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String Theory and Duality

Paul S. Aspinwall

Abstract. String Duality is the statement that one kind of string the-
ory compactified on one space is equivalent in some sense to another
string theory compactified on a second space. This draws a connection
between two quite different spaces. Mirror symmetry is an example of
this. Here we discuss mirror symmetry and another “heterotic/type II”
duality which relates vector bundles on a K3 surface to a Calabi–Yau
threefold.
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1 Introduction

Superstring theory does not currently have a complete definition. What we have
instead are a set of incomplete definitions each of which fill in some of the unknown
aspects of the other partial definitions. Naturally two questions immediately arise
given this state of affairs:

1. Is each partial definition consistent with the others?

2. How completely do the partial definitions combine to define string theory?

Neither of these questions has yet to be answered and indeed both questions
appear to be quite deep. The first of these concerns the subject of “string duality”.
Let us list the set of known manifestations of string theory each of which leads to
a partial definition:

1. Type I open superstring

2. Type IIA superstring

3. Type IIB superstring

4. E8 × E8 heterotic string

5. Spin(32)/Z2 heterotic string

6. Eleven-dimensional supergravity (or “M-theory”)

Documenta Mathematica · Extra Volume ICM 1998 · II · 229–238



230 Paul S. Aspinwall

The first five of these “theories” describe a string, which is closed in all cases
except the first, propagating in flat ten-dimensional Minkowski space R9,1. The
last theory is more like that of a membrane propagating in eleven-dimensional
Minkowski space R10,1. (Note that many people like to think of string theory as
a manifestation of M-theory rather than the other way around.)

Instead of using a completely flat Minkowski space, one may try to “com-
pactify” these string theories by replacing the Minkowski space by X ×M , where
X is some compact (10− d)-dimensional manifold (or (11− d)-dimensional in the
case of M-theory) and M ∼= Rd−1,1. So long as all length scales of X are large
with respect to any natural length scale intrinsic to the string theory, we can see
that X × M may approximate the original flat Minkowski space. This is called
the “large radius limit” of X. One of the most fascinating aspects of string theory
is that frequently we may also make sense of compactifications when X is small,
or contains a small subspace in some sense. An extreme case of this is when X is
singular. In particular, X need not be a manifold in general.

The key ingredient to be able to analyze string theories on general spaces, X,
is supersymmetry. For our purposes we may simply regard a supersymmetry as a
spinor representation of the orthogonal group of the Minkowski space in which the
string theory lives. In general a theory may have more than one supersymmetry in
which case the letter “N” is commonly used to denote this number. In the above
theories the type I and heterotic strings together with M-theory each have N = 1
while the type II strings correspond to N = 2.

Upon compactification, the value of N will change depending upon the global
holonomy of the Levi-Cevita connection of the tangent bundle of X. The new
supersymmetries of M are constructed from the components of the old spinor
representations of the original Minkowski space which are invariant under this
holonomy. We will give some examples of this process shortly.

The general rule is that the more supersymmetry one has, the more tightly
constrained the string theory is and the easier it is to analyze away from the
large radius limit. Note that this rule really depends upon the total number of
components of all the supersymmetries and so a large d has the same effect as a
large N (since M has d dimensions and so its spinor representation would have a
large dimension).

As well as constraining the string theory so that it may be more easily ana-
lyzed, supersymmetry can be regarded as a coarse classification of compactifica-
tions. A knowledge of d and N provides a great deal of information about the
resulting system. Almost every possibility for d and N is worth at least one long
lecture in itself. We will deal with the case d = 4 and N = 2 about which probably
the most is known at this present time.

The principle of duality can now be stated as follows. Given a specific string
and its compactification on X can one find another string theory compactified
on another space, Y , such that the “physics” in the uncompactified space, M ,
is isomorphic between the two compactifications? This is important if our first
question of this introduction is to be answered. In particular it should always be
true for any pair of string theories in our list unless there is a good reason for a
“failure” of one of the strings in some sense. We will see an example of this below.
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A mathematical analysis of duality requires a precise definition of the physics
of a compactification. This is not yet known in generality. What we do know
is a set of objects which are determined by the physics, such as moduli spaces,
partition functions, correlation functions, BPS soliton spectra etc., which may be
compared to find necessary conditions for duality.

