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Mirror Symmetry and Tori Geometry
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Abstract. A brief survey of some recent progress towards a mathemat-
ical understanding of Mirror Symmetry is given. Using toric geometry,
we can express Mirror Symmetry via an elementary duality of special
polyhedra.
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Introduction

Mirror Symmetry is a remarkable discovery by physicists who suggested that the
partition functions of two physical theories obtained from two different Calabi-Yau
manifolds V and V ∗ can be identified [59]. So far mathematicians couldn’t find any
appropriate language for a rigorous formulation of this identification (we refer the
reader to Kontsevich’s talk [50] for the most general conceptual framework that
could help to find such a languange). Without knowing a mathematical reason
for Mirror Symmetry it simply remains for one to believe in its existence. This
belief is supported by many computational experiments followed by attempts to
find rigorous mathematical explanations of their results.

In this talk we shall give a brief survey of some recent progress, based on toric
geometry, towards a mathematical understanding of Mirror Symmetry. Loosely
speaking, toric geometry provides some kind of “Platonic” approach to Mirror
Symmetry, because it replaces the highly nontrivial duality between some mathe-
matical objects, which we still don’t completely know, by an elementary polar
duality of special convex polyhedra. Of course, such a simplification can’t reflect
the whole nature of Mirror Symmetry, but it helps to form our intuition and find
reasonable mathematical tests for this duality.

1 Polar Duality of Reflexive Polyhedra

Let M be a free abelian group of rank d, N = Hom(M,Z) the dual group, and
〈·, ·〉 : M ×N → Z the natural nondegenerate pairing. We denote by MR (resp.
by NR) the scalar extension M ⊗Z R (resp. M ⊗Z R).
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Definition 1.1 [6] A convex d-dimensional polyhedron ∆ ⊂ MR is called reflexive
if the following conditions are satisfied:

(i) all vertices of ∆ belong to the lattice M ⊂ MR;
(ii) the zero vector 0 ∈ M belongs to the interior of ∆;
(iii) all vertices of the polar polyhedron

∆∗ := {b ∈ NR : 〈a, b〉 ≥ −1 ∀a ∈ ∆}

belong to the dual lattice N ⊂ NR.

If ∆ ⊂ MR is a reflexive polyhedron, then ∆∗ ⊂ NR is again a reflexive
polyhedron and (∆∗)∗ = ∆. So we obtain a natural involution ∆ ↔ ∆∗ on the set
of all d-dimensional reflexive polyhedra. This involution plays a crucial role in our
approach to Mirror Symmetry. In the case d = 3, the involution ∆ ↔ ∆∗ provides
an interpretation of Arnold’s Strange Duality [1, 30, 31, 32, 48].

Toric geometry, or theory of toric varieties, establishes remarkable relations
between mathematical objects in convex geometry, e.g. convex cones and polyhe-
dra, and algebraic varieties (see [24, 25, 34, 35, 62]). Toric varieties P∆ associated
with reflexive polyhedra ∆ are Fano varieties with at worst Gorenstein canonical
singularities. Let TM = SpecC[M ] be the algebraic torus with lattice of characters
M . Denote by Zf ⊂ TM the affine hypersurface in TM defined by the equation

f(x1, . . . , xd) =
∑

m∈∆∩M

amxm = 0,

where the set {am}m∈∆∩M consists of generically choosen complex numbers. Then
the projective closure of Zf in P∆ is a normal irreducible variety Zf having trivial
canonical class. If we repeat the same procedure with the polar reflexive poly-
hedron ∆∗, then in the dual torus TN := SpecC[N ] we obtain another affine
hypersurface Zg ⊂ TN defined by an equation

g(y1, . . . , yd) =
∑

n∈∆∗∩N

bny
n = 0

We denote by Zg ⊂ P∆∗ the projective compactification of Zg in P∆∗ . The pair
(Zf , Zg) is conjectured to be mirror symmetric [6]. If d = 4, then Zf (reps. Zg) is

birational to a smooth Calabi-Yau 3-fold Ẑf (resp. Ẑg) and one has the equations

h1,1(Ẑf ) = h2,1(Ẑg), h1,1(Ẑg) = h2,1(Ẑf ),

which admit an interpretation by means of a Monomial-Divisor Mirror Map [2].
It is known that the volume of a reflexive polyhedron can be estimated by a
constant depending only on d [5]. Consequently there exist only finitely many
d-dimensional reflexive polyhedra ∆ up to GL(M)-isomorphism. Some results
towards a classification of reflexive polyhedra of dimension d ≤ 4 were obtained
by Kreuzer and Skarke [68, 53, 54]. It turned out that all examples of Calabi-Yau
3-folds constructed by physicists from hypersurfaces in 7555 different weighted
projective spaces can be obtained from 4-dimensional reflexive polyhedra [23].
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Moreover, all moduli spaces of Calabi-Yau hypersurfaces in 4-dimensional toric
varieties can be connected into a web using a series of simple transformations
[3, 4]. The latter confirms a conjecture of M. Reid on the connectedness of the
moduli space of Calabi-Yau 3-folds [64].

