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Hard Balls Gas and Alexandrov Spaes

of Curvature Bounded Above

Dmitri Burago1

Abstract. This lecture is an attempt to give a very elementary account
of a circle of results (joint with S. Ferleger and A. Kononenko) in the
theory of semi-dispersing billiard systems. These results heavily rely on
the methods and ideology of the geometry of non-positively curved length
spaces.

The purpose of this lecture is to give a very informal and elementary account
of one geometric approach in the theory of billiard systems. Precise formula-
tions of the results (joint with S. Ferleger and A. Kononenko), their proofs and
a more detailed exposition can be found in the survey [B-F-K-4] and the papers
[B-F-K-1],[B-F-K-2] and [B-F-K-3].

The approach is based on representing billiard trajectories as geodesics in a
certain length space. This representation is similar to turning billiard trajectories
in a square billiard table into straight lines in a plane tiled by copies of the square.
It is important to understand that this construction by itself does not provide new
information regarding the billiard system in question; it only converts a dynamical
problem into a geometric one. Nevertheless, while a problem may seem rather
difficult in its billiard clothing, its geometric counterpart may turn out to be
relatively easy by the standards of the modern metric geometry. For the geometry
of non-positively curved length spaces we refer to [Ba], [Gr] and [Re].

Apparently, one of the motivations to study semi-dispersing billiard systems
comes from gas models in statistical physics. For instance, the hard ball model is
a system of round balls moving freely and colliding elastically in a box or in empty
space. Physical considerations naturally lead to several mathematical problems
regarding the dynamics of such systems. The problem that served as the starting
point for the research discussed in this lecture asks whether the number of collisions
in time one can be estimated from above. Another well-known and still unsolved
problem asks whether such dynamical systems are ergodic. A “physical” version of
both problems goes back to Boltzman, while their first mathematical formulation
is probably due to Ya. Sinai.
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290 Dmitri Burago

Making a short digression here, I would mention that, in my opinion, the
adequacy of these model problems for physical reality is quite questionable. In
particular, these problems are extremely sensitive to slight changes of their for-
mulations. Introducing particles that are arbitrarily close in shape to the round
balls and that are allowed to rotate, one can produce unbounded number of col-
lisions in unit time [Va]. It is plausible that introducing even a symmetrical and
arbitrarily steep potential of interaction between particles instead of discontinuous
collision “potential”, one can destroy the ergodicity ([Do]). The result of Simanyi
and Szasz ([Si-Sz])(seemingly, the best one can prove in support of the ergodicity
of the hard balls model in the present state of the art) asserts that the ergodicity
does take place ... for almost all combinations of radii and masses of the balls.
Such a result should be less than satisfactory for a physicist, since a statement
that is valid only for “balls of irrational radii” does not make any physical sense at
all. Perhaps, one would rather hope that the existence of an ergodic component
whose complement is negligibly small (at least for a system of very many balls)
is a more stable property. On the other hand, hard balls gas (of even very many
small balls) in a spherical or a cylindrical vessel is obviously very non-ergodic since
it possesses a first integral coming from rotational symmetries of the system. This
happens regardless of a good deal of hyperbolicity produced by the dynamics of
colliding balls, and it is not at all clear what happens if the symmetrical shape of
the vessel is slightly perturbed.

Regardless of this minor criticism of the physical meaning of mathematical
problems involving gas models, the author believes that these problems are quite
interesting on their own, and from now on we stick to their mathematical set-up.
It is well known that, by passing to the configuration space, the dynamics of a N

balls can be substituted by the dynamics of one (zero-size) particle moving in the
complement of several cylinders in R

3N and experiencing elastic collisions with
the cylinders. These cylinders correspond to the prohibited configurations where
two of the balls intersect. Another gas model, the Lorentz gas, just begins with
a dynamical system of one particle moving in the complement of a regular lattice
of round scatterers; its dynamics can be studied on the quotient space, which is a
torus with a scatterer in it. All these example fit in the following general scheme.

