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Operads and Algebrai Geometry

M. Kapranov

Abstract. The study (motivated by mathematical physics) of algebraic
varieties related to the moduli spaces of curves, helped to uncover im-
portant connections with the abstract algebraic theory of operads. This
interaction led to new developments in both theories, and the purpose of
the talk is to discuss some of them.
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1. Operads.

The modern concept of an operad originated in topology [25] but the underlying
ideas can be traced back at least to Hilbert’s 13th problem which (in the way it
came to be understood later) can be stated as follows.

(1.1) Let P be some class of functions considered in analysis (e.g., continuous,
smooth, algebraic etc.). Is it possible to express any function f : Rn → R

of class P , depending of n ≥ 3 variables, as a superposition of functions of
class P , depending on 1 or 2 variables only?

This question involves the superposition operation on functions of several vari-
ables: we can substitute some n functions g1(x1,1, ..., x1,a1

), ..., gn(xn,1, ..., xn,an
)

for arguments of another function f(x1, ..., xn), thereby getting a new function
f(g1, ..., gn) depending on a1 + ...+ an variables. (Here the xij , as well as the val-
ues of the functions, belong to some fixed set X.) This generalizes the observation
that functions of one variable can be composed: (f(x), g(x)) 7→ f(g(x)).

For a set X, maps Xn → X are also called n-ary operations on X. A
collection P of such maps (with possibly varying n) is called an operad, if it is
closed under arbitrary superpositions as well as under permutations of variables.
Thus P(n), the n-ary part of P, is acted upon by the symmetric group Sn. One
can view P as a multivariable analog of a (semi)group of transformations of X.

As with groups, the actual working definition [25] splits the above naive one
into two. First, one defines an abstract operad P as a collection of sets P(n), n ≥ 0
with Sn acting on P(n), equipped with an element 1 ∈ P(1) (the unit) and maps

(1.2) P(n)× P(a1)× ...× P(a1) → P(a1, ..., an)

satisfying the natural associativity and equivariance conditions, as well as the
conditions for the unit, see [25]. Then, one defines a P-algebra as a set X together
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with Sn-equivariant maps P(n) → Hom(Xn, X) which take (1.2) into the actual
superpositions of operations.

It was soon noticed that one can replace sets in the above definitions with
objects of any symmetric monoidal category (C,⊗), by using ⊗ instead of products
of sets. The categories C used in practice include two groups of examples:
(1.3) T op (topological spaces), Var (algebraic varieties, say overC), St (algebraic

stacks), with ⊗ being the Cartesian product.
(1.4) Vectk (vector spaces over C), dgVectk (dg-vector spaces, i.e., bounded

cochain complexes of finite-dimensional spaces), gVectk (graded spaces, i.e.,
complexes with zero diferential), with ⊗ being the tensor product. Operads
in these categories are called, respectively, linear, dg- or graded operads.

If P is an operad in T op or Var, then the topological homology spaces
H•(P(n),C) form a graded operad denoted H•(P). Similarly, the chain complexes
of the P(n) form a dg-operad.

2. Role of operads in algebraic geometry.

The source for the recent interest in operads in algebraic geometry is the synthesis
of several different approaches, which we recall.

A. Abstract-algebraic approach. Many familiar algebraic structures can
be described as algebras over appropriate operads. This use of operads is the
traditional approach of “universal algebra”.
Example 2.1. Let Gr(n) be the Weyl group of the root system Bn, i.e., the
semidirect product of Sn and {±1}n; for n = 0 set Gr(0) := {pt}. The collection
of the Gr(n) can be made into an operad Gr (in the category of sets) so that any
group G is naturally a Gr-algebra. The maps Gn → G corresponding to elements
of Gr(n), are of the form (x1, ..., xn) 7→ xǫ1

σ(1)...x
ǫn
σ(n), σ ∈ Sn, ǫi ∈ {±1}. More

generally, an arbitrary Gr-algebra is the same as a semigroup with involution ∗
satisfying (ab)∗ = b∗a∗.
Example 2.2. We have linear operads As, Com,Lie whose algebras (in the cate-
gory Vect) are respectively, associative, commutative or Lie algebras. Explicitly,
Lie(n) is the subspace in the free Lie algebra on x1, ..., xn formed by elements mul-
tihomogeneous of degrees (1, ..., 1), and similarly for the other classes of algebras,
see [11]. For example, each Com(n) ≃ C while dim(As(n)) = n!.