The polar duality for reflexive polyhedra can be extended to a more general
duality for reflexive Gorenstein cones in [11]. This generalization allowed us to ex-
press in the same way not only the construction for mirrors of Calabi-Yau complete
intersections in Gorenstein toric Fano varieties [20, 56], but also the construction
for mirrors of rigid Calabi-Yau 3-folds [22].

2 Topological Mirror Symmetry Test and Stringy Hodge Numbers

If two smooth Calabi-Yau (d−1)-folds (V, V ∗) form a mirror pair, then the Hodge
numbers of V and V ∗ are related by the equalities

hp,q(V ) = hd−1−p,q(V ∗), 0 ≤ p, q ≤ d− 1,

which are known as a simplest topological Mirror Symmetry test. A formulation
of this test for projective Calabi-Yau hypersurfaces Zf ⊂ P∆ and Zg ⊂ P∆∗

turns out to be rather nontrivial, because these hypersurfaces are usually singu-
lar. Moreover, we can’t expect that a projective smooth birational model Ẑf of
Zf having trivial canonical class always exists if d ≥ 5. On the other hand, it
was observed in [12] that Betti and Hodge numbers of such birational models
are uniquely determined. This observation supported the idea of stringy Hodge
numbers for singular Calabi-Yau varieties which we proposed in [9]. Denote by
E(W ;u, v) the E-polynomial of a complex quasi-projective variety W . It is de-
fined by the formula

E(W ;u, v) :=
∑

p,q

ep,q(W )upvq,

where ep,q(W ) :=
∑

k≥0
(−1)khp,q(Hk

c (W,C)) is the Hodge-Deligne number of W
(see [26]).

Definition 2.1 [13] Let X be a normal quasi-projective variety over C with at
worst Gorenstein canonical singularities, ρ : Y → X a resolution of singularities
whose exceptional locus D ⊂ Y is a normal crossing divisor with components
D1, . . . , Dr, and KY = ρ∗KX +

∑r
i=1

aiDi. We set I = {1, . . . , r} and define the
stringy E-function of X by the formula

Est(X;u, v) :=
∑

J⊂I

E(D◦
J ;u, v)

∏

j∈J

uv − 1

(uv)aj+1 − 1
,

where
D◦

J := {x ∈ X : x ∈ Dj ⇔ j ∈ J}.

If X is projective and Est(X;u, v) is a polynomial, then we define stringy Hodge
numbers hp,q

st (X) by the formula

Est(X;u, v) :=
∑

p,q

(−1)p+qhp,q
st (X)upvq.
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It is important to remark that the above definition doesn’t depend on the
choice of a resolution ρ [13]. A proof of this independence uses a variant of a
non-archimedian integration proposed by Kontsevich [52] and developed by Denef
and Loeser [28]. Using some ideas from [27], we can prove the following:

Theorem 2.2 [10] Let ∆ and ∆∗ be two dual to each other reflexive polyhedra of
arbitrary dimension d. Then the stringy E-functions of the corresponding projec-
tive Calabi-Yau hypersurfaces Zf ⊂ P∆ and Zg ⊂ P∆∗ satisfy the duality

Est(Zf ;u, v) = (−u)d−1Est(Zg;u
−1, v),

i.e., stringy Hodge numbers of Zf and Zg satisfy the topological Mirror Symmetry
test:

hp,q
st (Zf ) = hd−1−p,q

st (Zg) (0 ≤ p, q ≤ d− 1).

We remark that the last result holds true for all Calabi-Yau complete inter-
sections in Gorenstein toric Fano varieties and agrees with the duality for reflexive
Gorenstein cones.

Let X := V/G be a quotient of a smooth Calabi-Yau manifold V modulo a
regular action of a finite group G. It was shown in [17] that the stringy Euler
number

est(X) := lim
u,v→1

Est(X;u, v) =
∑

J⊂I

e(D◦
J )

∏

j∈J

1

aj + 1

coincides with the orbifold physicists’ Euler number e(V,G) defined by Dixon-
Harvey-Vafa-Witten formula [29]:

e(V,G) :=
1

|G|

∑

gh=hg

e(V g ∩ V h),

where
V g ∩ V h := {x ∈ V : gx = x&hx = x}.

This formula is closely related to the so-called McKay correspondence [65].