Let M be a complete Riemannian manifold M together with a (finite or at
least locally-finite) collection of smooth convex subsets Bi. These convex sets Bi

are bounded by (smooth, convex) hypersurfaces Wi, which (together with Bi’s)
will be referred to as walls. In most physical models, M is just a flat torus or
Euclidean space (whose Euclidean structure given by the kinetic energy of the
system). Throughout this lecture we assume that M has non-positive curvature
and positive injectivity radius; however, local uniform bounds on the number
of collisions remain valid without these restrictions. The dynamics takes place
in the (semi-dispersing) billiard table, which is the complement of

⋃
Bi in M .

More precisely, the phase space is (a subset of) the unit tangent bundle to this
complement. A point moves along a geodesic until it reaches one of the walls Wi,
and then it gets reflected so that both the magnitude and the projection of its
velocity on the plane tangent to the wall are conserved. For simplicity, we exclude
the trajectories that ever experience a collision with two walls simultaneously.
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Systematic mathematical study of such systems, called semi-dispersing billiards,
was initiated by Ya. Sinai and continued by many other mathematicians and
physicists.

Our discussion will be concentrated around the idea of gluing several copies of
M together and then developing billiard trajectories into this new space. This idea
is very old and its simplest versions arise even in elementary high-school mathe-
matical puzzles. For instance, if the billiard table is a square, one can consider
a tiling of Euclidean plane by such squares, and billiard trajectories turn into
straight lines. Although this idea is rather naive, it already provides valuable in-
formation. For instance, if one wonders how close a non-periodic trajectory comes
to vertices of the square, the answer is given in terms of rational approximations
to the slope of the corresponding line. In this instance, a dynamical problem is
transformed into a question in the arithmetic of real numbers. We plan to do an
analogous reformulation with geometry of length spaces on the other side.

We are concerned with semi-dispersing billiard systems. In the early sixties
V. Arnold “speculated” that “such systems can be considered as the limit case of
geodesic flows on negatively curved manifolds (the curvature being concentrated on
the collisions hypersurface)” [Ar]. Indeed, this is nowadays well known (due to the
works of Sinai, Bunimovich, Chernov, Katok, Strelcyn, Szasz, Simanyi and many
others) that a large portion of the results in the smooth theory of (semi-)hyperbolic
systems can be generalized (with appropriate modifications) to (semi-)dispersing
billiards. In spite of this, the construction suggested by Arnold has never been
used. It also caused several serious objections; in particular, A. Katok pointed
out that such approximations by geodesic flows on manifolds necessarily produce
geodesics that bend around collision hypersurfaces and therefore have no analogs
in the billiard system.

To illustrate both Arnold’s suggestion and the difficulty noticed by Katok,
let us consider a simple example of the billiard in the complement of a disc in a
two-torus (or Euclidean plane). Taking two copies of the torus with (open) discs
removed and gluing them along the boundary circles of the discs, one obtains a
Riemannian manifold (a surface of genus 2) with a metric singularity along the
gluing circle. This manifold is flat everywhere except at this circle. One can
think of this circle as carrying singular negative curvature. Smoothing this metric
by changing it in an (arbitrarily small) collar around the circle of gluing, one
can obtain a non-positively curved metric, which is flat everywhere except in this
collar. To every segment of a billiard trajectory, one can (canonically) assign a
geodesic in this metric. Collisions with the disc would correspond to intersections
with the circle of gluing, where the geodesic leaves one copy of the torus and goes
to the other one.

Unfortunately, many geodesics do not correspond to billiard trajectories.
They can be described as coming from “fake” trajectories hitting the disc at zero
angle, following an arc of its boundary circle (possibly even making several rounds
around it) and then leaving it along a tangent line. Dynamically, such geodesics
carry “the main portion of entropy” and they cannot be disregarded. On the other
hand, it is difficult to tell actual trajectories from the fake ones when analyzing
the geodesic flow on this surface.
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There is another difficulty arising in higher dimension. If one tries to repeat
the same construction for a three-torus with a ball removed, then after gluing two
copies of this torus the gluing locus defines a totally geodesic subspace. It carries
positive curvature, and this positive curvature persists under smoothing of the
metric in a small collar of the sphere. Thus, in this case we do not get a negatively
curved manifold at all.

