham co-
homology module of the universal elliptic curve on M1,0 gives rise (when equipped
with the Gauss-Manin connection) to the canonical indigenous bundle on M1,0.
Moreover, it is well-known that the p-curvature (a canonical invariant of bundles
with connection in positive characteristic which measures the extent to which the
connection is compatible with Frobenius) of this bundle has the following prop-
erty:

The p-curvature of the canonical indigenous bundle on M1,0 (reduced
mod p) is square nilpotent.

It was this observation that was the key to the development of the theory of
[Mzk1-4].

(B.) The Stack of Nilcurves

Let p be an odd prime. Let Ng,r ⊆ (Sg,r)Fp
denote the closed algebraic substack of

indigenous bundles with square nilpotent p-curvature. Then one has the following
key result ([Mzk1], Chapter II, Theorem 2.3):

Theorem 3. The natural map Ng,r → (Mg,r)Fp
is a finite, flat, local complete

intersection morphism of degree p3g−3+r. Thus, up to “isogeny” (i.e., up to the
fact that this degree is not equal to one), Ng,r defines a canonical section of the
Schwarz torsor (Sg,r)Fp

→ (Mg,r)Fp
in characteristic p.
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It is this stackNg,r of nilcurves – i.e., hyperbolic curves in characteristic p equipped
with an indigenous bundle with square nilpotent p-curvature – which is the central
object of study in the theory of [Mzk1-4].

Once one has the above Theorem, next it is natural to ask if one can say
more about the fine structure of Ng,r. Although many interesting and natural
questions concerning the structure of Ng,r remain unsolved at the time of writing,
a certain amount can be understood by analyzing certain substacks, or strata, of
Ng,r defined by considering the loci of nilcurves whose p-curvature vanishes to a
certain degree. For instance, nilcurves whose p-curvature vanishes identically are
called dormant. The locus of dormant nilcurves is denoted Ng,r[∞] ⊆ Ng,r. If
a nilcurve is not dormant, then its p-curvature vanishes on some divisor in the
curve. We denote by Ng,r[d] ⊆ Ng,r the locus of nilcurves for which this divisor is
of degree d. The zeroes of the p-curvature are referred to as spikes. Now we have
the following result (cf. Theorems 1.2, 1.6 of the Introduction of [Mzk4]):

Theorem 4. The Ng,r[d] are all smooth over Fp and either empty or of dimen-
sion 3g − 3 + r. Moreover, Ng,r[0] is affine.

It turns out that this affineness of Ng,r[0], interpreted properly, gives a new proof
of the connectedness of (Mg,r)Fp

(for p large relative to g). This fact is interesting
(relative to the claim that this theory is a p-adic version of Teichmüller theory)
in that one of the first applications of classical complex Teichmüller theory is to
prove the connectedness of Mg,r. Also, it is interesting to note that F. Oort has
succeeded in giving a proof of the connnectedness of the moduli stack of princi-
pally polarized abelian varieties by using affineness properties of certain natural
substacks of this moduli stack in characteristic p.

Despite the fact that the Ng,r[d] are smooth and of the same dimension as
Ng,r, we remark that in most cases Ng,r is not reduced at Ng,r[d]. In fact, roughly
speaking, the larger d is, the less reduced Ng,r is at Ng,r[d]. In order to give sharp
quantitative answers to such questions as:

How reduced is Ng,r at the generic point of Ng,r[d]? Or, what is the
generic degree of Ng,r[d] over (Mg,r)Fp

?

it is necessary to study what happens to a nilcurve as the underlying curve de-
generates to a totally degenerate stable curve (i.e., a stable curve each of whose
irreducible components is P 1, with a total of precisely three marked points/nodes).
To do this, one must formulate the theory (using “log structures”) in such a way
that it applies to stable curves, as well.

Once one formulates the theory for stable curves, one sees that the answers
to the questions just posed will follow as soon as one:

(i.) Classifies all molecules – i.e., nilcurves whose underlying curve is a
totally degenerate stable curve.

(ii.) Understands how molecules deform.

The answer to (i.) and (ii.) depends on an extensive analysis of molecules (cf.
[Mzk2-4]), and, although combinatorially quite complicated, is, in some sense,
complete. Although we do not have enough space here to discuss this answer
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in detail, we pause to remark the following: It turns out that the answer to (i.)
consists of regarding molecules as concatenations of atoms – i.e., toral nilcurves (a
slight generalization of nilcurves) whose underlying curve is P 1 with three marked
points – and then classifying atoms. The difference between a toral nilcurve and a
(nontoral) nilcurve is that unlike the nontoral case, where the “radii” at the three
marked points are assumed to be zero, in the toral case, one allows these radii
to be arbitrary elements of Fp/{±1} (i.e., the quotient of the set Fp obtained by
identifying λ and −λ for all λ ∈ Fp). Then it turns out that considering the three
radii of an atom defines a natural bijection between the isomorphism classes of
atoms and the set of (ordered) triples of elements of Fp/{±1}.

The reason that we digressed to discuss the theory of atoms is that it is in-
teresting (relative to the analogy with classical complex Teichmüller theory) in
that it is reminiscent of the fact that a Riemann surface may be analyzed by de-
composing it into pants (i.e., Riemann surfaces which are topologically isomorphic
to P 1 − {0, 1,∞}). Moreover, the isomorphism class of a “pants” is completely
determined by the radii of its three holes.

