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Small Points and Arakelov Theory

Shou-Wu Zhang

Abstract. In this talk, I will explain the recent applications of Arakelov
theory to the Bogomolov cobjecture.
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Height of a solution (resp. point) of a diophantine system (resp. variety) will
measure the complexity of the solution (resp. point). For an abelian variety,
one can define heights for its algebraic points to respect its group structure. For
example, the torsion points will be only those who have zero heights. Such a
normalization is called Néron-Tate height. The solutions with big heights, zero
heights, or near zero heights are all interesting and important in Diophantine
geometry. The Arakelov theory, an intersection theory on arithmetic varieties,
has played an important role in the study of the Néron-Tate heights in recent
years. In this talk, I will explain the recent applications of Arakelov theory to the
Bogomolov conjecture on small points. For more details about the proof of this
conjecture using Arakelov theory, one should see [Ab, U, Zh5]. (For other recent
developments in Arakelov theory, see [So].)

1. Neron-Tate heights and Bogomolov conjecture

Let Q̄ denote the algebraic closure of Q in C. For each place p = ∞, 2, 3, 5, · · · ,
let | |p denote a p-adic norm over Q̄ normalized by |p|p = 1/p if p 6= ∞ and | |∞ is
the usual absolute value on C. For a point x = (x0, · · · , xn) ∈ Pn(Q̄), the naive
height hnaive(x) of x is defined by

hnaive(x) =
1

[K : Q]

∑

σ:K→Q̄

∑

p

logmax(|σ(x0)|p, · · · , |σ(xn)|p)

where K is a number field in C containing xi, and σ are embeddings from
K into Q̄, and p are places of Q. If x is a rational point represented by an
(n + 1)-tuple of integers (x0, · · · , xn) with no common divisor, then hnaive(x) is
logmax(|x0|, · · · , |xn|). If we define the complexity c(x) of x as the maximum of
numbers of digits of xi which measures the time spent to write a number down,
then hnaive(x)−c(x)/ log 10 is bounded on the set of rational points of Pn. A basic
property of hnaive is the following Northcott Theorem: for any given number D
and H, the set of points in A with height ≤ H and degree ≤ D is finite.
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Let A → Pn be an abelian variety embedded in Pn defined over Q̄. Assume
that the embedding is symmetric; this means that there is an automorphism φ of

Pn such that φ(A) = A and φ|A = [−1]A. The Neron-Tate height ĥ(x) of a point
x in A(Q̄) is defined by the formula:

ĥ(x) = lim
m→∞

hnaive(mx)

m2
.

There are two properties of ĥ besides Northcott’s Theorem:

1. ĥ(x) ≥ 0, and ĥ(x) = 0 if and only if x is a torsion point;

2. the induced function ĥ on the Q-vector space A(Q̄)/Ator is quadratic.

Theorem A (Bogomolov conjecture). Let X be an irreducible, closed sub-
variety of an abelian variety A defined over Q̄. Let h : A(Q̄) → R be a Néron-Tate
height function (with respect to a symmetric projective embedding of A). Assume
that X is not a translation of an abelian subvariety by a torsion point. Then there
is a positive number ǫ such that the set

{x ∈ X(Q̄) : h(x) < ǫ}

is not Zariski dense in X.

Remarks:
1. As the above set contains all torsion points in X, the above theorem implies a

theorem of Raynaud [Ra] on Lang’s conjecture.
2. The original Bogomolov conjecture stated in [Bo] p. 70 has the following form:

Assume A is the Jacobian of a curve C of genus ≥ 2. For each x ∈ C define
an embedding C → A by sending p to the class of x − p. Let r(x) denote
the maximal number r such that there are only finitely many p ∈ C such that
x − p has height less than r. Define R(C) as the infimum of r(x). Then he
conjectured that R(C) > 0 and that R(C) should be a certain height function
on the moduli space of curves C. Theorem A implies that r(x) > 0 in general
and that R(C) > 0 if the subvariety

X = {x− y ∈ A : x, y ∈ C}

does not contain any translations of elliptic curves by torsion points. In the
next section, we will explain a variant of our thorem which will implies that
R(C) > 0 and that R(C) is certainly a height function on the moduli space of
C’s.

2. Arithmetic ampleness and the theorem of successive minima

Using Arakelov theory [A, F1, GS1, Zh4], we can express the Neron-Tate heights
as the degrees of hermitian lines on arithmetic curves. We illustrate the idea in
the case that A is an abelian variety defined over a number field F and can be
extended to an abelian scheme π : A → B = SpecOF . Let L be a line bundle on
A which extends the restriction of O(1) on A. Replacing L by L⊗ [−1]∗L, we may
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assume that L is symmetric: [−1]∗L = L. Also replacing L by L ⊗ π∗e∗(L−1) we
may fix a rigidification r : e∗L ≃ Oe where e denote the unit section of A. On the
complex bundle L(C) over A(C) we choose a hermitian metric ‖ ‖ such that
1. The curvature of ‖ ‖ is an invariant form on A(C);
2. The map rσ : e∗σL(C) → C is isometric for each archimedean place σ.

