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The Subspae Theorem and Appliations
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Abstract. We discuss recent results on simultaneous approximation of
algebraic numbers by rationals and applications to diophantine equations.
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In 1955 K. F. Roth [15] proved: Suppose α is an algebraic number and suppose
ε > 0. Then the inequality
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has only finitely many rational solutions x
y . This result is best possible since

by Dirichlet’s classical theorem any real irrational number α has infinitely many
rational approximations satisfying
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In 1972 W. M. Schmidt [22] generalized Roth’s Theorem to n dimensions. He
proved the following:

Subspace Theorem. Let Li = αi1X1+ · · ·+αinXn (i = 1, . . . , n) be linearly
independent linear forms with algebraic coefficients. Suppose ε > 0. Consider the
inequality

|L1(x) · · ·Ln(x)| < ‖ x ‖−ε, x ∈ Zn, (0.2)

where ‖ x ‖= (x2
1 + · · ·+ x2

n)
1

2 .
Then there exist proper linear subspaces T1, . . . , Tt of Qn such that the set of
solutions of (0.2) is contained in the union

T1 ∪ · · · ∪ Tt. (0.3)

Recently an alternative proof of the Subspace Theorem has been given by Fal-

tings and Wüstholz [12].
It is an easy consequence of a theorem of Minkowski that there exist forms

L1, . . . , Ln as above with the following property: For any finite collection of proper
linear subspaces S1, . . . , St of Q

n the set of solutions of

|L1(x) · · ·Ln(x)| < 1, x ∈ Zn
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is not contained in S1∪· · ·∪St. So the Subspace Theorem, just as Roth’s Theorem
is best possible.

W. M. Schmidt in 1975 has extended his theorem to the case when the
variables x = (x1, · · · , xn) are integers of a fixed number field K. Moreover the
theorem has been generalized by Dubois and Rhin [4] and independently by
Schlickewei [17] to include p-adic valuations.

The results mentioned so far are all qualitative, and we may ask the following
two questions:

i) Given ε > 0 and linear forms L1, . . . , Ln as in the Subspace Theorem, is
it possible to determine the subspaces T1, . . . , Tt in (0.3) effectively, i.e., to
give an algorithm to compute T1, . . . , Tt?

ii) What can be said about the number t of subspaces T1, . . . , Tt needed in (0.3)
to cover the set of solutions of (0.2)?

Question (i) is one of the most famous open problems in Diophantine Approxi-
mations. Indeed the method of proof for the Subspace Theorem, the so called
Thue-Siegel-Roth-Schmidt method, is highly ineffective.

As for question (ii), in the last 15 years quite some progress was made. So in
the remainder of the talk we will discuss results on question (ii).

1 The quantitative Subspace Theorem

The Thue-Siegel-Roth-Schmidt method does not provide an algorithm to deter-
mine the set of solutions of (0.1) or the subspaces occurring in (0.2), (0.3). However
it does give upper bounds for the number of solutions of (0.1) or of subspaces in
(0.2), (0.3). One of the main tools in giving such upper bounds are “gap princi-
ples”. We illustrate the easiest case:
Let us consider the inequality
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in rational numbers x
y with y > 0. For any two different solutions x1
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of (1.1)
with y1 < y2 we get
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So if x1

y1

, . . . , xk

yk

are different solutions of (1.1) with y1 < y2 < . . . < yk and with

the yi-s in an interval of the type (Q,QE ] with Q
ε

2 > 2 and E > 1, then

k ≤ 1 +
logE

log(1 + ε
2 )

.

In the proof of Roth’s Theorem we have the following situation: There exists a
certain value Q0, depending upon α and ε, such that for solutions x

y of (0.1) with

y > Q0 we can find m disjoint intervals (Q1, Q
E
1 ], . . . , (Qm, QE

m] having

y ∈ (Q1, Q
E
1 ] ∪ · · · ∪ (Qm, QE

m].
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So the above gap principle shows that we cannot have more than

m

(

1 +
logE

log(1 + ε
2 )

)

large solutions. Now Roth’s method gives

m ≤ c1(ε, d) and E ≤ c2(ε, d),

where d is the degree of α. Thus the number of solutions x
y of (0.1) with y “large”

does not exceed a certain function c(d, ε) depending only upon the degree d of α
and upon the parameter ε.