B. Algebro-geometric examples. These examples are elaborations on the
idea of gluing Riemann surfaces, present in the string theory for a long time [30].
But the operadic approach to this idea is surprisingly useful.

Example 2.3. Let Mg,n be the moduli stack of stable n-pointed curves of genus
g, see [2]. Set M0(n) = M0,n+1 and M(n) =

∐
g Mg,n+1. The M0(n), n ≥ 2 are

in fact algebraic varieties. The n+ 1 marked points on C ∈ M(n) are denoted by
(x0, ..., xn) and the group Sn acts by permutations of x1, ..., xn. The collection of
M(n), n ≥ 2, is naturally made into an operad M in St while M0 = {M0(n)}
forms an operad in Var. The maps (1.2) take (C,D1, ..., Dn) into the reducible
curve obtained by identifying the 0th point of Di with the ith point of C.
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Example 2.4. Denote by M̃g,n be the set of isomorphism classes of Rie-
mann surfaces of genus g with boundary consisting of n circles, together with
a smooth identification of each boundary component with S1. It is naturally
an infinite-dimensional topological space. As before we set M̃0(n) = M̃0,n+1,

M̃(n) =
∐

g M̃g,n+1. Gluing Riemann surfaces together along the boundary makes

M̃ and M̃0 into operads in the category of topological spaces.
Note that the above two examples are in some sense, dual to each other,

as M̃g,n+1 projects naturally to the open stratum (the locus of smooth curves)
Mg,n+1 ⊂ Mg,n+1. When g = 0, the complement to M0,n+1 is precisely formed
by the images of the maps (1.2).

The above does not of course exhaust all types of operads of algebro-
geometric nature. A quite different class of examples was developed in [20].

C. Relations of A and B. By taking homology of operads from B, we get
graded operads which, remarkably, are related to the operads from A.

Each M0(n) is a smooth irreducible projective variety of dimension n− 2.
Let qn ∈ H2(n−2)(M0(n),C) be the fundamental class. It is clear that q2 generates

the suboperad H0(M0) ⊂ H•(M0) isomorphic to Com. Thus an H•(M0)-algebra
is a commutative algebra with extra structure, and this extra structure was de-
scribed explicitly by M. Kontsevich and Y.I. Manin [19].

Theorem 2.5. An H•(M0)-algebra is the same as a graded vector space A with
multilinear totally symmetric (in the graded sense) operations (x1, ..., xn), n ≥ 2
of degree 2(n− 2) satisfying the generalized associativity conditions:

(2.6)
∑

[n]=S1

∐
S2

±((a, b, xS1
), c, xS2

) =
∑

[n]=S1

∐
S2

±(a, (b, c, xS1
), xS2

),

where xS , S ⊂ [n]means the unordered set of xi, i ∈ S and ± is given by the Koszul
sign rules. In particular, (x1, x2) is a commutative associative multiplication.

The condition (2.6) is the well known WDVV relation. The theory of
Gromov-Witten invariants such as it was developed in [1,2, 19, 24] gives the fol-
lowing fact.

Theorem 2.7. For any smooth projective variety V the homology space H•(V,C)
has a natural structure of an algebra over the operad H•(M), in particular, it has
the structure specified in Theorem 2.5.

By contrast, the homology of the open moduli spaces is related to the
operad Lie and its generalizations. First, an old result of F. Cohen [3] implies that
HmaxM0,n+1 ≃ Lie(n) ⊗ sgnn, as an Sn-module. More generally, E. Getzler [8]
defined an operad structure on the collection of G(n) = H•(M0,n+1,C)[2−n]⊗sgnn
by using the Poincaré residue maps and proved the following.