Let L̄ denote the pair (L, ‖ ‖). Let x be a point in A(Q̄). Then the Zariski
closure x̄ of x has a normalizaton f : SpecOK → A where OK is the ring of integers
of some number field K. The OK invertible module N := f∗L is equipped with
hermitian metric on N ⊗σ C for each embedding σ : K → C. Then we define the
degree of L̄ on x̄ by

degL̄x̄ = log
#N/nOK

∏

σK→C ‖n⊗σ 1‖

where n is any nonzero element in N . One can show that

ĥ(x) =
1

[K : Q]
degL̄(x̄).

One immediate advantage of Arakelov theory is to extend the definition of the
degree linearly to arbitrary cycles Z of A by dimension induction:
1. if Z is a closed point of A then degL̄(Z) = log#κ(Z) where κ(Z) is the residue

field of Z;
2. if Z is a closed subvariety of A, then

degL̄(Z) = degL̄(divℓ|Z)−

∫

Z(C)

log ‖ℓ‖c1(L̄C)
dimZ

where ℓ is a section of L which is nonzero on Z and c1(L̄C) is the curvature
form of L̄ which at any point where ℓ 6= 0 can be given by

c1(L̄C) =
∂∂̄

πi
log ‖ℓ‖.

If X is a closed subvariety of A, then the (Néron-Tate) height ĥ(X) is defined
by the formula

ĥ(X) =
degL̄(X )

(dimX + 1) degL(X)

where X is the Zariski closure of X in A. As for the Neron-Tate heights for points,

ĥ(X) in general will be nonnegative.
As an example, let us consider the case that X is a curve over a number field

F of genus g ≥ 2 with a smooth model X over B = SpecOF and that A is the
Jacobian of X, and that the embedding is φD : x → class(x − D), where D is a
divisor of degree 1. Then one can show that

ĥ(X) =
1

8(g − 1)[F : Q]
c1(Ω

1
X/B)

2 +

(

1−
1

g

)

ĥ(x−D)
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where Ω1
X/B is equipped with the Arakelov metric. In this case, ĥ(X) ≥ 0 as

c1(Ω
1
X/B)

2 ≥ 0 is proved by Faltings.

Now assume that (2g − 2)D − c1(Ω
1
X) is a torsion point in A. The first break-

through step which brings the Bogomolov conjecture into the context of Arakelov
theory is the following observation of L. Szpiro [Sz 1-3]: if c1(Ω

1
X/B)

2 > 0, then one

can deduce from Faltings’ Riemann-Roch theorem [F1] that some positive power
of Ω1

X/B will have a section ℓ with norm ‖ℓ‖sup < 1. Using this section to compute

the height then one obtains that the points of X(Q̄)\|divℓ| will have height bigger
than − log ‖ℓ‖sup. Szpiro also noticed that the truth of the Bogomolov conjecture
would imply the positivity c1(Ω

1
X/B)

2 > 0, if one had a Nakai-Moishezon type cri-

terion for ampleness of Ω1
X/B . In [K1-2], M. Kim proved a Nakai-Moishezon type

result and deduced the equivalence of Bogomolov conjecture and c1(Ω
1
X/B)

2 > 0

in this case.

In [Z1, 3], using the arithmetic Hilbert-Samuel formula of Gillet and Soulé [GS
2-3, AB], a general Nakai-Moishezon type theorem for arithmetic variety has been

proved. One immediate consequence is the following relation between ĥ(X) and
the heights of points:

Theorem of Successive Minima.

1

dimX + 1

dimX+1
∑

i=1

ei(X) ≤ ĥ(X) ≤ e1(X)

where

ei = sup
Y⊂X

codimY=i

inf
x∈X\Y

ĥ(x).

It follows that ĥ(X) = 0 if and only if e1(X) = 0, or, the set of small points is
dense. In particular, if X is the translate T + x of an abelian subvariety T by a

torsion point x then ĥ(X) = 0. Assuming that X is not the translate of an abelian
subvariety by a torsion point, then following three are equivalent:

1. the Bogomolov conjecture for X;

2. e1(X) > 0;

3. ĥ(X) > 0.