The most basic object one may study to identify the physics of two dual
theories is their moduli spaces. Roughly speaking this should correspond to the
moduli spaces of X and Y although one always requires “extra data” beyond this.
It is the extra data which leads to the mathematical richness of the subject. Clearly
if two theories are to be identified, one must be able to identify their moduli spaces
point by point. This will be the focus of this talk.

It is a pleasure to thank my collaborators R. Donagi and D. Morrison for
many useful discussions which were key to the results of section 4.

2 String Data

In order to be able to describe the moduli space of each string theory we are
required to give the necessary data which goes into constructing each one. Un-
fortunately, we do not have anywhere near enough space to describe the origin of
what follows. We refer to [1, 12,19] for more details.

The theories which yield d = 4 and N = 2 in which we will interested are
specified by the following

• The type IIA string is compactified on a Calabi–Yau threefold X (which has
SU(3) holonomy). The following data specifies the theory.

1. A Ricci-flat metric on X.

2. A B-field ∈ H2(X,R/Z).

3. A Ramond-Ramond (RR) field ∈ Hodd(X,R/Z).

4. A dilaton+axion, Φ ∈ C.

• The type IIB string is compactified on a Calabi–Yau threefold Y (which also
has SU(3) holonomy). The following data specifies the theory.

1. A Ricci-flat metric on Y .

2. A B-field ∈ H2(Y,R/Z).

3. A Ramond-Ramond (RR) field ∈ Heven(Y,R/Z).

4. A dilaton+axion, Φ ∈ C.

• The E8×E8 heterotic string is compactified on a product of a K3 surface, Z,
and an elliptic curve, EH . This product has SU(2) holonomy. The following
data specifies the theory.

1. A Ricci-flat metric on Z × EH .

2. A B-field ∈ H2(Z × EH ,R/Z).
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232 Paul S. Aspinwall

3. A vector bundle V → (Z×EH) with a connection satisfying the Yang–
Mills equations and whose structure group ⊆ E8 × E8. The respective
characteristic classes in H4 for V and the tangent bundle of Z × EH

are fixed to be equal.

4. A dilaton+axion, Φ ∈ C.

In each case we can only expect the data to provide a faithful coordinate
system in some limit. This is a consequence of the the fact that we only really
have a partial definition of each string theory. A sufficient condition for faithfulness
is that the target space is large — i.e., all minimal cycles have a large volume, and
|Φ| ≫ 1. Beyond this we may expect “quantum corrections”. In general the global
structure of the moduli space can be quite incompatible with this parameterization
— it is only reliable near some boundary.

On general holonomy arguments (see, for example, [2,10]) one can argue that
the moduli space factorizes locally

M ∼= MH × MV , (1)

where (at least at smooth points) MH is a quaternionic Kähler manifold and MV

is a special Kähler manifold. We refer the reader to [16] for the definition of a
special Kähler manifold. These restricted holonomy types are expected to remain
exact after quantum corrections have been taken into account.

We may now organize the above parameters into how they span MH and
MV . First we note that Yau’s theorem [28] tells us that the Ricci-flat metric on
a Calabi–Yau manifold is uniquely determined by a choice of complex structure
and by fixing the cohomology class of the Kähler form, J ∈ H2(•,R). We may
combine J and B to form the “complexified Kähler form” B + iJ ∈ H2(•,C/Z).
We then organize as follows

• The Type IIA string: MV is parametrized by the complexified Kähler form
of X. Hodd(X,R/Z) ∼= H3(X,R/Z) is the intermediate Jacobian of X and
is thus an abelian variety. We then expect a factorization MH

∼= C × M ′

H ,
where Φ is the coordinate along the C factor. Finally we have a fibration
M ′

H → Mcx(X) with fibre given by the intermediate Jacobian, and Mcx(X)
is the moduli space of complex structures on X.