Thorem 2.8. A G-algebra is the same as a graded vector space A together with
totally antisymmetric products [x1, ..., xn] of degree 2 − n, n ≥ 2, satisfying the
generalized Jacobi identities:

∑

i≤i<j≤k

±
[
[ai, aj ], a1, ..., âi, ..., âj , ..., ak, b1, ..., bl

]
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=

{[
[a1, ..., ak], b1, ...bl

]
, if l > 0;

0, l = 0.

In particular, (A, [x1, x2]) is a graded Lie algebra.

D. Operads and trees. Maps (1.2) represent a single instance of superposition
of elements of an operad (e.g., functions in several variables). By applying them
several times, we get iterated superpositions, which are best described by their
“flow charts”, similar to those used by computer programmers.

More precisely, call an n-tree a tree T with n+ 1 external edges which are
divided into n “inputs” and one output and such that the inputs are numbered
by 1, ..., n. Such T has orientation according to the flow from the inputs to the
output; in particular, the edges adjacent to any vertex v, are separated into two
subsets In(v) and Out(v), the latter consisting of one element. Given an operad
P, the Sm-action on P(m) allows us to speak about sets P(I), where I is any m-
element set (any identification I → [m] identifies P(I) with P(m)). Now, a flow
chart with n inputs for P is an n-tree T together with assignment, for any vertex
v of T , of an element qv ∈ P(In(v)). This data produces an iterated superposition
of the qv, belonging to P(n).

So the combinatorics of trees is closely connected to all questions related
to operads and superpositions. It is worth pointing out that the first paper of
Kolmogoroff [16] on the Hilbert superposition problem for continuous functions
used trees in an essential way.

On the other hand, J. Harer and R. Penner [12, 26] constructed a cell
decomposition of the moduli space of curves in which cells are parametrized by
graphs (with some extra structure). This led M. Kontsevich [17] to introduce cer-
tain purely combinatorial chain complexes formed of summands labelled by graphs,
which turned out to be very important in such diverse questions as quasiclassical
approximation to the Chern-Simons invariant of 3-manifolds and cohomology of
infinite-dimensional Lie algebras.

An observation of V. Ginzburg and the author [11] was that the tree parts
of Kontsevich’s graph complexes can be very easily interpreted and generalized in
the language of operads.

More precisely, if A = A(n), n ≥ 2 is any collection of dg-vector spaces
with Sn-actions, the free operad FA generated by A consists of all possible formal
iterated superpositions of elements of A, i.e.,

FA(n) =
⊕

n−trees T

⊗

v∈Vert(T )

A(In(v)).

(A similar definition can also be given for operads in (1.3) if we replace
⊕

with∐
and

⊗
with the Cartesian product.)

For a collection A as above its suspension ΣA constists of shifted complexes
with twisted Sn-action: (ΣA)(n) = A(n)[n− 1]⊗ sgnn. (Meaning: if A is in fact
an operad and A is an A-algebra, then the A[1] is a ΣA-algebra.)

Theorem 2.9. (a) Let P be a dg-operad with P(0) = 0, P(1) = C and P∗ be the
collection of the dual dg-spaces P(n)∗, n ≥ 2. Then the components of the free
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operad FΣP∗ admit natural differentials with respect to which they form a new dg-
operad D(P) called the cobar-dual to P. We have a canonical quasiisomorphism
D(D(P)) → P.
(b) We have quasi-isomorphisms D(As) ≃ As, D(Com) ≃ Lie, D(Lie) ≃ Com.

3. Koszul duality

The functor D from Theorem 2.9 can be viewed as a kind of cohomology theory on
the category of operads. In particular, when P is just a linear operad (has trivial
dg-structure), H•(D(P(n)) provides information about generators, relations and
higher syzygies of P. There is a class of operads for which D(P) is especially
simple.

In [11], a linear operad P with P(0) = 0,P(1) = C, was called quadratic, if
the following conditions hold:
(3.1) P is generated by the binary part, i.e., every element of every P(n) is a

sum of iterated superpositions of elements of P(2), so that the morphism
φP : FP(2) → P is surjective.

