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Geometry and Analyti
 Theory

of Frobenius Manifolds

Boris Dubrovin

Abstract. Main mathematical applications of Frobenius manifolds are
in the theory of Gromov - Witten invariants, in singularity theory, in
differential geometry of the orbit spaces of reflection groups and of their
extensions, in the hamiltonian theory of integrable hierarchies. The the-
ory of Frobenius manifolds establishes remarkable relationships between
these, sometimes rather distant, mathematical theories.

1991 Mathematics Subject Classification: 32G34, 35Q15, 35Q53, 20F55,
53B50

WDVV equations of associativity is the problem of finding of a quasiho-
mogeneous, up to at most quadratic polynomial, function F (t) of the variables
t = (t1, . . . , tn) and of a constant nondegenerate symmetric matrix

(

ηαβ
)

such that
the following combinations of the third derivatives cγαβ(t) := ηγǫ∂ǫ∂α∂βF (t) for any
t are structure constants of an asociative algebra At = span (e1, . . . , en), eα · eβ =
cγαβ(t)eγ , α, β = 1, . . . , n with the unity e = e1 (summation w.r.t. repeated in-
dices will be assumed). These equations were discovered by physicists E.Witten,
R.Dijkgraaf, E.Verlinde and H.Verlinde in the beginning of ’90s. I invented Frobe-
nius manifolds as the coordinate-free form of WDVV.

1. Definition of Frobenius manifold (FM).
1.1. Frobenius algebra (over a field k; we mainly consider the case k = C) is
a pair (A,< , >), where A is a commutative associative k-algebra with a unity
e, < , > is a symmetric nondegenerate invariant bilinear form A × A → k, i.e.
< a · b, c >=< a, b · c > for any a, b ∈ A. A gradation of the charge d on A is a
k-derivation Q : A → A such that < Q(a), b > + < a,Q(b) >= d < a, b >, d ∈ k.
More generally, graded of the charge d ∈ k Frobenius algebra (A,< , >) over
a graded commutative associative k-algebra R by definition is endowed with two
k-derivations QR : R → R and QA : A → A satisfying the properties QA(αa) =
QR(α)a + αQA(a), α ∈ R, a ∈ A < QA(a), b > + < a,QA(b) > −QR < a, b >=
d < a, b >, a, b ∈ A.
1.2. Frobenius structure of the charge d on the manifoldM is a structure of a
Frobenius algebra on the tangent spaces TtM = (At, < , >t) depending (smoothly,
analytically etc.) on the point t ∈M . It must satisfy the following axioms.

FM1. The metric < , >t on M is flat (but not necessarily positive definite).
Denote ∇ the Levi-Civita connection for the metric. The unity vector field e must
be covariantly constant, ∇e = 0.
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316 B. Dubrovin

FM2. Let c be the 3-tensor c(u, v, w) :=< u · v, w >, u, v, w ∈ TtM . The
4-tensor (∇zc)(u, v, w) must be symmetric in u, v, w, z ∈ TtM .

FM3. A linear vector field E ∈ V ect(M) must be fixed on M , i.e. ∇∇E = 0,
such that the derivations QFunc(M) := E, QV ect(M) := id + adE introduce in
V ect(M) the structure of graded Frobenius algebra of the given charge d over the
graded ring Func(M) of (smooth, analytic etc.) functions on M . We call E Euler
vector field.

Locally, in the flat coordinates t1, . . . , tn for the metric < , >t, a FM with
diagonalizable (1,1)-tensor ∇E is described by a solution F (t) of WDVV associa-
tivity equations, where ∂α∂β∂γF (t) =< ∂α · ∂β , ∂γ >, and vice versa. We will call
F (t) the potential of the FM (physicists call it primary free energy; in the setting
of quantum cohomology it is called Gromov - Witten potential [KM]).
1.3. Deformed flat connection ∇̃ on M is defined by the formula ∇̃uv :=
∇uv + z u · v. Here u, v are two vector fields on M , z is the parameter of the
deformation. (In [Gi1] another normalization is used ∇̃ 7→ h̄∇̃, h̄ = z−1.) We
extend this to a meromorphic connection on the direct product M ×C, z ∈ C, by
the formula ∇̃d/dzv = ∂zv + E · v − z−1µ v with µ := 1/2(2− d) · 1−∇E, other
covariant derivatives are trivial. Here u, v are tangent vector fields on M × C
having zero components along C ∋ z. The curvature of ∇̃ is equal to zero. This
can be used as a definition of FM [Du3]. So, there locally exist n independent
functions t̃1(t; z), . . . , t̃n(t; z), z 6= 0, such that ∇̃ dt̃α(t; z) = 0, α = 1, . . . , n. We
call these functions deformed flat coordinates.