To derive a similar statement in the situation of the Subspace Theorem, we
first need a generalization of the gap principle to higher dimensions. Apart from
this, there are a number of rather delicate problems in the geometry of numbers
to be dealt with for dimension > 2. The pioneering work in this context is due to
W. M. Schmidt [23] (1989). He proved:

Let 0 < ε < 1. Suppose that the forms L1, . . . , Ln have det(L1, . . . , Ln) = 1
and that the coefficients of the forms are contained in a number field K with
[K : Q] = d. Then there are proper linear subspaces T1, . . . , Tt of Q

n where

t ≤ (2d)2
26nε−2

(1.2)

such that the set of solutions x of (0.2) is contained in the union of T1, . . . , Tt and
the ball

‖ x ‖≤ max{(n!)8/ε, H(L1), . . . , H(Ln)}, (1.3)

where H(Li) is the height of the coefficient vector of the form Li (1 ≤ i ≤ n).
Vojta [27] has shown that there exist finitely many subspaces T1, . . . , Tl

which are effectively computable and which do not depend upon ε, such that all
but finitely many solutions x of (0.2) are contained in the union T1 ∪ · · · ∪ Tl. It
seems to be very difficult to give an upper bound for the number of exceptional
solutions (which in fact will depend upon ε).

Neither one of Schmidt’s and Vojta’s results implies the other one.
Schmidt’s result (1.2), (1.3) has been extended by Schlickewei [18] to the

case when the variables (x1, . . . , xn) are taken from the field K instead of Q and
also to a finite set S of absolute values on K. To cover the “large” solutions we
do not need more than

c(n, ε, d, s) (1.4)

proper linear subspaces of Kn. Here s is the cardinality of the set S of absolute
values under consideration.

2 Improvements on the quantitative Subspace Theorem.

i) The bound for the number t of subspaces given in (1.2) is doubly exponential
in n and exponential in ε−1. Its origin essentially may be found in Roth’s Lemma:
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This is a criterion to guarantee that a polynomial P (X1, . . . , Xm) with integer
coefficients does not vanish with too high order at a rational point (x1

y1

, . . . , xm

ym
).

A much more powerful multiplicity estimate has been provided by Faltings [11]
with his product theorem. Explicit versions of Faltings’ result were derived
independently by Evertse [6] and by Ferretti [13]. As a consequence Evertse
[7] obtained a substantial improvement of the bounds (1.2) and (1.4) in terms of
the dependence upon n and ε−1.

ii) A completely different problem is the question which parameters in the
bounds (1.2) and (1.4) are really necessary. As will be seen, to minimize the
number of parameters showing up in the bounds is a quite relevant task for ap-
plications to diophantine equations. In dealing with inequality (0.2), it turns out
that it suffices to study a problem on simultaneous inequalities. It is clear that for
any solution x of (0.2) there exist real numbers c1, . . . , cn with

c1 + . . .+ cn ≤ −ε (2.1)

and

|L1(x)| ≤ ‖ x ‖c1 , . . . , |Ln(x)| ≤ ‖ x ‖cn . (2.2)

Indeed it suffices to study (2.1), (2.2) for a fixed tuple c1, . . . , cn. Such inequalities
have been investigated by Schlickewei [19]. In the current situation he was able
to replace the bound c(n, ε, d, s) from (1.4) for the number of subspaces by a bound

c(n, ε). (2.3)

So here in comparison with (1.4) the dependence on d and s is avoided. However
(2.3) still is only valid for the “large” solutions x, and the definition of “large” is
in terms of a function

c(n, ε, d, Li). (2.4)

Let us briefly discuss why in (2.4) the parameter d shows up. In the proof of the
Subspace Theorem an important ingredient is the theorem of Minkowski on the
successive minima λ1, . . . , λn of convex bodies. By Minkowski we have

2n

n!
≤ λ1 . . . λnV ≤ 2n, (2.5)

where V is the volume of the convex body. If we deal with the Subspace Theorem
for a number field K, we use the generalization of Minkowski’s estimate (2.5) to
number fields given by McFeat [14] and by Bombieri and Vaaler [2]. However
the analogue of (2.5) involves the discriminant of the field as a factor in the upper
bound.