(3.2) All the relations among the binary generators follow from those holding
in the ternary part, i.e., the “ideal” Ker(φP) is generated by Ker(φP(3) :
FP(2)(3) → P(3)).

Thus a quadratic operad P can be described by giving a vector space
V = P(2) of generators, equipped with S2-action and an S3-invariant subspace
of relations R ⊂ FV (3). We will write P = Q(V,R). The Koszul dual operad P !

is defined as P ! = Q(V ∗ ⊗ sgn, R⊥). This is a natural analog of Koszul duality for
algebras as defined by Priddy [27].

Theorem 3.3. The operads As, Com, Lie are quadratic, and their Koszul duals
are: As! = As, Com! = Lie, Lie! = Com.

The duality between commutative and Lie algebras, as a meta-
mathematical principle, goes back at least to the work of D. Quillen on rational
homotopy theory. Later, V. Drinfeld suggested to look for some tangible reasons
behind this principle. The explanation provided by Theorem 3.3 is so far the
most elementary: it exhibits the sought-for “reason” as the fact that certain given
subspaces of given dual vector spaces are orthogonal complements of each other.

For any quadratic operad P there is a natural morphism of dg-operads
D(P) → P !, and P is called Koszul if this is a quasiisomorphism. Thus, Theorem
2.9(b) implies that the operads As, Com and Lie are Koszul. Similarly to Koszul
quadratic algebras of Priddy [27], Koszul operads possess many nice properties
allowing one to calculate the homological invariants in an elementary way.

A generalization of the theory of quadratic and Koszul operads to the case
when P is not necessarily generated by P(2), was developed by E. Getzler [8]. In
this case, the meaning of “quadratic” is that all the relations follow from those
involving only the simplest instances of superposition of the generators. It was
proved in [8] that in this more general sense, the operads H•(M0) and G from
Theorems 2.5 and 2.8 are quadratic, Koszul and dual to each other.
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4. Cyclic and modular operads.

The algebro-geometric examples of operads from §2B in fact possess more than
just an operad structure. First, the division of the n + 1 marked points (or
boundary components) inth n inputs and one output is artificial procedure. So
even though, say, M0(n) is the n-ary part of an operad, we have an action of
Sn+1 = Aut{0, ..., n} on it. Motivated by this, E. Getzler and the author [9]
called a cyclic operad an operad P together with Sn+1-action on each Pn which
is compatible with compositions in the following sense. Denote by τn the cycle
(0, 1, ..., n) ∈ Sn+1. Then it is required that τ1(1) = 1, and that

τm+n−1(p(1, ..., 1, q)) = (τnq)(τm(p), 1, ..., 1), p ∈ P(m), q ∈ P(n).

So all the examples from §2B are cyclic operads in this sense.

It is not obvious that this concept should have any meaning from the point
of view of §2A, but it does. Let P be a linear (or dg-) operad. It was shown
in [9] (generalizing some observations of M. Kontsevich), that a cyclic structure
on P is precisely the data necessary to meaningfully speak about invariant scalar
products on P-algebras. For example, a scalar product B on a Lie algebra is called
invariant if B([x, y], z) = B(x, [y, z]), and similarly for the other types of algebras
from Example 2.2. This indicates (and this is indeed the case) that these operads
are cyclic. The operads from Theorems 2.5 and 2.8 are cyclic too. For a cyclic
operad P it is notationally convenient to denote the Sn-module P(n−1) by P((n)),
thereby emphasizing the symmetry between the inputs and the output. We will
also call a cyclic P-algebra a pair (A, g) consisting of an algebra and an invariant
scalar product. Theorems 2.5 and 2.7 have an even nicer formulation in terms of
cyclic operads (see [24] for the detailed proof of (a)).

Theorem 4.1. (a) A finite dimensional (graded) cyclic algebra over H•(M0) is
the same as a formal germ of a potential Frobenius (super-)manifold in the sense
of [5, 24].
(b) For any smooth projective variety V the intersection pairing g on H•(V,C)
makes it into a cyclic H•(M)-algebra.

