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Lefshetz Fibrations in Sympleti Geometry
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Section 1. Linear systems.

One of the cornerstones of complex geometry is the link between positivity of cur-
vature and ampleness. Let X be a compact complex manifold and L → X be a
holomorphic line bundle over X. Suppose that L has a unitary connection whose
curvature form is −2πiω where ω is a positive (1, 1)-form on X. Then for large
k the line bundle Lk has many holomorphic sections. More precisely, the holo-
morphic sections define a projective embedding of X (Kodaira). This provides
a passage from the discussion of abstract complex manifolds to concrete algebro-
geometric models. If one chooses some linear subspace of the holomorphic sections
of Lk one gets birational maps into smaller projective spaces: for example, if X
has complex dimension 2 then it may be immersed in CP

4 with a finite number
of double points and can be mapped to a hypersurface in CP

3 with “ordinary sin-
gularities”. Perhaps the simplest case of all is that covered by Bertini’s Theorem:
if the intersection of the zero sets of all the holomorphic sections is empty (i.e if
the linear system has no base points), then the zero-set of a generic section is a
smooth hypersurface in X.

A familiar instance of these ideas occurs when X is a compact Riemann surface
and we consider two sections of Lk. The ratio of these sections is a meromorphic
function on X, i.e. a branched covering map X → CP

1. If the sections are
sufficiently general then this map has a very simple local structure. There are a
finite number of critical values bα ∈ S2 ∼= CP

1; for each α there is a corresponding
critical point xα ∈ X; the restriction of the map to X \{xα} is a covering map and
around each point xα the map is modelled, in suitable local co-ordinates, on the
standard example z 7→ z2. The Riemann surface X, and the branched covering
map, can be recovered from the data consisting of the configuration of points bα in
the Riemann sphere and the monodromy, a homomorphism from the fundamental
group of the punctured sphere S2 \ {bα} to the permutation group of d objects,
the sheets of the covering.

More generally one has the notion of a “Lefschetz pencil” on a higher dimen-
sional complex variety. The ratio of two, sufficiently general, sections of our line
bundle is a meromorphic function, which defines a holomorphic map from the
complement of a codimension-2 submanifold A ⊂ X. Alternatively, we get a
map from the blow-up X̃ of X along A to CP

1. Again there are a finite num-
ber of critical points, around which the map is modelled on the quadratic function
(z1, . . . , zn) 7→ z21+· · ·+z2n. The monodromy in this situtation is more complicated:
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parallel transport around loops in the punctured sphere defines a homomorphism
into the mapping class group of the fibre, that is, the group of diffeomorphisms of
the fibre modulo isotopy.

The main purpose of this contribution is to report on extensions of these classical
ideas in complex geometry to the more general setting of symplectic manifolds.
In the next section we will describe some of the main results, and the ideas of the
proofs, and in the final section we will make some more general comments.

Section 2.1 The symplectic case: techniques.

Now let (V, ω) be a compact symplectic manifold, of dimension 2n. We suppose
that the de Rham cohomology class [ω] is an integral class, so we can choose a
C∞ line bundle L → V with c1(L) = [ω]. To mimic the classical case we can
begin by choosing an almost-complex structure on V , algebraically compatible
with the symplectic form. There is also a unitary connection on L with curva-
ture −iω. This gives a notion of a “holomorphic” section of L: we can define a
∂-operator on L, using the connection and the almost-complex structure and a
(local) section s is holomorphic if ∂s = 0. The problem is that, for n > 1 and
for generic almost-complex structures, one expects this definition to be vacuous in
that there will be no non-trivial holomorphic sections. This is because the gener-
alised Cauchy-Riemann equation ∂s = 0 is over-determined and the compatibility
condition which is needed to have local solutions is precisely the integrability of the
almost-complex structure. This contrasts with the much-studied theory of holo-
morphic maps from a Riemann surface into an almost-complex manifold, where
the integrability of the almost-complex structure does not make a great difference
to the local theory of solutions. The way around this problem is to study certain
approximately holomorphic sections of the line bundle, or more precisely of the
tensor power Lk, for large k. The integer k is the crucial parameter throughout the
discussion, and it is convenient to work with the family of Riemannian metrics gk
on V , where gk is associated to the symplectic form kω in the usual fashion. Thus
the diameter of (V, gk) is O(