In a recent paper, Roy and Thunder [16] have proved a version of
Minkowski’s theorem where they do not restrict the variables x anymore to a
number field. They allow arbitrary elements x ∈ Q

n
, where Q is the algebraic

closure of Q. They derive an inequality which essentially is of the same shape as
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(2.5). In particular, with their approach they get rid of the discriminant factor in
the upper bound.

This new result of Roy and Thunder turns out to be extremely useful in
our context. It has been applied in a joint paper by Evertse and Schlickewei

[9].
Roughly speaking, the main consequences derived in [9] are as follows.

a) We can now consider inequalities such as (0.2) (or the p-adic generalization)
allowing arbitrary solutions x ∈ Q

n
(instead of only solutions in Kn). The

assertion of the theorem then is that the set of all large solutions is contained
in the union of finitely many proper subspaces of Q

n
(Absolute Subspace

Theorem).

b) If we consider simultaneous inequalities such as (2.1), (2.2) with solutions
x ∈ Q

n
, then again we have to distinguish small and large solutions. The

set of large solutions may be covered by

c(n, ε) (2.6)

proper subspaces of Q
n
(similar bound as in (2.3)). However, in contrast

with (2.4) the large solutions now are defined in terms of a function

c(n, ε, Li) (2.7)

only. So in (2.7), in comparison with (2.4), the dependence on the parameter
d is avoided.

3 Applications to norm form equations.

Let L(X1, . . . , Xn) = α1X1 + . . . + αnXn be a linear form with coefficients in a
number field K of degree d. Denote the embeddings of K into Q by α → α(i) and
write L(i)(X) = α1X1 + . . .+ αnXn. Put

N(L(X)) =

d
∏

i=1

L(i)(X).

By a norm form equation we mean an equation of the type

N(L(x)) = m in x ∈ Zn. (3.1)

Here m is a fixed nonzero rational number. Note that the left hand side of (3.1) is
a homogeneous polynomial of degree d in the variables xi with rational coefficients.

Under suitable and rather natural hypotheses about the linear form L, which
we summarize briefly by saying that N(L(X)) is a “nondegenerate” norm form,
Schmidt [22] has shown as a consequence of the Subspace Theorem that equation
(3.1) has only finitely many solutions x. Using his quantitative result (1.2), in [24]
he derived an explicit uniform upper bound for the number of solutions of (3.1) of
the shape c(n, d,m). Here the significant feature is that the bound does not depend
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upon the coefficients of the form L. This proves the n-dimensional analogue of
a conjecture made by Siegel in 1929. The corresponding result for n = 2 had
been proved by Evertse in 1984 already. Evertse [5], applying his version
of the quantitative Subspace Theorem, obtained a considerable improvement on
the bound given by Schmidt. Further Evertse and Györy [8] have studied
equations with more general forms, the so called decomposable form equations.

4 Unit equations

Let K be a field of characteristic zero. Let a1, . . . , an be fixed nonzero elements
in K. Consider the equation

a1x1 + . . .+ anxn = 1. (4.1)

We call a solution (x1, . . . , xn) of (4.1) nondegenerate if no nonempty subsum on
the left hand side of (4.1) vanishes. Applying the absolute quantitative Subspace
Theorem by Evertse and Schlickewei, discussed in section 2, in a recent paper
Evertse, Schlickewei and W. M. Schmidt [10] proved the following:

Let G be a finitely generated subgroup of the multiplicative group K∗ of nonzero
elements of K. Suppose G has rank r. Then the number of nondegenerate solutions
(x1, . . . , xn) ∈ Gn of equation (4.1) does not exceed

exp
(

ncn(r + 1)
)