2. Examples of FMs appeared first in 2D topological field theories [W1, W2,
DVV].
2.0. Trivial FM: M = A0 for a graded Frobenius algebra A0. The potential is
a cubic, F0(t) =

1
6 < 1, (t)3 >, t ∈ A0. Nontrivial examples of FM are

2.1. FM with good analytic properties. They are analytic perturbations
of the cubic. That means that, in an appropriate system of flat coordinates t =
(t′, t′′), where all the components of t′ have LieEt

′ = const, all the components
of t′′ have LieEt

′′ 6= const, we have F (t) = F0(t) +
∑

k, l≥0Ak,l(t
′′)lek t′ and the

series converges in some neiborghood of t′′ = 0, t′ = −∞.
2.2. K.Saito theory of primitive forms and Frobenius structures on

universal unfoldings of quasihomogeneous singularities. Let fs(x), s =
(s1, . . . , sn) be the universal unfolding of a quasihomogeneous isolated singularity
f(x), x ∈ CN , f(0) = f ′(0) = 0. Here n is the Milnor number of the singularity.
The Frobenius structure on the base M ∋ s of the universal unfolding can be
easily constructed [BV] using the theory of primitive forms [Sai2]. For the example
[DVV] of the An singularity f(x) = xn+1 the universal unfolding reads fs(x) =
xn+1 + s1x

n−1 + . . . + sn, M = Cn ∋ (s1, . . . , sn). On the FM e = ∂/∂sn,
E =

∑

(k + 1)sk∂/∂sk, the metric has the form

< ∂si , ∂sj >= −(n+ 1) res
x=∞

∂fs(x)/∂si ∂fs(x)/∂sj
f ′s(x)

(2.1)

the multiplication is defined by

< ∂si · ∂sj , ∂sk >= −(n+ 1) res
x=∞

∂fs(x)/∂si ∂fs(x)/∂sj ∂fs(x)/∂sk
f ′s(x)

. (2.2)
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Frobenius Manifolds 317

This is a polynomial FM. The deformed flat coordinates are given by oscillatory
integrals

t̃c =
1√
z

∫

c

ez fs(x)dx (2.3)

Here c is any 1-cycle in C that goes to infinity along the direction Re z fs(x) →
−∞.
2.3. Quantum cohomology of a 2d-dimensional smooth projective variety X
is a Frobenius structure of the charge d on a domainM ⊂ H∗(X,C)/2πiH2(X,Z)
(we assume that Hodd(X) = 0 to avoid working with supermanifolds, see [KM]).
It is an analytic perturbation in the sense of n.2.1 of the cubic for A0 = H∗(X)
defined by a generating function of the genus zero Gromov - Witten (GW) invari-
ants of X [W1, W2, MS, RT, KM, Beh]. They are defined as intersection numbers
of certain cycles on the moduli spaces of stable maps [KM]

X[β],l :=
{

β : (S2, p1, . . . , pl) → X, given homotopy class [β] ∈ H2(X;Z)
}

.

The holomorphic maps β of the Riemann sphere S2 with l ≥ 1 distinct marked
points are considered up to a holomorphic change of parameter. The markings
define evaluation maps pi : X[β],l → X, (β, p1, . . . , pl) 7→ β(pi).

F (t) = F0(t) +
∑

[β] 6=0

∑

l

〈

et
′′〉

[β],l
exp

∫

S2

β∗(t′)

〈

et
〉

[β],l
: =

1

l!