√
k) but on a ball of gk-radius 1 the almost-complex

structure is close to the standard flat model, as k → ∞. For any C > 0 we set

Hk,C = {s ∈ Γ(Lk) : ‖∂s‖, ‖∇∂s‖, ‖∇2∂s‖ ≤ C
√
k
−1‖s‖},

where all norms are L∞, computed using the metric gk. Elements of Hk,C are a
substitute for the holomorphic sections in the classical case. One shows that, for a
suitable C depending on the geometry of X and for k >> 0, there is a large supply
of sections in Hk,C . This is quite elementary: the sections can be constructed as
linear combinations of sections concentrated in balls, of a fixed gk-radius, in X.
The fundamental model, which serves as a prototype for the influence of curvature
on holomorphic geometry, is the case of Cn, with the standard flat metric. Then
there is a holomorphic section σ of the corresponding Hermitian line bundle over
C

n which decays rapidly at infinity:

|σ(z)| = e−|z|2 .

(In the several complex variables literature this phenomena is often described in
the equivalent language of weighted L2 norms.)
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The classical theory sketched in Section 1 involves, beyond the existence of a
plentiful supply of holomorphic sections, holomorphic versions of various familiar
transversality statements. For example Bertini’s theorem is a holomorphic version
of Sard’s Theorem, and the proof of the existence of Lefschetz pencils is a variant
of the proof of the existence of Morse functions. The price that must be paid for
the freedom to work with only approximately holomorphic sections is that one
needs refinements of such transversality theorems, involving explicit estimates.
These have interest in their own right. Results in this direction were obtained by
Yomdin [5], although the precise statements needed are somewhat different. For
simplicity consider the case of a holomorphic function f on the unit ball B2n in
C

n. The familiar Sard theorem asserts that the regular values of f are dense in
C. For ǫ > 0 we say that a point w ∈ C is an ǫ-regular value of f over a subset
K ⊂ B2n if there are no points z ∈ K with both |f(z) − w| < ǫ and |∂f(z)| < ǫ.
The question we wish to answer is this: given any w′ ∈ C, how close is w′ to an
ǫ-regular value of f? An answer is provided by the following statement:

Proposition. There is a constant p such that for all holomorphic functions f on
B2n with ‖f‖L∞ ≤ 1, any w′ ∈ C and ǫ ∈ (0, 1/2) there is an ǫ-regular value w of
f over the interior ball 1

2
B2n with

|w − w′| ≤ (log(ǫ−1))pǫ.

One way of thinking of this result is that one would really like to have the
stronger and simpler statement

|w − w′| ≤ C.ǫ,

but the factor log(ǫ)−1 grows slowly as ǫ → 0, so the result stated in the Propo-
sition serves almost as well. (The writer does not know whether the stronger
statement is true or not.) The point to make is that the standard proofs of Sard’s
Theorem are not well-adapted to proving quantitative refinements of this kind,
and the proof goes, following the idea of Yomdin, by approximating the function
by polynomials and using facts about the complexity of real-algebraic sets.

Section 2.2: the symplectic case: main results.

The first result proved using these ideas [2] is, roughly speaking, a symplectic
version of Bertini’s Theorem. For large k it is shown that one can choose an
approximately holomorphic section s ∈ Hk,C such that |∂s| > δ‖s‖ on the zero-
set Zs, for a fixed δ > 0, independent of k. It follows that Zs is a symplectic
submanifold of V , i.e. the restriction of the form ω is nondegenerate on Zs. Thus
we have

Theorem. If (V, ω) is a compact symplectic manifold and [ω] is an integral
class then for large k the Poincaré dual of k[ω] is represented by a symplectic
codimension-2 submanifold.

(This result can be compared with a much sharper but more specialised theo-
rem of Taubes [4], proved shortly afterward using the Seiberg-Witten equations,
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which asserts that if V is a symplectic 4-manifold with b+2 (V ) > 1 then −c1(V ) is
represented by a symplectic surface in V .)