(C.) Canonical Liftings

So far, we have been discussing the characteristic p theory. Ultimately, however,
we would like to know if the various characteristic p objects discussed in (B.) lift
canonically to objects which are flat over Zp. Unfortunately, it seems that it is
unlikely that Ng,r itself lifts canonically to some sort of natural Zp-flat object. If,
however, we consider the open substack – called the ordinary locus – (N ord

g,r )Fp
⊆

Ng,r which is the étale locus of the morphism Ng,r → (Mg,r)Fp
, then (since the

étale site is invariant under nilpotent thickenings) we get a canonical lifting, i.e.,
an étale morphism

N ord
g,r → (Mg,r)Zp

of p-adic formal stacks. Over N ord
g,r , one has the sought-after canonical p-adic

splitting of the Schwarz torsor (cf. Theorem 0.1 of the Introduction of [Mzk1]):

Theorem 5. There is a canonical section N ord
g,r → Sg,r of the Schwarz torsor

over N ord
g,r which is the unique section having the following property: There exists

a lifting of Frobenius ΦN : N ord
g,r → N ord

g,r such that the indigenous bundle on

the tautological hyperbolic curve over N ord
g,r defined by the section N ord

g,r → Sg,r is
invariant with respect to the Frobenius action defined by ΦN .

Moreover, it turns out that the Frobenius lifting ΦN : N ord
g,r → N ord

g,r (i.e.,
morphism whose reduction modulo p is the Frobenius morphism) has the special
property that 1

p
· dΦN induces an isomorphism Φ∗

NΩN ord
g,r

∼= ΩN ord
g,r

. Such a Frobe-

nius lifting is called ordinary. It turns out that any ordinary Frobenius lifting (i.e.,
not just ΦN ) defines a set of canonical multiplicative coordinates in a formal neigh-
borhood of any point α valued in an algebraically closed field k of characteristic
p, as well as a canonical lifting of α to a point valued in W (k) (Witt vectors with
coefficients in k). Moreover, there is a certain analogy between this general theory
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of ordinary Frobenius liftings and the theory of real analytic Kähler metrics (which
also define canonical coordinates). Relative to this analogy, the canonical Frobe-
nius lifting ΦN on N ord

g,r may be regarded as corresponding to the Weil-Petersson
metric on complex Teichmüller space (a metric whose canonical coordinates are
the coordinates arising from the Bers uniformization of Teichmüller space). Thus,
ΦN is, in a very real sense, a p-adic analogue of the Bers uniformization in the
complex case. Moreover, there is, in fact, a canonical ordinary Frobenius lifting
on the “ordinary locus” of the tautological curve over N ord

g,r whose relative canon-
ical coordinate is analogous to the canonical coordinate arising from the Köbe
uniformization of a hyperbolic curve.

Next, we observe that Serre-Tate theory for ordinary (principally polarized)
abelian varieties may also be formulated as arising from a certain canonical ordi-
nary Frobenius lifting. Thus, the Serre-Tate parameters (respectively, Serre-Tate
canonical lifting) may be identified with the canonical multiplicative parameters
(respectively, canonical lifting to the Witt vectors) of this Frobenius lifting. That
is to say, in a very concrete and rigorous sense, Theorem 5 may be regarded as
the analogue of Serre-Tate theory for hyperbolic curves. Nevertheless, we remark
that it is not the case that the condition that a nilcurve be ordinary (i.e., defines
a point of (N ord

g,r )Fp
⊆ Ng,r) either implies or is implied by the condition that its

Jacobian be ordinary. Although this fact may disappoint some readers, it is in fact
very natural when viewed relative to the general analogy between ordinary Frobe-
nius liftings and real analytic Kähler metrics discussed above. Indeed, relative to
this analogy, we see that it corresponds to the fact that, when one equips Mg

with the Weil-Petersson metric and Ag (the moduli stack of principally polarized
abelian varieties) with its natural metric arising from the Siegel upper half-plane
uniformization, the Torelli map Mg → Ag is not isometric.

Next, we remark that (N ord
g,r )Fp

⊆ Ng,r[0]. Thus, the other Ng,r[d]’s are left
out of the theory of canonical liftings arising from Theorem 5. Nevertheless, in
[Mzk2,4], a more general theory of canonical liftings is developed that includes
arbitrary Ng,r[d]. In this more general theory, instead of getting local uniformiza-

tions by multiplicative canonical parameters, i.e., uniformizations by Ĝm, we get
uniformizations by more general types of Lubin-Tate groups, or twisted products
of such groups. Roughly speaking, the more “spikes” in the nilcurves involved –
i.e., the larger the d of Ng,r[d] – the more Lubin-Tate the uniformization becomes.

Finally, we remark that once one develops these theories of canonical liftings,
one also gets accompanying canonical (crystalline) Galois representations of the
arithmetic fundamental group of the tautological curve over N ord

g,r (and its Lubin-
Tate generalizations) into PGL2 of various complicated rings with Galois action.
It turns out that these Galois representations are the analogues of the canoni-
cal representation ρX (of §1, (A.)) – which was the starting point of our entire
discussion.
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