We will (partially) avoid these difficulties by substituting a non-positively
curved manifold by a length space of non-positive curvature in the sense of A.D.
Alexandrov. Unfortunately, a construction that would allow us to represent all
billiard trajectories as geodesics in one compact space is unknown in dimensions
higher than three. Attempts to do this lead to a striking open question: Is it
possible to glue finitely many copies of a regular 4-simplex to obtain a (boundary-
less) non-positive pseudo-manifold (cf. [B-F-Kl-K])?

We introduce a construction that represents trajectories from a certain combi-
natorial class, where by a combinatorial class of (a segment of) a billiard trajectory
we mean a sequence of walls that it hits.

Fix such a sequence of walls K = {Wni
, i = 1, 2, . . . N}. Consider a sequence

{Mi, i = 0, 1, . . . N} of isometric copies of M . For each i, glue Mi and Mi+1 along
Bni

. Since each Bni
is a convex set, the resulting space MK has the same upper

curvature bound as M due to Reshetnyak’s theorem ([Re]).

There is an obvious projection MK → M , and M can be isometrically embed-
ded into MK by identifying it with one of Mi’s (regarded as subsets of MK). Thus
every curve in M can be lifted to MK in many ways. A billiard trajectory whose
combinatorial class is K admits a canonical lifting to MK : we lift its segment till
the first collision to M0 ⊂ MK , the next segment between collisions to M1 ⊂ MK

and so on. Such lifting will be called developing of the trajectory. It is easy to see
that a development of a trajectory is a geodesic in MK .

Note that, in addition to several copies of the billiard table, MK contains other
redundant parts formed by identified copies of Bi’s. For example, if we study a
billiard in a curved triangle with concave walls, Bi’s are not the boundary curves.
Instead, we choose as Bi’s some convex ovals bounded by extensions of these walls.
(One may think of a billiard in a compact component of the complement to three
discs.) In this case, these additional parts look like “fins” attached to our space
(the term “fin” has been used by S. Alexander and R. Bishop in an analogous
situation). In case of the billiard in the complement of a disc in a two-torus (see
discussion above), the difference is that we do not remove the disc when we glue
together two copies of the torus. Now a geodesic cannot follow an arc of the disc
boundary, as the latter can be shorten by pushing inside the disc. Still, there are
“fake” geodesics, which go through the disc. However, there are fewer of them
than before and it is easier to separate them.

It might seem more natural to glue along the boundaries of Wni
rather than

along the whole Bni
. For instance, one would do so thinking of this gluing as

“reflecting in a mirror” or by analogy with the usual development of a polygonal
billiard. However, gluing along the boundaries will not give us a non-positively
curved space in any dimension higher than 2.

One may wonder how the interiors of Bi’s may play any role here, as they are
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“behind the walls” and billiard trajectories never get there. For instance, instead
of convex walls in a manifold without boundary, one could begin with a mani-
fold with several boundary components, each with a non-negative definite second
fundamental form (w.r.t. the inner normal). Even for one boundary component,
this new set-up cannot be reduced to the initial formulation by “filling in” the
boundary by a non-positively curved manifold. Such an example was pointed out
to me by J. Hass ([Ha]), and our main dynamical result does fail for this example.
Thus, it is indeed important that the walls are not only locally convex surfaces,
and we essentially use the fact that they are filled by convex bodies.

Let us demonstrate how the construction of MK can be used by first re-
proving (and slightly generalizing) a known result. L. Stoyanow has shown that
each combinatorial class of trajectories in a strictly dispersing billiard (in Eu-
clidean space or a flat torus) contains no more than one periodic trajectory. By
a strictly dispersing property we mean that all walls have positive definite funda-
mental forms. For a semi-dispersing billiard, L. Stoyanov proved that all periodic
trajectories in the same combinatorial class form a family of parallel trajectories
of the same length. Together with local bounds on the number of collisions (which
were known in dimension 2, and the general case is discussed below), these results
imply exponential upper bound on the growth of the number of (parallel classes
of) periodic trajectories. These estimates are analogous to the estimates on the
number of periodic geodesic in non-positively curved manifolds.