• The Type IIB string: MV is now parametrized by the complex structure of
Y . Heven(Y,R/Z) ∼= H0(Y,R/Z)⊕H2(Y,R/Z)⊕H4(Y,R/Z)⊕H6(Y,R/Z)
may be viewed as an abelian variety. We again expect a factorization MH

∼=
C × M ′

H , where Φ is the coordinate along the C factor. Finally we have a
fibration M ′

H → MKf(Y ) with fibre given by the RR fields, and MKf(Y ) is
the moduli space of the complexified Kähler form of Y .

• The E8 × E8 heterotic string: Let us first assume that the bundle V →
(Z × EH) factorizes as (VZ → Z) × (VE → EH). Thus the structure group
of VZ times the structure group of VE is a subgroup of E8 × E8. We now
expect MV to factorize as C × M ′

V , where Φ is the coordinate along the C

factor (see [15] for a more precise statement). M ′

V is then the total moduli
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space of VE → EH including deformations of the complex structure and
the complexified Kähler form of EH . MH is the total moduli space of the
fibration VZ → Z including deformations of the Ricci-flat metric of Z.

Again we emphasize that the above statements are approximate and only
valid when the target space is large and |Φ| ≫ 1. They should be exact only at
the boundary of the moduli space corresponding to these limits. It is important to
see that factorization of the moduli space will restrict the way that the quantum
corrections may act. For example, in the type IIA string the dilaton, Φ, lives in
MH . This means that MV cannot be subject to corrections related to having a
finite |Φ|. Equally, the Kähler form parameter governs the size of X and so MH

will not be subject to corrections due to finite size.
It is this property that some parts of the moduli space can be free from

quantum corrections and that the interpretation of this part can vary from string
theory to string theory which lies at the heart of the power of string duality. If
two theories are simultaneously exact at some point in the moduli space then we
may address the first question in our introduction. If at every point in the moduli
space some theory (perhaps as yet unknown) is in some sense exact then we may
address the second question.

3 Mirror Duality

Mirror symmetry as first suggested in [9, 20] was a duality between “conformal
field theories”. We may make a different version of mirror symmetry, a little more
in the spirit of “full” string theories, by proposing the following [4]:

Definition 1 The pair (X,Y ) of Calabi–Yau threefolds is said to be a mirror pair
if and only if the type IIA string compactified on X is physically equivalent to the
type IIB string compactified on Y .

Of course, this definition is mathematically somewhat unsatisfying as it depends
on physics. However, it encompasses previous definitions of mirror symmetry. We
also assume the following

Proposition 1 If (X,Y ) is a mirror pair then so is (Y,X).

While this proposal is obvious from the old definitions it is not completely clear
that we may establish it rigorously using the above definition.

Applying this to the moduli space description in the previous section we
immediately see that, ignoring quantum corrections, MKf(X) should be identified
with Mcx(Y ) and equally MKf(Y ) should be identified with Mcx(X). We know
that MV is unaffected by Φ corrections and we expect Mcx(Y ) to be exact since
it is also unaffected by size corrections.

We expect that MKf(X) be affected by size corrections. Similarly, given
proposition 1, Mcx(X) is exact and MKf(Y ) will suffer from size corrections. We
will use the notation Q to refer to a fully corrected moduli space. Thus QKf(X) ∼=
Qcx(Y ) ∼= Mcx(Y ) but QKf(X) ≇ MKf(X).
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The corrections to MKf(X) take the form of “world-sheet” instantons and
were studied in detail in celebrated work of Candelas et al [8]. In particular, the
assertion that QKf(X) ∼= Qcx(Y ) allows one to count the numbers of rational
curves on X. Subsequently a great deal of work (see for example [18, 23, 24, 26])
has been done which has made this curve counting much more rigorous.