If, in §2B, we consider moduli spaces of curves of arbitrary genus, then there
is still another structure present: two marked points (or boundary components)
of the same curve can be glued together, producing a curve of genus higher by 1
and number of marked points (or boundary components) less by 2. This structure
was axiomatized in [10] under the name “modular operad”.

Explicitly, a modular operad P (in a monoidal category C) is a collection
of objects P((g, n)) given for n, g ≥ 0 such that 2g − 2 + n > 0 (the number g is
called genus), with Sn acting on P((g, n)) and the following data:

(4.2) A structure of a cyclic operad on the collection of P((n)) =
∐

g P((g, n)) so
that the genus of any superposition is equal to the sum of the genera of the
elements involved. (For categories from (1.4) we should understand

∐
as

the direct sum). We can speak of P((g, I)) for |I| = n, via the Sn-action.
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(4.3) The contraction maps ξi,j : P((g, I)) → P((g+1, I−{i, j}) given for any finite
set I, i 6= j ∈ I, satisfying natural equivariance and coherence conditions
([10], §3).

A “flow chart” for a modular operad P is given by a stable n-graph, that it, a
connected graph G with some number n of external legs (edges not terminating
in a vertex) which are numbered by 1, ..., n, plus an assignment, to any vertex v,
of a number g(v) ≥ 0 so that 2g(v)− 2 + n(v) > 0, where n(v) is the valence of v.
The (total) genus of a stable n-graph G is defined as

∑
v g(v) plus the first Betti

number of G. Let Γ((g, n)) be the set of isomorphism classes of stable n-graphs of
genus g. For G ∈ Γ((g, n)) set P((G)) =

⊗
v∈Vert(G) P(g(v),Ed(v)), where Ed(v)

is the set of (half-)edges issuing from v. Then a modular operad structure on P
gives the superposition map P((G)) → P((g, n)).

In the dg-framework there is a related concept of a twisted modular operad

where we require superposition maps of the form P((G))⊗Det(CEd(G)) → P((g, n)),
where Ed(G) is the set of all edges of G and Det(V ) = Λdim(V )(V )[dim(V )]. As
was shown in [10], the following generalization of the cobar-duality to modular
operads encompasses Kontsevich’s graph complexes in full generality.

Theorem 4.4. For a modular dg-operad P the collection of

F (P)((g, n)) =
⊕

G∈Γ((g,n))

(
Det(CEd(G))⊗

⊗

v∈Vert(G)

P((g, v))∗
)

Aut(G)

has natural differentials and composition maps which make it into a twisted mod-
ular dg-operad F (P) called the Feynman transform of P.
(b) The functor P takes quasiisomorphisms to quasiisomorphisms and gives an
equivalence between the derived categories of modular dg-operads and twisted
modular dg-operads.

The inverse to F is constructed similarly to F but with a different deter-
minantal twist.

Example 4.5. Let P = As is the associative operad considered as a modular
operad, i.e., As((g, n)) = 0, g > 0, As((0, n)) = As(n− 1). Then

(FAs)(χ, 0) =
⊕

2g−2+n=χ

C•(|Mg,n|/Sn,C),

where |Mg,n| is the coarse moduli space of smooth curves of genus g with n punc-
tures, and C• is the chain complex with respect to Penner’s cell decomposition
labelled by “fat graphs”, i.e., graphs with a cyclic order on each Ed(v). The rea-
son is that As((0, n)) = As(n − 1), as an Sn-module, can be identified with the
vector space spanned by all cyclic orders on {1, ..., n}.

One of the main results of [10] is the determination of the Euler character-
istics of the F (P)((g, n)) (as elements of the representation ring of Sn) in terms
of those of P((g, n)). The set of χ(P((g, n))) is encoded into a formal power series
CP(h, p1, p2, ...) of infinitely many variables, and CF (P) is identified with a certain
formal Fourier transform of CP with respect to a Gaussian measure on R

∞. In
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the case when P = As, the infinite-dimensional integral in the Fourier transform
can be calculated explicitly by separating the variables, and we have the following
theorem.