Assume that we have two periodic trajectories in the same combinatorial
class K. Choose a point on each trajectory and connect the points by a geodesic
segment [xy]. Let us develop one period of each trajectory into MK , obtaining two
geodesics [x′x′′] and [y′y′′] connected by two lifts [x′y′] and [x′′y′′] of the segment
[xy]. Thus, MK contains a geodesic quadrangle with the sum of angles equal to
2π. It is well known that, in a non-positively curved space, such a quadrangle
bounds a flat totally-geodesic surface; in our case it has to be a parallelogram
since it has equal opposite angles. Thus, |x′x′′| = |y′y′′| and the family of lines
parallel to [x′x′′] and connecting the sides [x′y′] and [x′′y′′] projects to a family
of periodic trajectories. Moreover, this parallelogram has to intersect the walls
in segments, and thus it is degenerate if the fundamental forms of the walls are
positive definite. This just means that the two periodic trajectories coincide. The
same is true if the sectional curvature of M is strictly negative, as it is equal to
zero for any plane tangent to the parallelogram.

This argument is ideologically very close to the proof of the following result:
the topological entropy of the time-one map T of the billiard flow for a compact
semi-dispersing billiard table is finite. Note that the differential of the time-one
map T is unbounded, and therefore the finiteness of the topological entropy is not
obvious. Moreover, it is quite plausible that the following problem has an affir-
mative solution: if one drops the curvature restriction for M , can the topological
entropy of the time-one map be infinite? Is the topological entropy of the billiard
in a smooth convex curve in Euclidean plane always finite?

To estimate the topological entropy by h, it is enough to show that, given a
positive ǫ, there is a constant C(ǫ) with the following property: for each N , the
space of trajectories T i(v), i = 0, 1, . . . , N can be partitioned into no more than
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C(ǫ) · exp(hN) classes in such a way that every two trajectories from the same
class stay ǫ-close to each other.

At first glance, such a partition seems rather evident in our situation. Indeed,
first let us subdivide M into several regions of diameter less than ǫ (the number
of these regions is independent of N). If M is simply connected, we can just say
that two trajectories belong to the same class if they have the same combinatorial
class and both trajectories start from the same region and land in the same region
of the subdivision of M . If M is not simply-connected, one also requires that
the trajectories have the same homotopy type (formally, lifting two corresponding
segments of the flow trajectories of the same combinatorial class K to MK and
connecting their endpoints by two shortest path, one gets a rectangle; this rectangle
should be contractible). Since both the number of combinatorial classes and the
fundamental group of M grow at most exponentially, is rather easy to give an
exponential (in N) upper bound on the number of such classes (using again the
local uniform estimates on the number of collisions, see below). On the other hand,
for two trajectories from the same class, their developments into the appropriate
MK have ǫ-close endpoints and the quadrangles formed by the geodesics and the
shortest paths connecting their endpoints is contractible. For a non-positively
curved space, this implies that these geodesics are ǫ-close everywhere between
their endpoints.

There is, however, a little hidden difficulty, which the reader should be aware
of. The previous argument proves the closeness between the projections of two
trajectories onto M , while we need to establish this closeness in the phase space.
Thus, some extra work has to be done to show that if two geodesics in MK stay
sufficiently close, then so do the directions of their tangent vectors (in some natural
sense). This is a compactness-type argument, which we will not dwell upon here.

Let us come back to the example used above to illustrate Arnold’s suggestion.
This is 2-dimensional Lorentz gas, that is the billiard in the complement of a
disc in a flat two-torus. To count the number of classes in the above sketch
of the argument, one can pass to an Abelian cover of MK (since this billiard
table has just one wall, there is no ambiguity in choosing K). The latter is two
copies of Euclidean plane glued together along a lattice of discs centered at integer
points. A (class of) billiard trajectories naturally determines a broken line with
integer vertices. While not every broken line with integer vertices arises from
a billiard trajectory, the portion of such lines coming from “fake” trajectories
approaches zero for small radii of scatterers. Counting such broken lines is a purely
combinatorial problem, and one sees that the topological entropy of Lorentz gas
converges to a number between 1 and 2 as the radius of the repeller approaches
zero. This result is stable: the “limit entropy” is the same for a convex repeller of
any shape. The author has no idea whether this number has any physical meaning.