This result was extended, in a number of directions, by D. Aroux [1]. One
striking extension was a result about the asymptotic uniqueness of the symplectic
submanifold which is constructed. Let us return to the classical case of complex
geometry. Then it is clear that the discriminant set ∆ ⊂ H0(Lk), consisting
of sections whose zero-set is not transverse, is a complex analytic variety. In
particular the complement of ∆ is connected. Thus if s0, s1 are two sections whose
zero-sets Z0, Z1 are transverse, there is a isotopy of the ambient manifold taking
Z0 to Z1. This is an important principle in complex geometry. It means, for
exammple, that at the level of differential topology one can unambigously talk
about “a smooth hypersurface of degree d in CP

n”, without specifying precisely
which polynomial is used in the definition. Of course this contrasts with the case of
real algebraic geometry, where the topological type does vary with the polynomial.
Aroux’s extension of this principle to the symplectic case made use of the notion of
an asymptotic sequence (sk), sk ∈ Γ(Lk), of sections of the kind whose existence
is established in the result above. He proves that

Theorem.

If J, J ′ are two almost-complex structures on V compatible with ω and (sk), (s
′
k)

are two asymptotic sequences of approximately holomorphic sections, with respect
to J, J ′, then for large k there is a symplectic isotopy of V mapping the zero set
of sk to that of s′k.

We now go on to consider the symplectic analogue of the classical theory of
“pencils”, generated by a pair of sections.

Definition. A topological Lefschetz pencil on a symplectic manifold (V, ω) is
given by the following data.

(i) a codimension-2 symplectic submanifold A ⊂ V , (ii) a finite set of points
xα ∈ V \A, (iii) a differentiable map f : V \A → S2 such that f is a submersion
on V \A \ {xα}.

The map f is required to conform to the following standard models. At a point
a ∈ A we can choose local complex co-ordinates zi such that A is locally defined by
the equations z1 = z2 = 0 and f is given locally by the map (z1, . . . , zn) 7→ z1/z2 ∈
CP

1 ∼= S2. At a point xα we can choose local complex co-ordinates on V , and a
complex co-ordinate centred on f(xα) ∈ S2 such that the map is given locally by
(z1, . . . , zn) 7→ z21 + · · ·+ z2n.

Then we have

Theorem. If (V, ω) is a symplectic manifold with [ω] integral then for large k V
admits a topological Lefschetz pencil, in which the fibres are symplectic subvarieties,
representing the Poincaré dual of k[ω].

There is also an asymptotic uniqueness statement, in the same vein as Aroux’s
result.

Let us spell out more explicitly what this theorem says, concentrating on the
case of a 4-dimensional symplectic manifold V . In this case A is just a finite set
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of points. If Ṽ is the blow-up of V at these points then f defines a smooth map
from Ṽ to S2 whose generic fibre is a compact Riemann surface, of genus g say.
There are a finite number of singular fibres, passing through the critical points xα.
Writing bα = f(xα), we have a differentiable monodromy

ρ : π1(S
2 \ {bα}) → Γg,h

where h is the number of points in A and Γg,h is the mapping class group of
a surface of genus g with h marked points. The standard theory from complex
geometry adapts with little change to give a detailed “local” picture of this mon-
odromy. Fix a base point P in S2 \ {bα} and let γα be a standard generator of the
fundamental group of the punctured sphere, winding once around bα. Then the
monodromy ρ(γα) is the Dehn twist T [δα] of the fibre Σ = f−1(P ) in a vanishing
cycle δα ⊂ Σ, an embedded loop in Σ. The conclusion is, in brief, that any smooth
4-manifold which admits a symplectic structure with integral periods may be con-
structed from combinatorial data consisting of a marked Riemann surface Σ and
a suitable set of loops δα in Σ, the essential requirement being that the product

T [δ1] ◦ T [δ2] ◦ · · · ◦ T [δN ]

be the identity in the mapping class group.

Section 3: Discussion.