∫

X[β],l

p∗1(t) ∧ . . . ∧ p∗l (t) (2.4)

for t = (t′, t′′) ∈ H∗(X), t′ ∈ H2(X)/2πiH2(X,Z), t′′ ∈ H∗6=2(X). This potential
together with the Poincaré pairing on TM = H∗(X), the unity vector field e =
1 ∈ H0(X), the Euler vector field E(t) =

∑

(1− qα)tαeα+ c1(X), t = tαeα, eα ∈
H2qα(X) gives the needed Frobenius structure. The deformed flat coordinates are
generating functions of certain “gravitational descendents” [Du5], see also [DW,

Ho, Gi1] t̃α(t; z) =
∑∞

p=0

∑

[β],l

〈

zµ+pzc1(X)τp(eα) ⊗ 1 ⊗ et
′′
〉

[β],l
e

∫

S2
β∗(t′)

, α =

1, . . . , n = dimH∗(X), µ(eα) = (qα − d/2)eα, The definition of the descendents
〈

τp1
(a1) ⊗ τp2

(a2) ⊗ . . . ⊗ τpl
(al)

〉

[β],l
see in [W2], [KM]. The definition of GW

invariants can be extended on a certain class of compact symplectic varieties X
using Gromov’s theory [Gr] of pseudoholomorphic curves, see [W2, MS, RT].

3. Classification of semisimple FMs.

3.1. Definition. A point t ∈ M is called semisimple if the algebra on TtM
is semisimple. A connected FM M is called semisimple if it has at least one
semisimple point. Classification of semisimple FMs can be reduced, by a nonlinear
change of coordinates, to a system of ordinary differential equations. First we will
describe these new coordinates.
3.2. Canonical coordinates on a semisimple FM. Denote u1(t), . . . , un(t)
the roots of the characteristic polynomial of the operator of multiplication by the
Euler vector field E(t) (n = dimM). Denote M0 ⊂ M the open subset where
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318 B. Dubrovin

all the roots are pairwise distinct. It turns out [Du2] that the functions u1(t),
. . . , un(t) are independent local coordinates on M0 6= ∅. In these coordinates
∂i · ∂j = δij∂i, where ∂i := ∂/∂ui, and E =

∑

i ui∂i. The local coordinates u1,
. . . , un on M0 are called canonical.

3.3. Deformed flat connection in the canonical coordinates and

isomonodromy deformations. Staying in a small ball on M0, let us or-
der the canonical coordinates and choose the signs of the square roots ψi1 :=√
< ∂i, ∂i >, i = 1, . . . , n. The orthonormal frame of the normalized idempotents

∂i establishes a local trivialization of the tangent bundle TM0. The deformed flat
connection ∇̃ in TM0 is recasted into the following flat connection in the trivial
bundle M0 ×C×Cn

∇̃i = ∂i − z Ei − Vi, ∇̃d/dz = ∂z − U − z−1V, (3.1)

other components are obvious. Here the n × n matrices Ei, U , V = (Vij) read
(Ei)kl = δikδil, U = diag (u1, . . . , un), V = ΨµΨ−1 = −V T where the matrix
Ψ = (ψiα) satisfying ΨTΨ = η is defined by ψiα := ψ−1

i1 ∂tα/∂ui, i, α = 1, . . . , n.
The skew-symmetric matrices Vi are determined by the equations [U, Vi] = [Ei, V ].

Flatness of the connection (3.1) reads as the system of commuting time-
dependent Hamiltonian flows on the Lie algebra so(n) ∋ V equipped with the
standard linear Poisson bracket

∂iV = {V,Hi(V ;u)} , i = 1, . . . , n (3.2)

with the quadratic Hamiltonians Hi(V ;u) = 1
2

∑

j 6=i

V 2
ij

ui−uj
, i = 1, . . . , n. For the

first nontrivial case n = 3 (3.2) can be reduced to a particular case of the classical
Painlevé-VI equation. The monodromy of the operator ∇̃d/dz (i.e., the monodromy
at the origin, the Stokes matrix, and the central connection matrix, see definitions
in [Du3, Du5]) does not change with small variations of a point u = (u1, . . . , un) ∈
M .

3.4. Parametrization of semisimple FMs by monodromy data of the

deformed flat connection. We now reduce the above system of nonlinear
differential equations to a linear boundary value problem of the theory of analytic
functions. First we will describe the set of parameters of the boundary value
problem.

3.4.1. Monodromy at the origin (defined also for nonsemisimple FMs) con-
sists of:

- a linear n-dimensional space V with a symmetric nondegenerate bilinear form
< , >, a skew-symmetric linear operator µ : V → V, < µ(a), b > + < a, µ(b) >= 0,
and a marked eigenvector e1 of µ, µ(e1) = −d/2 e1. In main examples the operator
µ will be diagonalizable.