As well as MKf and Mcx, it is instructive to look at the abelian fibres of MH

in the context of mirror symmetry. The effect of equating Mcx(X) with MKf(Y )
is to equate

H3(X,Z) ∼ H0(Y,Z)⊕H2(Y,Z)⊕H4(Y,Z)⊕H6(Y,Z), (2)

but that we expect this correspondence to make sense only if Y is very large.
Note that by going around closed loops in Mcx(X) we expect to have an action
on H3(X,Z) induced by monodromy. If we were to take (2) to be literally true
then we have to say the same thing about the action of closed loops in MKf(X)
acting on the even integral cycles in Y . That is to say, we would be claiming
that if one begins with, say, a point representing an element of H0(Y,Z) we could
smoothly shrink Y down to some small size and then smoothly let it reëxpand in
some inequivalent way such that our point had magically transformed itself into,
say, a 2-cycle! Clearly this does not happen in classical geometry.

The suggestion therefore [3, 7] is that quantum corrections should be applied
to the notion of integral cycles so that, in the context of stringy geometry, 0-cycles
can turn into 2-cycles when Y is small. Thus the notion of dimensionality must
be uncertain for small cycles.

Of central importance to the study of mirror pairs is being in a region of
moduli space where the quantum corrections are small. That is we require Y
to be large. This amounts to a specification of the Kähler form on Y and must
therefore specify some condition on the complex structure of X. This was analyzed
by Morrison:

Proposition 2 If Y is at its large radius limit then X is at a degeneration of
complex structure corresponding to maximal unipotent monodromy.

We refer the reader to [25] for an exact statement of this. The idea is that X
degenerates such that a variation of mixed Hodge Structures around this point
leads to monodromy compatible with (2).

The point we wish to emphasize here is that when X is very large then the
complex structure of Y is restricted to be very near a particular point in Mcx(X).
We only really expect mirror symmetry to be “classically” true at this degenera-
tion. Close to this degeneration we may measure quantum perturbations leading to
such effects as counting rational curves. A long way from this degeneration mirror
symmetry is much more obscure from the point of view of classical geometry.

It is possible to have a Calabi–Yau threefold, X, whose moduli space Mcx(X)
contains no points of maximal unipotency. In this case, its mirror, Y , can have no
large radius limit. Since clearly any classical Calabi–Yau threefold may be taken
to be any size, Y cannot have an interpretation as a Calabi–Yau threefold. This
is the sense in which duality can sometimes break down.
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4 Heterotic/Type IIA Duality

Having discussed mirror duality between the type IIA and the type IIB string we
will now try to repeat the above analysis for the duality between the type IIA and
the E8 × E8 heterotic string. This duality was first suggested in [14,22] following
the key work of [21, 27].

In this case MV is currently fairly well-understood (see, for example [2] and
references therein). Here we will discuss MH which provides a much richer struc-
ture.

First let us discuss the quantum corrections. On the heterotic side, MH

contains the deformations of Z as well as the vector bundle over it. Note that
in the the case of K3 surfaces we may not factorize the moduli space of Ricci-
flat metrics into a moduli space of complex structures and the Kähler cone. This
follows from the fact that given a fixed Ricci-flat metric, we have an S2 of complex
structures. The size of the K3 surface is a parameter of MH and so we expect
MH to suffer from quantum corrections due to size effects for the heterotic string.

We also know that on the type IIA side, the dilaton is contained in MH . Thus
we expect MH to suffer from corrections due to Φ for the type IIA string. We
managed to evade worrying about such effects in our discussion of mirror symmetry
but here we are not so lucky.

Let us now attempt to find the place in the moduli space where we may
ignore the quantum effects both due to Φ and due to size. To do this we require
the following:

Proposition 3 If a type IIA string compactified on a Calabi–Yau threefold X is
dual to a heterotic string compactified on a factorized bundle over a product of a
K3 surface, Z, and an elliptic curve EH , then X must be in the form of an elliptic
fibration πF : X → Σ with a section and a K3 fibration πA : X → B. Here Σ is a
birationally ruled surface and B ∼= P1.

Note that these fibrations may contain degenerate fibres. We refer to [2] for details.
Let us now assume that Z is in the form of an elliptic fibration over B with

a section. Given this, we claim the following:

Proposition 4 The limit of large Z automatically ensures that Φ → ∞ for the
type IIA string. In this limit, X also undergoes a degeneration to X1∪Z∗

X2, where
X1 and X2 are each elliptic fibrations over a birationally ruled surface and are each
fibrations over B ∼= P1 with generic fibre given by a rational elliptic surface (RES).
Z∗ = X1 ∩X2 is isomorphic to Z as a complex variety.