One immediate consequence is the Bogomolov conjecture for the embedding
φD : X → A defined by a divisor D such that the class Ω1

X − (2g − 2)D is not
torsion. Going back to Bogomolov’s original conjecture, we have

κ1c1(Ω
1
X/B)

2 ≤ R(X) ≤ κ2c1(Ω
1
X/B)

2

where κ1, κ2 are two positive constants. All these results can be generalized to the
case where X and A may have bad reduction by introducing adelic metrics, and
admissible relative sheaf ωa. See [Zh 2, 4] for more details.
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3. Equidistribution theorems

The question of wether c1(ΩX/B)
1 > 0 was very challenging in Arakelov theory

because in the geometric case it is proved by deformation theory and it measures
how far it differs from the constant fibration. The first example with c1(ΩX/B)

2 >
0 when X has good reduction is given by J.-F. Burnol [Bu]. He proved this
positivity for curves whose Jacobians has complex multiplication by a CM-field of
of degree 2g(X). He uses two properties of the Weierstrass divisors Wd (d ∈ N)
for powers of Ω1

X/B :

1. The set Wd(C) of Weierstrass points of fixed degree d in X(C) has the uniform
probability measure converges to the Arakelov measure on X(C) as d goes to
infinity.

2. The Weierstrass divisor Wd will contain a vertical component whe d >> 0, if
the Jacobian of X has complex multiplication.
The results of Burnol are generalized in [Zh4] to arbitrary subvarietyX ofA such

that A is generated by {x−y : x, y ∈ X} and that the morphism NS(A) → NS(X)
is not injective. In this case, we can prove the Bogomolov conjecture by applying
the Faltings’ Hodge index theorem. In curves case, this will imply the positivity
c1(Ω

1
X/B)

2 when End(Jac(X)) ⊗ R is not a division algebra. For example all

modular curves of genus ≥ 2 will satisfy this condition.
If Jac(X) does not have complex multiplication, Burnol’s proof implies the

following important fact: if c1(Ω
1
X/B)

2 = 0 , then Weierstrass points will produce

small points whose probability measure converges to the Arakelov measure. This
turns to be a general property of small points [SUZ, Zh5] and can be easily deduced
from the Theorem of Successive Minima:

Equidistribution Theorem. Let X be a subvariety of A defined over a number
field K and let xn be a sequence of points X wich converges to the generic point of

X and such that ĥ(xn) → 0. Then the uniform probability measure of the Galois
orbit O(xn) tends to the measure dx := c1(L̄)

dimX |X/deg(X) in the following
sense: for any continuous function f on X(C)

lim
n→∞

1

#O(xn)

∑

y∈O(xn)

f(y) =

∫

X(C)

f(x)dx.

To prove this, one just applies the right side of the inequality of successive
minima

hλ(X) ≤ e1,λ(X)

where hλ(X) and e1,λ(X) are defined in the same way as ĥ(X) and e1(X) but
with metric ‖ ‖ replaced by

‖ ‖λ = ‖ ‖ exp(λf).

The final step for the proof of c1(Ω
1
X/B)

2 > 0 for general curve X is due to

E. Ullmo [U]. His marvelous idea is to use the equidistribution theorem twice
which will produce two different metrics and therefore produce a contradiction.
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His construction is as follows: for the canonical embedding X → A = Jac(X),
consider the induced map φ : Xg → A. If c1(Ω

1
X/B)

2 = 0 then X has a sequence

(xn, n ∈ N) of distinct points such that ĥ(xn) → 0, and the Galois orbits of these
points will have probability measures converging to the Arakelov measure. Then
one can produce a sequence (yn, n ∈ N) of Xg such that
1. yn converges to the generic point of Xg;

2. ĥ(yn) converges to 0;
3. The set {yn : n ∈ N} is invariant under permutation action on Xg.

Then again the Galois orbits of yn will have probability measures converge to
the product of the Arakelov measure on Xg. However, the sequence φ(yn) in A
satisfies the condition of the Equidistribution Theorem, therefore the correspond-
ing probability measure converges to the Haar measure on A. It follows that the
product measure of Arakelov measure on Xg is the pullback of the Haar measure
on A. This is impossible: as the map φ is non-smooth, the pullback of the Haar
measure as a differential form will vanishes along the singular locus of φ!

Ullmo’s idea is generalized to prove the general Bogomolov conjecture in [Zh5]
by a modified Faltings’ construction in [F2]: first it is easy to reduce the Bogomolov
conjecture to the case that X has the trivial Ueno fiberation:

{x ∈ A : x+X = X}

is finite. Then for any positive integer m we consider the map:

αm : Xm → Am−1

αm(x1, · · · , xm) = (x1 − x2, · · · , xm−1 − xm).

Then one can show that for m large, φm will induce a birational but not smooth
map Xm → αm(Xm). Now we apply the equidistribution theorem to maps:
Xm → Am and αm(Xm) → Am−1 for sequences of small points (yn, n ∈ N)
and (αm(yn), n ∈ N). Then we obtain the equality of two forms α and β on Xm

induced respectively from the map Xm → Am and Xm → Am−1. But this is
impossible as β vanishes along the singular locus of αm.