There are a number of directions in which one could hope to extend and fill-out and
these results. First one could look at linear systems of other dimensions, and hope
to prove analogues of the classical theorems in complex geometry for these cases.
There is recent work of Aroux in this direction. Second, we should mention work of
Gompf which provides a converse to the discussion above of symplectic Lefschetz
pencils on 4-manifolds. Gompf shows that the total space of a 4-dimensional
topological Lefschetz fibration, satisfying some mild numerical conditions, admits
a symplectic structure. Putting everything together, one might expect to get a
completely combinatorial-topological description of symplectic 4-manifolds. One
natural set of questions involves the dependence on the parameter k. For example
if Zk ⊂ V is a symplectic hypersurface representing k[ω] one can hope to describe a
hypersurface Z2k ⊂ V representing 2k[ω] by considering deformations of a singular
space Zk ∪ Z ′

k, where Z ′
k is obtained by applying a generic small perturbation to

Zk. There is a similar discussion for Lefschetz pencils. If this project was carried
through one could refine the asymptotic uniqueness statement into an explicit
“stabilisation” mechanism.

The implications of this line of work for symplectic topology are unclear at
present. Although it seems quite practical to “reduce” many fundamental ques-
tions about symplectic manifolds to combinatorial-topological problems, the latter
seem very difficult to attack directly. Many of the difficulties have to do with the
complexity of the braid groups which act as automorphisms of the fundamental
groups of punctured Riemann spheres. In the case of 4-manifolds we may consider
the set R of the representations of π1 = π1(S

2 \ {bα}) into the mapping class
group Γg,h which correspond to topological Lefschetz fibrations (i.e. which map
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each standard generator to a Dehn twist). Then the (spherical) braid group BN

acts on R and the natural invariants of the fibrations are the orbits under this
action. Thus one would like are computable invariants which detect these orbits.
One can view this problem as a higher dimensional analogue of the classical theory
for branched covers of the Riemann sphere. In that case the issue is to classify
transitive representations of π1 into the permutation group on d-elements which
map each generator to a transposition, modulo the action of the braid group, and
a theorem of Hurwicz states that there is just one orbit.

On the positive side, it is worth pointing out that there are many similarities
between the ideas that occur in this theory and those developed in the past few
years by P. Seidel [3], in the framework of symplectic Floer theory. In both cases
the Dehn twists, and their higher-dmensional generalisations, play a prominent
role. These generalised Dehn twists are defined as follows. If L is an embed-
ded Lagrangian m-sphere in a symplectic manifold W 2m a neighbourhood of L
in W can be identified with a neighbourhood of the zero section in TSm. The
one can define a compactly-supported diffeomorphism of TSm, using the geodesic
flow composed with the antipodal map. This can then be transported to a sym-
plectomorphism τL : W → W . Seidel shows that, when m = 2 in many cases
the squares τ2L are not symplectically isotopic to the identity, although they are
so differentiably, thus revealing some of the rich structure of symplectic mapping
class groups. On the other hand, these same symplectomorphisms occur as the
monodromy of Lefschetz pencils of a symplectic manifold of dimension 2(m + 1).
They may also be analysed from the point of view of the braid group action on a
Lefschetz pencil for W : the diffeomorphism arises from the action of a standard
braid on a pair of identical monodromies. For these, and other, reasons, it seems
possible that there may be some fruitful interaction between the symplectic Floer
theory and the general Lefschetz pencil description of symplectic manifolds.

References

1. D. Aroux, Asymptotically holomorphic families of symplectic submanifolds, Geometric and
Functional Analysis (to appear).

2. S. K. Donaldson, Symplectic submaifolds and almost-complex geometry, Jour. Differential

Geometry 44 (1996), 666-705.
3. P. Seidel, The symplectic isotopy problem, Oxford D.Phil. Thesis (1997).
4. C. H. Taubes, More constraints on symplectic manifolds from the Seiberg-Witten equations,

Math. Research Letters 2 (1995), 9-14.

5. B. Yomdin, The geometry of critical and near-critical values of differentiable mappings,
Math. Annalen 104 (1983), 495-515.

S. K. Donaldson
Department of Mathematics,
Stanford University,
CA 94305, USA

Documenta Mathematica · Extra Volume ICM 1998 · II · 309–314