We refer to [6, 17] for a proof.
Recall that a RES is a complex surface given by P2 blown up at nine points

given by the intersection of two cubic curves. In a sense, for elliptic fibrations a
RES is “half of a K3 surface”. This degeneration is viewed as each K3 fibre of the
fibration πA : X → B breaking up into two RES’s.

This degeneration therefore provides the analogue of the “maximally unipo-
tent” degeneration in the case of mirror symmetry. There are important differences
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however. Note that while the maximally unipotent degeneration of mirror symme-
try essentially corresponds to a point in the moduli space of complex structures,
the degeneration given by proposition 4 is not rigid — it corresponds a family of
dual theories. In the case of mirror symmetry, by taking Y to be large we needed
to fix a point in MKf(Y ) and thus Mcx(X). Here we need to take the K3 surface
Z to its large radius limit but this does not fix a point in MH . We may still vary
the complex structure of Z (subject only to the constraint that it be an elliptic
fibration with a section) and we may still vary the bundle VZ .

We should therefore be able to see the moduli space of complex structures on
the elliptic K3 surface, Z, and the moduli space of the vector bundle VZ exactly
from this degeneration of X. The correspondence Z ∼= Z∗ = X1 ∩X2 tells us how
the moduli space of Z can be seen from the moduli space of the degenerated X.
The moduli space of the vector bundle is a little more interesting.

VZ may be split into a sum of two bundles VZ,1 and VZ,2 each of which has a
structure group ⊆ E8. We will identify VZ,1 from a curve C1 ⊂ Z∗ and VZ,2 from
C2 ⊂ Z∗. C1 and C2 will form the spectral curves of their respective bundles in
the sense of [13].

Let us consider a single RES fibre Qb of the fibration X1 → B, where b ∈ B.
Qb is itself an elliptic fibration πQ : Qb → P1. The section of the elliptic fibration
πF : X → Σ determines a distinguished section σ0 ⊂ Qb. Blowing this down gives
a Del Pezzo surface with 240 lines σ1, . . . , σ240.

We then have

Proposition 5 The fibre of the branched cover C1 → B is given by the set of
points {σi ∩ Z∗; i = 1, . . . , 240},

with an analogous construction for C2. We refer to [5, 11] for details.
We also have the data from the abelian fibre of MH corresponding to the RR

fields. In the case of heterotic/type IIA duality we have [5]

Proposition 6

Λ0
∼= H1(C1,Z)⊕H1(C2,Z)⊕H2

T (Z,Z),

where Λ0 is the sublattice of H3(X,Z) invariant under monodromy around the de-
generation of proposition 4 and H2

T (Z,Z) is the lattice of transcendental 2-cocycles
in Z.

Thus the RR-fields of the type IIA string map to the Jacobians of C1 and C2,
required to specify the bundle data, and to the B-field on Z.

Proposition 6 should embody much of the spirit of the duality between the
type IIA string and the E8×E8 heterotic string in a similar way that equation (2)
embodies mirror symmetry. In particular Λ0 is not invariant under monodromy
around any loop in the moduli space and so the notion of what constitutes the
E8-bundles and what constitutes the K3 surface Z should be blurred in general
— just as the notion of 0-cycles and 2-cycles is blurred in mirror symmetry.

The analysis of the moduli space MH is very much in its infancy. In this
talk we have not even mentioned how to compute quantum corrections — the
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above discussion was purely for the exact classical limit. There appear to be many
adventures yet to be encountered in bringing the understanding of heterotic/type
IIA duality to the same level as that of mirror symmetry.

References

[1] P. S. Aspinwall, The Moduli Space of N = 2 Superconformal Field Theories,
in E. Gava et al., editors, “1994 Summer School in High Energy Physics and
Cosmology”, pages 352–401, World Scientific, 1995, hep-th/9412115.