Theorem 4.4. The series

Ψ(h) =

∞∑

χ=1

hχ
∑

2g−2+n=χ

e(|Mg,n|/Sn),

where e is the topological Euler characteristic, is calculated as follows:

Ψ(h) =

∞∑

n,l=1

µ(l)

l
Ψn(h

l), where

Ψn(h) =
∞∑

k=1

ζ(−k)

−k
α−k
n + (αn +

1

2
) ln(nhnαn)− αn +

1

nhn
− c(n)/2n,

αn = αn(h) =
1

n

∑

d|n

φ(d)

hn/d
, cn =

1

2
(1 + (−1)n)

and φ, µ, ζ are respectively, the Euler, Möbius and Riemann zeta functions.

Recall [13] that the orbifold Euler characteristic of Mg,1 is equal to the
rational number ζ(1− 2g).

5. Operads and curvature invariants.

The operadic point of view turned out to be useful even in such “classical” parts
of geometry as the theory of characteristic classes. Let M be a complex manifold
and T = TM its tangent bundle. Then the EM (n) = {Hom(T⊗n, T )} form an
operad in the category of holomorphic vector bundles on M and hence EM =
{EM (n) = H•(M, EM (n))} (holomorphic cohomology) is a graded operad. On the
other hand, the curvature of any Hermitian metric h on M defines a Dolbeault
cohomology class αM ∈ H1(M,Hom(T⊗2, T )) = EM (2)1 (the Atiyah class). This
class is symmetric with respect to the S2-action on EM (2) (when h is Kähler,
even the curvature form is symmetric). Consider the desuspension Σ−1(αM ) (see
§2) which is an element of Σ−1(EM )(2)0 anti-symmetric with respect to S2. The
following fact, inspired by [29, 18], was proved in [14].

Theorem 5.1. The element Σ−1(αM ) satisfies the Jacobi identity in the operad
Σ−1(EM ), i.e., it defines a morphism of operads Lie → Σ−1(EM ).

One can say that algebraic geometry is based on the operad Com, governing
commutative associative algebras. It is a natural idea to develop some generalized
geometries based on more general linear operads P. For example, for P = As,
we get “noncommutative geometry” based on associative but not necessarily com-
mutative algebras, and several important approaches to such geometry have been
developed [4, 7, 23, 28]. The case of a general P presents of course, even more
difficulties, but Theorem 5.1 suggests the following heuristic principle which is
confirmed whenever P-geometry can be given sense:
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Pre-theorem 5.2. Let P be a Koszul operad. Then, curvature invariants of a
“space” in P-geometry satisfy the constraints of the Koszul dual operad P !.

Example 5.3: Formal P-geometry. We can always speak about Dn
P , the

formal n-disk in P-geometry, i.e., the object corresponding to the completion of
the free P-algebra on n generators, cf. [17]. Being infinitesimal, it does not by itself
possess global curvature invariants. However, the question becomes interesting for
group structures on Dn

P , i.e., n-dimensional formal groups over P. Such groups
were studied by M. Lazard [21] who, in a work pre-dating the modern concept of
an operad, developed an analog of Lie theory for them. A modern interpretation
of his theory [6, 11] revealed that the analog of a Lie algebra for a formal group
over P is in fact a P !-algebra.

Example 5.4: Semiformal As-geometry. In [15], the author developed a for-
malism of “noncommutative formal neighborhoods” (called NC-thickenings) of a
smooth algebraic variety M . They are ringed spaces X = (M,OX) where OX is a
sheaf of noncommutative rings with OX/[OX ,OX ] = OM and such that its com-
pletion at any point is isomorphic toC〈〈x1, ..., xn〉〉, the algebra of noncommutative
formal power series.

Theorem 5.5. Let M be a smooth algebraic variety. Then any NC-thickening
X of M has a characteristic class α−

X ∈ H1(M,Ω2
M ⊗ T ). The sum αX = αM +

α−
X ∈ H1(M,Hom(T⊗2, T )) is such that Σ−1αX ∈ Σ−1(EM )(2)0 is an associative

element, i.e., gives rise to a morphism of operads As → Σ−1
EM . Moreover, αX is

an A∞-element in the sense of Stasheff [31].
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