Combining the Bogomolov conjecture and the equidistribution theorem, one
obtains the following stronger statement about small points in probability measure
rather than Zariski topology:

Theorem B. Let (xn, n ∈ N) be a sequence of points in A(Q̄) such that the
following conditions are verified:
1. There is no subsequence of (xn, n ∈ N) contained in a translation of proper

abelian subvariety by a torsion point;
2. limn→∞ h(xn) = 0.

Then the probability measures of the Galois orbits of xn converge to the Haar
measure of A(C).

One can use this to show that the set of torsion points on A over the maximal
totally real fields is finite; this has been previously proved by Zarhin [Za] by using
Faltings’ theorem on Tate’s conjecture.
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Remarks:
1. There are different approaches to the Bogomolov conjecture other than Arakelov

theory. Notably the diophantine approximation method used in David and
Philippon [DP] and Bombieri and Zannier [BZ] produce the lower bound for

ĥ(X) effectively in terms of the degree of X.
2. The Bogomolov conjecture also has analogues for multiplicative groups Gn

m (or
even a dynamical system [Zh4]). For Gn

m, the Bogomolov conjecture is proved
in [Zh3] and the equidistribution theorem is proved by Bilu [Bi]. His approach
is very original.

4. A conjecture

Let A → C be a family of abelian varieties over a curve (may be open) over Q̄. Let
Λ be a finitely generated torsion free subgroup of A(C). Let L be a relative ample
symmetric line bundle on A which induces Neron-Tate height pairings < > on
Ax(Q̄) for each point x ∈ C(Q̄). We define the number hΛ(x) for each x ∈ C(Q̄)
by the formula:

hΛ(x) = det(< ti(x), tj(x) >)

where {t1, t2, · · · } is a basis of Λ and ti(x) is the specialization of ti in Ax.

Conjecture. Assume that the generic fiber Aη of A over C is geometrically
simple and has dimension ≥ 2. Then there is a positive number ǫ such that the set

{s ∈ C(Q̄) : hΛ(s) < ǫ}

is finite.

Remarks:
1. If A = A0 × C is constant family with fiber A0 and Λ is generated by the

graphs of one embedding C → A0 then the above conjecture is the Bogomolov
conjecture for the embedding C → A0.

2. If A = A0 × C is a constant family, e1 is the graph of an embedding, but
ei(i > 1) are graphs of constant maps C → xi ∈ A0 whose images ai generate
A(K) modulo torsion, where K is a number field over which C → A is defined,
then the above conjecture implies the Mordell-Lang Conjecture for e1(C) ⊂ A,
as

hΛ(x)
1/2 = distance(x,Γ⊗Z R)/volume(Γ)

where the distance is taken in A(Q̄)⊗R with respect to the Néron-Tate height,
and Γ is the lattice generated by ai. A related conjecture has been formulated
independently by Poonen [P] and proved by him in some special cases.

3. The dimension assumption in the Conjecture is necessary as Poonen showed
to me the following argument: if A → C has relative dimension one and Λ
is generated by one section s then s ∩ A[N ] will have a lot of intersection as
N → ∞, unless either s(η) is a torsion point at the generic fiber, or A → C is a
constant family and s is a constant section. Of course, the simpleness condition
in the conjecture could be removed if we require that for any geometrically
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simple component B of A, either dimBη ≥ 2 or B is a constant family and
B ∩ Λ consists of constant sections.

4. Besides the case considered as above, the next two special cases are also
interesting:
a . φ : A → C is not a constant family and Λ is generated by one section; The
conjecture implies that if φ(η) is not torsion, then there are only finitely many
points x ∈ C such that φ(x) is torsion.
b. A = A0×C but Λ is generated by the graphs of two embeddings φi : C → A0.
The conjecture implies that if φ1(η) and φ2(η) are linearly independent, then
there are at most finitely many x ∈ C such that φ1(x) and φ2(x) are linearly
dependent. A different formulation is as follows: the wedge product φ1 ∧ φ2

defines a map
C(Q̄) → ∧2A(Q̄)

x → φ1(x) ∧ φ2(x).

Then the height hΛ is induced by the norm on ∧2A(Q̄). So we have a Bogomolov
type conjecture for small points in ∧2A(Q̄)!

5. The height hΛ is unlikely the Weil height for some positive line bundle on C,
but the Northcott type theorem follows from some works of Silverman [Si] on
the specializations of heights in the case that A over C has no fixed part.
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Arithmetic and Geometry 1 (Ed: J. Coates and S. Helgason), Birkauser
(1983).

[Si] J. Silverman, Heights and the specialization map for families of abelian
varieties, J. Reine Angew. math. 342 (1983), 197-211.
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88, Birkhäuser Boston, Boston, MA, 1990.

[SUZ] L. Szpiro, E. Ullmo, and S. Zhang,, Équirépartition des petits points, Invent.
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