Now we pass to the main problem of estimating the number of collisions. For
the hard ball system, one asks whether the number of collisions that may occur
in this system can be estimated from above by a bound depending only on the
number of balls and their masses. If we consider the balls moving in unbounded
Euclidean space, we count the total number of collisions in infinite time. For a
system of balls in a box, we mean the number of collisions in unit time (for a fixed
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value of kinetic energy). As far as I know, these problems have been resolved only
for systems of three balls ([Th-Sa], [Mu-Co]).

It is relatively easy to establish such upper bounds on the number of “es-
sential” collisions, opposed to collisions when two balls barely touch each other.
While such “non-essential” collisions indeed do not lead to a significant exchange
by energy or momentum, they nevertheless cannot be disregarded from a “physical
viewpoint”. Indeed, they may serve as the main cause of instability in the system:
the norm of differential of the flow does not admit an upper bound just at such
trajectories. In a general semi-dispersing billiard it is also easier to estimate the
number of collisions that occur at an angle separated from zero. Such arguments
are based on introducing a bounded function on the phase space so that the func-
tion does not decrease along each trajectory and increases by an amount separated
from zero after each “essential” collision. For some cases, such as 2-dimensional
and polyhedral billiard tables, one can estimate the fraction of “essential colli-
sions” among all collisions and thus get uniform bounds on the total number of
collisions (see [Va], [Ga-1], [Ga-2], [Si-1]). The simplest case that is unclear how
to treat by such methods is a particle shot almost along the intersection line of
two convex surfaces in 3-dimensional Euclidean spaces and hitting the surfaces at
very small angles.

Contrary to dynamical arguments indicated above, we use a geometric ap-
proach based on some length comparisons. Let us first prepare the necessary
notation and formulations. When one wants to obtain uniform bounds on the
number of collisions for a general semi-dispersing billiard table, it is clear that an
additional assumption is needed. Indeed, already for a two-dimensional billiard
table bounded by several concave walls, a trajectory may experience an arbitrar-
ily large number of collisions (in time one) in a neighborhood of a vertex if two
boundary curves are tangent to each other. Thus, a non-degeneracy condition is
needed. For simplisity, let us introduce the following non-degeneracy assumption

(it can be essentially weakened for non-compact billiard tables): there exists a
number C such that, if a point is ǫ-close to all sets from some sub-collection of the
Bi’s, then it is Cǫ-close to the intersection of Bi’s from this sub-collection. This
assumption rules out various degenerations of the arrangements of hyperplanes
tangent to walls. It is not difficult to verify that the hard ball gas model does
satisfy the non-degeneracy assumption.

The main local result reads as follows: if a semi-dispersing billiard table
satisfies the non-degeneracy assumption, then there exists a finite number P such
that every point p in the billiard table possesses a neighborhood U(p) such that
every trajectory segment contained in U(p) experiences no more than P collisions.

Passing to estimating the global number of collisions (for infinite time) we
want to stay away from situations such as a particle infinitely bouncing between
two disjoint walls. The result for this case reads as follows: if a semi-dispersing
billiard table satisfies the non-degeneracy assumption, M is simply-connected and
the intersection

⋂
Bi of Bi’s is non-empty, then there exists a finite number P

such that every trajectory experiences no more than P collisions.

Outlining the proofs of these results, we restrict ourselves to the case of two
walls W1 and W2 bounding two convex sets B1 and B2. Thus we avoid inessential

Documenta Mathematica · Extra Volume ICM 1998 · II · 289–298



296 Dmitri Burago

combinatorial complications and cumbersome indices.

We begin by discussing the local bound. Let us assume that M is simply-
connected; otherwise, one can pass to its universal cover. Consider a billiard
trajectory T connecting two points x and y and pick any point z ∈ B1

⋂
B2.

Denote by K = {W1,W2,W1,W2 . . .} the combinatorial class of T , and consider
the development T ′ of T in MK . This is a geodesic between two points x′ and
y′. By Alexandrov’s theorem, every geodesic in a simply-connected non-positively
curved space is the shortest path between its endpoints. Note that z canonically
lifts to MK since all copies of z in different copies of M got identified. Denoting
this lift by z′, we see that |zx| = |z′x′| and |zy| = |z′y′|. Thus we conclude that the
lengths of T between x and y is less that |xz|+ |zy| for all z ∈ B1

⋂
B2. In other

words, any path in M connecting x and y and visiting the intersection B1

⋂
B2 is

longer than the segment of T between x and y.