. (4.2)

Here c is an absolute constant.
To prove such a result, we first observe that using a specialization argu-

ment, it suffices to deal with the case when K is a number field. Once we have
reached this situation, after the transformation Yi = aiXi, we may apply the
Subspace Theorem to the linear forms in Y1, . . . , Yn given by L1(Y1, . . . , Yn) =
Y1, . . . , Ln(Y1, . . . , Yn) = Yn, Ln+1(Y1, . . . , Yn) = Y1 + . . .+ Yn. Actually we need
the p-adic version of the Subspace Theorem, where S, the set of absolute values,
consists of all archimedean absolute values of K together with those finite abso-
lute values corresponding to the prime ideals dividing the coefficients ai and the
generators of the group G. In this application ε turns out to be a function of n
only.

The results given in section 0 simply imply that we get only finitely many
solutions. The results of section 1, in view of (1.4) give a bound depending upon
the degree d of the number field K and upon the cardinality s of the set S. In
particular, if at the beginning K is not a number field, our result will depend upon
the specialization. Moreover in general, the parameter s will be much larger than
the rank r of the group G. In [19] Schlickewei introduced a method which in
conjunction with (2.3) allows it to derive a bound for the number of large solutions
of (4.1) which in fact does not involve the cardinality s of S but only the rank r

of the original group G. So (2.3) already would give a bound of type (4.2) for the
number of large solutions.

There remain the small solutions. Before we had the bound (2.7) from the
Absolute Subspace Theorem, the definition of the small solutions always depended
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on the degree of the number field K. Clearly then the specialization argument has
a deadly impact, as then the degree of the number field, we end up with after the
specialization, appears in the final result.

It is at this point where the Absolute Subspace Theorem comes in. Here the
small solutions are defined in terms of the forms Li, of n and of ε only. In view
of the particular shape of our forms Li and as ε is a function of n only, the small
solutions by (2.7) now are defined in terms of n only. In particular the definition
of the size of the small solutions is completely independent of the number field
obtained with the specialization argument.

To exploit successfully this bound for the small solutions, we needed a new
gap principle. Here the results of Zhang [29], [30] on lower bounds for the heights
of points on varieties are crucial. Using the elementary method introduced in
this context by Zagier [28], in dimension 2 such a new gap principle was first
given in a paper by Schlickewei and Wirsing [21]. For general n, Bombieri

and Zannier [3] gave an elementary proof of Zhang’s result and obtained a gap
principle which is suitable for our purposes. This has been improved substantially
by W. M. Schmidt [25].

Results on equation (4.1) apply in particular to linear recurrence sequences,
i.e., to sequences {un}n∈Z satisfying a relation

un+k = ak−1un+k−1 + . . .+ a0un. (4.3)

Here we assume that a0 6= 0 and that we have initial values (u0, . . . , uk−1) 6=
(0, . . . , 0). Writing

G(z) = zk − ak−1z
k−1 − . . .− a0 =

r
∏

i=1

(z − αi)
ρi (4.4)

with distinct roots αi of multiplicity ρi, it is well known that we have

un =

r
∑

i=1

fi(n)α
n
i , (4.5)

where the fi are polynomials of respective degrees ≤ ρi − 1. An old conjecture
says that for a nondegenerate sequence un of order k the equation

un = 0 (n ∈ Z)

does not have more than c(k) solutions, where c(k) is a function depending on k

only.
For k = 3, this conjecture has been proved by Schlickewei [20]. Later

Beukers and Schlickewei [1] derived the estimate c(3) ≤ 61. For general k and
for sequences un such that the companion polynomial G(z) given in (4.4) has only
simple zeros, in view of (4.5), the conjecture is an easy consequence of the theorem
of Evertse, Schlickewei and W. M. Schmidt [10] on equation (4.1). In fact,
if the zeros αi in (4.4) are simple the polynomials fi in (4.5) reduce to constants.
The general case of the conjecture with arbitrary polynomial coefficients has been
settled recently by W. M. Schmidt [26].
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