- A linear operator R : V → V satisfying the following properties: (1) R =
R1 + R2 + . . . where Rk(Vλ) ⊂ Vλ+k for the root decomposition of V = ⊕λVλ,
µ(vλ) = λvλ for vλ ∈ Vλ. (2) {Rx, y} + {x,Ry} = 0 for any x, y ∈ V where
{x, y} :=

〈

eπiµx, y
〉

.
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Frobenius Manifolds 319

3.4.2. Stokes matrix is an arbitrary n × n upper triangular matrix S = (sij)
with sii = 1, i = 1, . . . , n. We treat it as a bilinear form < a, b >S := aTSb,
a, b ∈ Cn.
3.4.3. Central connection matrix is an isomorphism C : Cn → V satisfying
< a, b >S=< Ca, eπiµeπiRCb > for any a, b ∈ Cn. The matrices S and C are
defined up to a transformation S 7→ DSD, C 7→ CD, D = diag (±1, . . . ,±1).
3.4.4. Riemann - Hilbert boundary value problem (RH b.v.p.). Let us fix
a radius R > 0 and an argument 0 ≤ ϕ < 2π. Denote ℓ = ℓ+ ∪ ℓ− the oriented
line ℓ+ = {z | arg z = ϕ}, ℓ− = {z | arg z = ϕ+ π}. It divides the complex z-plane
into two halfplanes Πright and Πleft. For a given u = (u1, . . . , un) with ui 6= uj for
i 6= j and for given monodromy data we are looking for: (1) n× n matrix-valued
functions Φright(z), Φleft(z) analytic for |z| > R and z ∈ Πright and z ∈ Πleft resp.,
continuous up to the boundaries |z| = R or z ∈ ℓ and satisfying Φright/left(z) =
1+O (1/z) for |z| → ∞ within the correspondent half-plane Πright/left; (2) n× n
matrix-valued function Φ0(z) (with values inHom(V,Cn)) analytic for |z| < R and
continuous up to the boundary |z| = R, such that detΦ0(0) 6= 0. The boundary
values of the functions must satisfy

Φright(z)e
zU = Φleft(z)e

zUS for z ∈ ℓ+, |z| > R;

Φright(z)e
zU = Φleft(z)e

zUST for z ∈ ℓ−, |z| > R;

Φright(z)e
zU = Φ0(z)z

µzRC for |z| = R, z ∈ Πright;

Φleft(z)e
zUS = Φ0(z)z

µzRC for |z| = R, z ∈ Πleft.

The branchcut in the definition of the multivalued functions zµ and zR is chosen
along ℓ−. For solvability of the above RH b.v.p. we have also to require the
complex numbers u1, . . . , un to be ordered in such a way, depending on ϕ, that

Rjk := {z = −ir(ūj − ūk)|r ≥ 0} ⊂ Πleft for j < k. (3.3)

Denote U(ϕ) ⊂ Cn the set of all points u = (u1, . . . , un) with ui 6= uj for i 6= j
satisfying (3.3). Let U0(ϕ) be the subset of points u ∈ U(ϕ) such that: (1) the RH
b.v.p. is solvable and (2) all the coordinates of the vector Φ0(0)e1 are distinct from
zero. It can be shown (cf. [Mi], [Mal]) that the solution Φright/left = Φright/left(z;u),
Φ0 = Φ0(z;u) of the RH b.v.p depends analytically on u ∈ U0(ϕ). Let Φ0(z;u) =
∑∞

p=0 φp(u)z
p. Denote (only here) ( , ) the standard sum of squares quadratic

form on Cn. Choose a basis e1, e2, . . . , en of eigenvectors of µ, µ(eα) = µαeα,
µ1 = −d/2, and put ηαβ :=< eα, eβ >, (η

αβ) := (ηαβ)
−1.

Theorem 1 [Du2, Du3, Du5]. The formulae

tα(u) = (φ0(u)eα, φ1(u)e1), tα = ηαβtβ , α = 1, . . . , n,

F = 1/2 [(φ0t, φ1t)− 2(φ0t, φ1e1) + (φ1e1, φ2e1)− (φ3e1, φ0e1)]

E(t) =

n
∑

α=1

(1 + µ1 − µα)t
α∂α +

∑

α

(R1)
α
1 ∂α
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320 B. Dubrovin

define on U0(ϕ) a structure of a semisimple FM Fr(V, < , >, µ, e1, R, S, C). Any
semisimple FM locally has such a form.
3.5. Remark. The columns of the matrices Φ0(z;u)z