3 Counting Rational Curves and GKZ-hypergeometric Functions

Let ∂∆ be the boundary of a reflexive polyhedron ∆ ⊂ MR, {m1, . . . ,mr} :=
∂∆ ∩ M , and {am1

, . . . , amr
} the set of coefficients in equations f(x) = 1 −∑r

i=1
ami

xmi = 0 defining affine Calabi-Yau hypersurfaces Zf ⊂ TM . In [7] it
was shown that the power series

Φ(am1
, . . . , amr

) =
∑ (k1 + . . .+ kr)!

k1! · · · kr!
ak1

m1
· · · akr

mr
,

where (k1, . . . , kr) ∈ Z
r
≥0 runs over all nonnegative integral solutions to the equa-

tion k1m1 + · · · + krmr = 0, admits an interpretation as a period of a regular
differential (d− 1)-form ω ∈ H0(Zf ,Ω

d−1

Zf

) and satisfies the holonomic differential
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system introduced by Gelfand, Kapranov and Zelevinsky [36], i.e. Φ is a gen-
eralized GKZ-hypergeometric function. If ∆ ⊂ R

4 is the convex hull of vectors
(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (−1,−1,−1,−1), then the correspond-
ing series Φ has the form

Φ0(z) =
∑

k≥0

(5k)!

(k!)5
zk,

where z = a1a2a3a4a5. The function Φ0(z) satisfies the differential equation
LΦ(z) = 0, where

L :=

(
z
d

dz

)4

− 5z

(
5z

d

dz
+ 1

)(
5z

d

dz
+ 2

)(
5z

d

dz
+ 3

)(
5z

d

dz
+ 4

)
,

and can completed to a natural basis {Φ0,Φ1,Φ2,Φ3} of its solutions. Using
Mirror Symmetry, Candelas, de la Ossa, Green and Parkes, in the famous paper
[21], predicted that the formal power series expansion of the function

F(q) =
5

2

(
Φ1

Φ0

Φ2

Φ0

−
Φ3

Φ0

)

with respect to the variable q = q(z) := exp(Φ1/Φ0) coincides with the power
series

F (q) :=
5

2
(log q)3 +

∑

j>0

Kjq
j ,

where
Kj =

∑

k|j

nj/kk
−3

and ni is the “number of rational curves” of degree i on a generic Calabi-Yau quin-
tic 3-fold in P

4. A mathematical verification of this exciting prediction of Mirror
Symmetry demanded a lot effort by many mathematicians. As a first step one
needed a rigorous mathematical definition for the “number of rational curves”.
Such a definition has been obtained in terms of Gromov-Witten classes intro-
duced and investigated by Kontsevich-Manin [49], Ruan-Tian [66], and Li-Tian
[57]. The second step was the idea of Kontsevich concerning an equivariant Bott’s
localization formula with respect to torus action on the moduli spaces of stable
maps of P1 to P4 [51]. The crucial remarkable progress was obtained by Givental
who succeeded in identifying solutions of quantum differential equations obtained
from equivariant Gromov-Witten classes with the GKZ-hypergeometric periods of
mirrors [38, 39, 40, 41]. Detailed expositions of Givental’s ideas are contained in
[19, 63]. Another complete mathematical proof of this famous prediction of Mirror
Symmetry was obtained in 1997 by Lian, Liu and Yau in [58] using so-called linear
gauge σ-models associated with toric varieties (see Morrison-Plesser [60]).

It was observed in [8] that GKZ-hypergeometric functions allow to make anal-
ogous predictions for the “number of rational curves” in arbitrary Calabi-Yau
complete intersections in toric varieties. Many of such predictions related to GKZ-
hypergeometric functions were investigated by Hosono, Klemm, Lian, Theisen and
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Yau in [43, 44, 45, 46]. The most general framework for the study of resonant GKZ-
hypergeometric systems associated with reflexive Gorenstein cones was developed
by Stienstra [68].

4 Further developements

It is interesting to analyse possibilities for extending toric methods beyond the class
of Calabi-Yau complete intersections in Gorenstein toric Fano varieties. A natural
class for testing Mirror Symmetry consists of Calabi-Yau complete intersections
in homogeneous manifolds, e.g. in Grassmanians, in partial flag manifolds etc.
A general construction of mirrors for this class of Calabi-Yau manifolds has been
proposed in [14, 15, 16]. An interesting generalization of Givental’s technique for
complete intersections in homogeneous spaces was obtained by Kim [47].

Another interesting direction is related to the celebrated Strominger-Yau-
Zaslow interpretation of Mirror Symmetry as a T -duality using special Lagrangian
torus fibrations [69] (see also [61, 42]). Recently some topological torus fibrations
on Calabi-Yau hypersurfaces in toric varieties were constructed by Zharkov [70]
using methods from [37]. These fibrations agree with some predictions of Leung
and Vafa [55].
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