The following argument is the core of the proof. It shows that if a trajectory
made too many collisions then it can be modified into a shorter curve with the
same endpoints and passing through the intersection B1

⋂
B2. This contradicts

the previous assertion and thus gives a bound on the number of collisions.

Assume that T is contained in a neighborhood U(p) and it collided with W1

at points a1, a2, . . . aN alternating with collisions with W2 at b1, b2, . . . bN . Let zi
be the point in B1

⋂
B2 closest to bi and hi be the distance from bi to the shortest

geodesic [aiai+1]. By the non-degeneracy assumption, |zibi| ≤ C ·dist(bi, B1) ≤ hi.
Thus the distance Hi from zi to the shortest geodesic aiai+t is at most (C +1)hi.

Plugging this inequality between the heights of the triangles aibiai+1 and
aiziai+1 into a routine argument which develops these triangles on both Euclidean
plane and k-plane, one concludes that di ≤ C1 ·Di, where di = |aibi|+ |biai+1| −
|aiai+1|, Di = |aizi| + |ziai+1| − |aiai+1|. Here k is the infinum of the sectional
curvature in U(p), and a constant C1 can be chosen depending on C alone provided
that U(p) is sufficiently small.

Let dj be the smallest of di’s. Let us modify the trajectory T into a curve with
the same endpoints: substitute its pieces aibiai+1 by the shortest segments aiai+1

for all i’s excluding i = j. This new curve is shorter than T by at least (N − 1)dp.
Let us make a final modification by replacing the piece ajbjaj+1 by ajzjaj+1. It
makes the path longer by Dj , which is at most C1dj . Hence, N ≤ C1 + 1 because
otherwise we would have a curve with the same endpoints as T , passing through
zj ∈ B1

⋂
B2 and shorter than T . This proves the local bound on the number of

collisions.

Now we are ready to estimate the global number of collisions, and here geom-
etry works in its full power. Consider a trajectory T making N collisions with the
walls K = {1, 2, 1, . . . , 2, 1}. Reasoning by contradiction, assume that N > 3P +1,
where P is the local bound on the number of collisions. Consider the space MK

and “close it up” by gluing M0 ∈ MK and MN ∈ MK along the copies of B1. De-
note the resulting space by M̃ . We cannot use Reshetnyak’s theorem to conclude
that M̃ is a non-positively curved space any more, since we identify points in the
same space and we do not glue two spaces along a convex set.

We recall that a space has non-positive curvature iff every point possesses
a neighborhood such that, for every triangle contained in the neighborhood, its
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angles are no bigger than the corresponding angles of the comparison triangle
in Euclidean plane. However, using the correspondence between geodesics and
billiard trajectories, one can conclude (reasoning exactly as in the proof of the local
estimates on the number of collisions), that each side of a small triangle cannot
intersect interiors of more than P copies of the billiard table. Since N > 3P+1, for
every small triangle for which we want to verify the angle comparison property, we
can undo one of the gluings without tearing the sides of the triangle. This ungluing
may only increase triangle’s angles, but now we find ourselves in a non-positively
curved space (which is actually just MK), and thus we get the desired comparison
for the angles of the triangle.

To conclude the proof, it remains to notice that the development of T in M̃ is
a geodesic connecting two points in the same copy of B1. This is a contradiction
since every geodesic in a simply-connected non-positively curved space is the only
shortest path between its endpoints; on the other hand, there is a shortest path
between the same points going inside this copy of B1.

Let us finish with the following remark. It would be desirable if one could
begin with finitely many copies of M and glue them together along walls Bi to
obtain a non-positively curved space M̂ so that each wall participates in at least one
gluing. In particular, such a construction would immediately provide an alternative
proof for both local and global estimates on the number of collisions. For instance,
for global estimates it is enough to notice that every billiard trajectory lifts to a
shortest path and hence it cannot intersect a copy of one wall in M̂ more than
once. Hence the number of collisions is bounded by the total number of copies of
walls in M̂ . As it is mentioned above, it is however unclear whether such gluing
exists even for a regular 4-simplex.
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