µzR and Φright(z;u)e
zU

correspond to two different bases in the space of deformed flat coordinates. The
first basis is a deformation, z → 0, of the original flat coordinates, t̃ = [t +
O(z)]zµzR. The second one, defined only in the semisimple case, corresponds to
a system of deformed flat coordinates given by oscillatory integrals (see (2.3) and
Section 6 below).
3.6. Global structure of semisimple FMs and action of the braid

group on the monodromy data. Let Bn be the group of braids with n strands.
We will glue globally the FM from the charts described in n.3.4 with different S
and C. So, for brevity, we redenote here the charts Fr(V, < , >, µ, e1, R, S, C) =:
Fr(S,C). The charts will be labelled by braids σ ∈ Bn. By definition in the
chart Fr(Sσ, Cσ) the functions tα(u), F (u) are obtained as the result of analytic
continuation from Fr(S,C) along the braid σ. The action S 7→ Sσ, C 7→ Cσ of the
standard generators σ1, . . . , σn−1 of Bn is given by Sσi = KSK, Cσi = CK where
the only nonzero entries of the matrixK = K(i)(S) areKkk = 1, k = 1, . . . , n, k 6=
i, i+1, Ki,i+1 = Ki+1,i = 1, Ki,i = −si,i+1. Let Bn(S,C) ⊂ Bn be the subgroup
of all braids σ such that Sσ = DSD, Cσ = CD, D = diag(±1, . . . ,±1).
Theorem 2 [Du3, Du5]. Any semisimple FM has the form

M = ∪σ∈Bn/Bn(S,C)Fr(V, < , >, µ, e1, R, S
σ, Cσ)

where the glueing of the charts is given by the above action of Bn.
3.7. Tau-function of the isomonodromy deformation and elliptic GW

invariants. Like in n.2.2, the genus g GW invariants can be defined in terms
of the intersection theory on the moduli space X[β],l(g) of stable maps β : Cg →
X of curves of genus g with markings [KM, Beh]. It turns out that, assuming
semisimplicity of quantum cohomology of X, the elliptic (i.e., of g = 1) GW
invariants can still be expressed via isomonodromy deformations. To this end
we define, following [JM], the τ -function τ(u1, . . . , un) of a solution V (u) of the
system (3.2) by the quadrature of a closed 1-form d log τ =

∑n
i=1Hi(V (u);u)dui.

We define G-function of the FM by G = log(τ/J1/24) where J = det (∂tα/∂ui) =
±∏n

i=1 ψi1(u).
Theorem 3 [DZ2]. For an arbitrary semisimple FM the G-function is the unique,
up to an additive constant, solution to the system of [Ge] for the generating func-
tion of elliptic GW invariants satisfying LieeG = 0, LieEG = const.
3.8. Problem of selection of semisimple FMs with good analytic prop-

erties of n.2.1 is still open. Experiments for small n [Du3] show that such solutions
are rare exceptions among all semisimple FMs. Analyticity of the G-function near
the point t′ = −∞, t′′ = 0 imposes further restrictions on M [DZ2]. To solve the
problem one is to study the behaviour of solutions of the RH b.v.p. in the limits
when two or more among the canonical coordinates merge. At the point t′ = −∞,
t′′ = 0 all u1 = . . . = un = 0.

4. Examples of monodromy data.

4.1. Universal unfoldings of isolated singularities. The subspace
M0 ⊂ M consists of the parameters s for which the versal deformation fs(x) has
n = dimM distinct critical values u1(s), . . . , un(s). These will be our canonical
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Frobenius Manifolds 321

coordinates. The monodromy at the origin is the classical monodromy operator
[AGV] of the singularity, the Stokes matrix coincides with the matrix of the varia-
tion operator in the Gabrielov’s distinguished basis of vanishing cycles (see [AGV];
we may assume that dimx ≡ 1 (mod4)).
4.2. Quantum cohomology of Fano varieties. The following two ques-
tions are to be answered in order to apply the above technique to the quantum
cohomology of a variety X.
Problem 1. When does the generating series (2.4) converge?
Problem 2. For which X the quantum cohomology of X is semisimple?