[2] P. S. Aspinwall, K3 Surfaces and String Duality, in C. Esthimiou and
B. Greene, editors, “Fields, Strings and Duality, TASI 1996”, pages 421–540,
World Scientific, 1997, hep-th/9611137.

[3] P. S. Aspinwall and C. A. Lütken, Quantum Algebraic Geometry of Super-
string Compactifications, Nucl. Phys. B355 (1991) 482–510.

[4] P. S. Aspinwall and D. R. Morrison, U-Duality and Integral Structures, Phys.
Lett. 355B (1995) 141–149, hep-th/9505025.

[5] P. S. Aspinwall, Aspects of the Hypermultiplet Moduli Space in String Duality,
J. High Energy Phys. 04 (1998) 019, hep-th/9802194.

[6] P. S. Aspinwall and D. R. Morrison, Point-like Instantons on K3 Orbifolds,
Nucl. Phys. B503 (1997) 533–564, hep-th/9705104.

[7] P. Candelas and X. C. de la Ossa, Moduli Space of Calabi–Yau Manifolds,
Nucl. Phys. B355 (1991) 455–481.

[8] P. Candelas, X. C. de la Ossa, P. S. Green, and L. Parkes, A Pair of Calabi–
Yau Manifolds as an Exactly Soluble Superconformal Theory, Nucl. Phys.
B359 (1991) 21–74.

[9] P. Candelas, M. Lynker, and R. Schimmrigk, Calabi–Yau Manifolds in
Weighted P4, Nucl. Phys. B341 (1990) 383–402.

[10] S. Cecotti, S. Ferrara, and L. Girardello, Geometry of Type II Superstrings
and the Moduli of Superconformal Field Theories, Int. J. Mod. Phys. A4
(1989) 2475–2529.

[11] G. Curio and R. Y. Donagi, Moduli in N = 1 Heterotic/F-Theory Duality,
hep-th/9801057.

[12] E. D’Hoker, String Theory, in P. Deligne et al., editors, “Quantum Fields
and Strings: A Course for Mathematicians”, AMS, 1999, to appear, these
notes are available from http://www.cgtp.duke.edu/QFT/spring.

[13] R. Y. Donagi, Spectral Covers, in “Current Topics in Complex Algebraic
Geometry”, Math. Sci. Res. Inst. Publ. 28, pages 65–86, Berkeley, 1992, alg-
geom/9505009.

Documenta Mathematica · Extra Volume ICM 1998 · II · 229–238



238 Paul S. Aspinwall

[14] S. Ferrara, J. Harvey, A. Strominger, and C. Vafa, Second Quantized Mirror
Symmetry, Phys. Lett. 361B (1995) 59–65, hep-th/9505162.

[15] S. Ferrara and A. Van Proeyen, A Theorem on N=2 Special Kähler Product
Manifolds, Class. Quant. Grav. 6 (1989) L243–L247.

[16] D. S. Freed, Special Kähler Manifolds, hep-th/9712042.

[17] R. Friedman, J. Morgan, and E. Witten, Vector Bundles and F Theory,
Commun. Math. Phys. 187 (1997) 679–743, hep-th/9701162.

[18] A. B. Givental, Equivariant Gromov–Witten Invariants, Internat. Math. Res.
Notices 1996 613–663, alg-geom/9603021.

[19] M. Green, J. Schwarz, and E. Witten, Superstring Theory, Cambridge Uni-
versity Press, 1987, 2 volumes.

[20] B. R. Greene and M. R. Plesser, Duality in Calabi–Yau Moduli Space, Nucl.
Phys. B338 (1990) 15–37.

[21] C. Hull and P. Townsend, Unity of Superstring Dualities, Nucl. Phys. B438
(1995) 109–137, hep-th/9410167.

[22] S. Kachru and C. Vafa, Exact Results For N=2 Compactifications of Heterotic
Strings, Nucl. Phys. B450 (1995) 69–89, hep-th/9505105.

[23] M. Kontsevich, Homological Algebra of Mirror Symmetry, in “Proceedings of
the International Congress of Mathematicians”, pages 120–139, Birkhäuser,
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