Hopefully, in the semisimple case the convergence can be proved on the basis
of the differential equations of n.3. To our opinion the problem 2 is more deep. A
necessary condition to have a semisimple quantum cohomology is thatX must be a
Fano variety. It was conjectured to be also a sufficient condition [TX], [Man1]. We
analyze below one example and suggest some more modest conjecture describing
also a part of the monodromy data.
4.2.1. Quantum cohomology of projective spaces. For X = Pd: (1) the
monodromy at the origin is given by the bilinear form < eα, eβ >= δα+β,d+2 in
H∗(X) = V = span (e1, . . . , ed+1), the matrix µ = 1/2diag (−d, 1− d, . . . , d− 1, d)
and R is the matrix of multiplication by the first Chern class R = R1 =
c1(X), R eα = (d + 1)eα+1 for α ≤ d, R ed+1 = 0. With obvious modifica-
tions these formulae work also for any variety X with Hodd(X) = 0 (see [Du3]).
(2) The Stokes matrix S = (sij) has the form

sij =

(

d+ 1
j − i

)

for i ≤ j, sij = 0 for i > j. (4.1)

This form of Stokes matrix was conjectured in [CV], [Zas] but, to our knowl-
edge, it was proved only in [Du5] for d = 2 and in [Guz] for any d. (3)
The central connection matrix C has the form C = C ′C ′′, C ′ =

(

C ′α
β

)

,

C ′′ =
(

C ′′β
j

)

where C ′′β
j = [2πi(j − 1)]β−1/(α − 1)!, j, β = 1, . . . , d + 1,

C ′α
β = (−1)d+1

(2π)
d+1
2 id̄

{

Aα−β(d), α ≥ β
0, α < β

with d̄ = 1 for d =even and d̄ = 0 for

d =odd where the numbers A0(d) = 1, A1(d), . . . , Ad(d) are defined from the
Laurent expansion for x → 0: 1/xd+1 + A1(d)/x

d + . . . + Ad(d)/x + O(1) =
(−1)d+1Γd+1(−x)e−πid̄x. Observe that (4.1) is the Gram matrix of the bilinear
form χ(E,F ) :=

∑

k(−1)kdimExtk(E,F ) in the basis given by a particular full
system Ej = O(j−1), j = 1, . . . , d+1 of exceptional objects in the derived category
Derb(Coh(Pd)) of coherent sheaves on Pd [Rud]. The columns of the matrix C ′′

are the components of the Chern character ch (Ej) = e2πic1(Ej), j = 1, . . . , d + 1.
The geometrical meaning of the matrix C ′ remains unclear. In other charts of the
FM Sσ and Cσ = C ′C ′′σ, σ ∈ Bn, have the same structure for another full sys-
tem Eσ

1 , . . . , E
σ
d+1 ∈ Derb(Coh(Pd)) of exceptional objects, where the action of

the braid group (E1, . . . , Ed+1) 7→ (Eσ
1 , . . . , E

σ
d+1) is described in [Rud]. Warning:

the points of the FM corresponding to the restricted quantum cohomology [MM],
where t ∈ H2(Pd), do not belong to the chart Fr(S,C) with the matrices S and
C as above!
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4.2.2. Conjecture. We say that a Fano variety X is good if Derb(Coh(X))
admits, in the sense of [BP], a full system of exceptional objects E1, . . . , En,
n = dimH∗(X). Our conjecture is that (1) the quantum cohomology of X is
semisimple iff X is a good Fano variety; (2) the Stokes matrix S = (sij) is equal
to sij = χ(Ei, Ej), i, j = 1, . . . , n; (3) the central connection matrix has the form
C = C ′C ′′ when the columns of C ′′ are the components of ch (Ej) ∈ H∗(X) and
C ′ : H∗(X) → H∗(X) is some operator satisfying C ′(c1(X)a) = c1(X)C ′(a) for
any a ∈ H∗(X).

For X = Pd the validity of the conjecture follows from n.4.2.1 above. The
conjecture probably can be derived from more general conjecture [Kon] about
equivalence of Derb(Coh(X)) to the Fukaya category of the mirror pair X∗ of
X. According to it (see also [EHX, Gi1, Gi2]) the basis of horizontal sections of
∇̃ corresponding to the columns of Φright(z;u)e

zU coincides with the oscillatory
integrals of the Fukaya category of X∗. However, we do not know who is the first
factor C ′ of the connection matrix in this general setting.

5. Intersection form of a FM is a bilinear symmetric pairing on T ∗M defined
by (ω1, ω2)|t := iE(t)(ω1 · ω2), ω1, ω2 ∈ T ∗

t M . Discriminant is the locus Σ = {t ∈
M | det( , )t = 0}. OnM \Σ the inverse to ( , ) determines a flat metric and, thus,
a local isometry π :

(

M \ Σ, ( , )−1
)

→ Cn where Cn is equipped with a constant
complex Euclidean metric ( , )0. This local isometry is called period mapping (our
terminology copies that of the singularity theory where the geometrical structures
with the same names live on the bases of universal unfoldings, see [AGV]). The
image π(Σ) is a collection of nonisotropic hyperplanes in Cn. Multivaluedness
of π is described by the monodromy representation π1(M \ Σ) → Iso (Cn, ( , )0)
(for d 6= 1 to the orthogonal group O (Cn, ( , )0)). The image W (M) of the
representation is called monodromy group of the FM M . In the semisimple case it
is always an extension of a reflection group (see details in [Du5]). Our hope is that,
for a semisimple FM M with good analytic properties, the monodromy group acts
discretely in some domain Ω ⊂ Cn, and M is identified with a branched covering
of the quotient Ω/W (M).

5.1. Examples of a FM with W (M)= finite irreducible Coxeter group W acting
in Rn [Du3]. These are polynomial FMs, M = Cn/W , constructed in terms of the
theory of invariant polynomials of W . Conjecturally, all polynomial semisimple
FMs are equivalent to the above and to their direct sums.

This construction was generalized in [DZ1] to certain extensions of affine Weyl
groups and in [Ber] to Jacobi groups of the types An, Bn, G2. For the quantum
cohomology of P2 the monodromy group is isomorphic to PSL2(Z)×{±1} [Du5].

6. Mirror construction represents certain system of deformed
flat coordinates on a semisimple FM by oscillatory integrals Ij(u; z) =
1√
z

∫

Zj
ezλ(p;u)dp, ∇̃Ij(u; z) = 0, j = 1, . . . , n having the phase function

λ(p;u) depending on the parameters u = (u1, . . . , un) defined on a certain family
of open Riemann surfaces Ru ∋ p realized as a finite-sheeted branched cover-
ing λ : Ru → D ⊂ C over a domain in the complex plain. The ramification
points of Ru, i.e., the critical values of the phase function, are u1, . . . , un.
The 1-cycles Z1, . . . , Zn on Ru go to infinity in a way that guarantees the
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convergence of the integrals. The function λ(p;u) satisfies an important property:
for any two critical points p1, 2i ∈ Ru with the same critical value ui the equality
d2λ(p1i ;u)/dp

2 = d2λ(p2i ;u)/dp
2 must hold true. The metric < , > and the

trilinear form c(a1, a2, a3) :=< a1 · a2, a3 > are given by the residue formulae
similar to (2.1), (2.2). The solutions p = p(u;λ) of the equation λ(p;u) = λ are
the flat coordinates of the flat pencil of the metrics ( , ) − λ < , > on T ∗M
[Du3-Du5].

For the case when generically there is a unique critical point pi over ui for
each i and Ru can be compactfied to a Riemann surface of a finite genus g, we
arrive at the Hurwitz spaces of branched coverings [Du1, Du3].

The construction of the Riemann surfaces Ru, of the phase function λ(p;u)
and of the cycles Z1, . . . , Zn is given in [Du5] by universal formulae assuming
det(S + ST ) 6= 0. In the quantum cohomology of a d-fold X the last condition
is valid for d = even. For d = odd one has det(S − ST ) 6= 0. In this case one
can represent the deformed flat coordinates by oscillatory integrals with the phase
function λ(p, q;u) = ν(p;u) + q2 depending on two variables p, q. The details will
be published elsewhere.

7. Gravitational descendents is a physical name for intersection num-
bers < τm1

(a1) ⊗ . . . ⊗ τml
(al) > of the pull-back cocycles p∗1(a1), . . . , p

∗
l (al)

with the Mumford - Morita - Miller cocycles ψm1
1 , . . . , ψml

l ∈ H∗(X[β],l)
[W2], [DW], [KM]. We will describe first their genus g = 0 generating function

F0(T ) =
∑

[β]

∑

l

〈

e

∑

n

α=1

∑

∞

p=0
Tα,pτp(eα)〉

[β],l,g=0
. Here T = (Tα,p) are indetermi-

nates (the coordinates on the “big phase space”, according to the physical termi-
nology). This function has the form F0(T ) = 1/2

∑

Ωα,p; β,q (t(T )) T̃
α,pT̃ β,q where

T̃α,p = Tα,p for (α, p) 6= (1, 1), T̃ 1,1 = T 1,1 − 1, the functions Ωα,p; β,q(t) on M
are the coefficients of the expansion of the matrix valued function Ωαβ(z, w; t) :=

(z+w)−1
[

(

ΦT
0 (w; t)Φ0(z; t)

)

αβ
− ηαβ

]

=
∑

p, q≥0 Ωα,p; β,q(t)z
pwq, the vector func-

tion t(T ) =
(

t1(T ), . . . , tn(T )
)

tα(T ) = Tα,0 +
∑

q>0

T β,q∇αΩβ,q; 1,0(t)|tα=Tα,0 + . . . (7.1)

is defined as the unique solution of the following fixed point equation t =
∇∑

α,p T
α,pΩα,p; 1,0(t).

The generating function F1(T ) of the genus g = 1 descendents has the form
[DZ2], [DW], [Ge] F1(T ) =

[

G(t) + 1
24 log detMαβ(t, ṫ)

]

t=t(T ), ṫ=∂
T1,0 t(T )

where

G(t) is the G-function of the FM, the matrix Mαβ(t, ṫ) has the form Mαβ(t, ṫ) =
∂α∂β∂γF (t)ṫ

γ , the vector function t(T ) is the same as above. The structure of
the genus g = 2 corrections is still unclear, although there are some interesting
conjectures [EX] related, in the case of quantum cohomology, to the Virasoro
constraints for the full partition function

Z(T ; ε) = exp

∞
∑

g=0

ε2g−2Fg(T ) (7.2)
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ε is a formal small parameter called string coupling constant.

8. Integrable hierarchies of PDEs of the KdV type and FMs. The idea that
FMs may serve as moduli of integrable hierarchies of evolutionary equations (see
[W2], [Du2], [Du3]) is based on

(1) the theorem of Kontsevich - Witten identifying the partition function
(7.2) in the case X = point as the tau-function of a particular solution of the KdV
hierarchy.

(2) The construction [Du2, Du3] of bihamiltonian integrable hierarchy of the

Whitham type ∂Tα,pt = {t(X), Hα,p}1 = K
(0)
α,p(t, tX) (the vector function in the

r.h.s. depends linearly on the derivatives tX) such that the full genus zero partition
function is the tau-function of a particular solution (7.1) to the hierarchy. The so-
lution is specified by the symmetry constraint tX−∑

Tα,p∂Tα,p−1t = 1. The phase
space of the hierarchy is the loopspace L(M) =

{(

t1(X), . . . , tn(X)
)

|X ∈ S1
}

,

the first Hamiltonian structure is
{

tα(X), tβ(Y )
}

1
= ηαβδ′(X − Y ), the second

one { , }2 is determined [Du3] by the flat metric ( , ) according to the general
scheme of [DN]. The Hamiltonians are Hα,p =

∫

Ωα,p; 1,0(t) dX. Actually, any
linear combination { , }2 − λ{ , }1 with an arbitrary λ is again a Poisson bracket
on the loop space since ( , ) and < , > form a flat pencil of metrics on T ∗M
[Du3, Du4] (this bihamiltonian property is a manifestation of integrability of the
hierarchy, see [Mag], [Du4]).

What we want to construct is a deformation of the hierarchy of the form

∂Tα,pt = K
(0)
α,p(t, tX) +

∑

g≥1 ε
2gK

(g)
α,p(t, tX , . . . , t

(2g+1)) where K
(g)
α,p are some vec-

tor valued polynomials in tX , . . . , t(2g+1) with the coefficients depending on t ∈M .
All the equations of the hierachy must commute pairwise. The full partition func-
tion must be the tau-function of a particular solution to the hierachy. The first
g = 1 correction for an arbitrary semisimple FM was constructed in [DZ]. Its
bihamiltonian structure is described, for d 6= 1, by a nonlinear deformation of
the Virasoro algebra with the central charge c = 6ε2(1− d)−2[n− 4trµ2]. For the
FMs corresponding to the ADE Coxeter groups this formula gives the known result
[FL] for the central charge of the classicalW -algebra of the ADE-type c = 12ε2ρ2,
where ρ is half of the sum of positive roots of the corresponding root system.

More recently it has been proved [DZ3] for a semisimple FM that the partition
function (7.2) is annihilated, within the genus one approximation, by half of a
Virasoro algebra described in terms of the monodromy data of the FM.
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