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Invariants in Contat Topology

Yakov Eliashberg1

Abstract. Contact topology studies contact manifolds and their Legen-
drian submanifolds up to contact diffeomorphisms. It was born, together
with its sister Symplectic topology, less than 20 years ago, essentially in
seminal works of D. Bennequin and M. Gromov ( see [2, 18]). However,
despite several remarkable successes the development of Contact topol-
ogy is still significantly behind its symplectic counterpart. In this talk
we will discuss the state of the art and some recent breakthroughs in this
area.
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1 Contact preliminaries

A 1-form α on a (2n − 1)-dimensional manifold V is called contact if the re-
striction of dα to the (2n − 2)-dimensional tangent distribution ξ = {α = 0} is
non-degenerate (and hence symplectic). A codimension 1 tangent distribution ξ
on V is called a contact structure if it can be locally (and in the co-orientable case
globally) defined by the Pfaffian equation α = 0 for some choice of a contact form
α. The pair (V, ξ) is called a contact manifold. According to Frobenius’ theorem
the contact condition is a condition of maximal non-integrability of the tangent
hyperplane field ξ. In particular, all integral submanifolds of ξ have dimension
≤ n − 1. On the other hand, (n − 1)-dimensional integral submanifolds, called
Legendrian, always exist in abundance. Any non-coorientable contact structure
can be canonically double-covered by a coorientable one. If a contact form α is
fixed then one can associate with it the Reeb vector field Rα, which is transversal
to the contact structure ξ = {α = 0}. The field Rα is uniquely determined by the
equations Rα dα = 0; α(Rα) = 1 .

The 2n-dimensional manifold M = (T (V )/ξ)∗ \V , called the symplectization

of (V, ξ), carries the natural symplectic structure ω induced by the embedding
M → T ∗(V ) which assigns to each linear form T (V )/ξ → R the corresponding
form T (V ) → T (V )/ξ → R. A choice of a contact form α (if ξ is co-orientable)
defines a splitting M = V × (R \ 0). We will usually pick the positive half V ×R+

of M , and call it symplectization as well. The symplectic structure ω can be writ-
ten in terms of this splitting as d(τα), τ > 0. It will be more convenient for us,
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328 Yakov Eliashberg

however, to use additive notations and write ω as d(etα), t ∈ R, on M = V × R.
Notice that the vector field T = ∂

∂t
is conformally symplectic: we have LTω = ω,

as well as LT (e
tα) = etα. All the notions of contact geometry can be formulated

as the corresponding symplectic notions, invariant or equivariant with respect to
this conformal action. For instance, any contact diffeomorphism of V lifts to an
equivariant symplectomorphism of M ; contact vector fields on V (i.e. vector fields
preserving the contact structure) are projections of R-invariant contact symplec-
tic (and automatically Hamiltonian) vector fields on M ; Legendrian submanifolds
in M correspond to cylindrical (i.e. invariant with respect to the R-action) La-
grangian submanifolds of M .

The symplectization of a contact manifold is an example of a symplec-
tic manifold with cylindrical (or rather conical) ends, which is a possibly non-
compact symplectic manifold (W,ω) with ends of the form E+ = V+ × [0,∞) and
E− = V− × (−∞, 0], such that V± are compact manifolds, and ω|V±

= d(etα±),
where α± are a contact forms on V±. In other words, the ends E± of (W,ω) are
symplectomorphic, respectively, to the positive, or negative halves of the symplec-
tizations of the contact manifolds (V±, ξ± = {α± = 0}). We will consider the
splitting of the ends and the the contact forms α± to be parts of the structure
of a symplectic manifold with cylindrical ends. We will also call (W,ω) a directed

symplectic cobordism between the contact manifolds (V+, ξ+) and (V−, ξ−), and

denote it, sometimes, by
−−−→
V+V−. Let us point out that this is not an equivalence

relation, but rather a partial order. Existence of a directed symplectic cobordism
−−−−−→
M+M− does not imply the existence of a directed symplectic cobordism

−−−−−→
M−M+,

but directed symplectic cobordisms
−−−−→
M0M1 and

−−−−→
M1M2 can be glued, in an obvious

way, into a directed symplectic cobordism
−−−−→
M0M2. Suppose now that the sym-

plectic form ω is exact and equal dβ, where β|E±
= etα±, and that there exists

a Morse function ϕ : W → R which coincides with the function t at infinity and
such that for any c ∈ R the restriction β|{ϕ=c} is a contact form away from the
critical points of the function ϕ. In this case we say that (W,ω) is a directed Stein

cobordism between the contact manifolds (V+, ξ+) and (V−, ξ−). Notice that in-
dices of critical points of the function ϕ are bounded in this case by n = 1

2dimW .
If there exists a directed symplectic (resp. Stein) cobordism between a contact
manifold (V+, ξ+) and V− = ∅, then (V+, ξ+) is called symplectically (resp. Stein)
fillable.2 The Stein filling W is called subcritical if the function ϕ can be chosen
without critical points of the maximal index n.

Contact structures have no local invariants. Moreover, any contact form is

locally isomorphic to the form α0 = dz −
n−1∑
1

yidxi (Darboux’ normal form). The

contact structure ξ0 on R
2n−1 given by the form α0 is called standard. Standard

contact structure on S2n−1 is formed by complex tangent hyperplanes to the unit
sphere in C

n. The standard contact structure on S2n−1 is isomorphic in the
complement of a point to the standard contact structure on R

2n−1. According to

2The Stein fillabillity of (V, ξ) is equivalent to the existence of a compact complex manifold
with a strictly pseudoconvex boundary V and a Stein interior, such that ξ is the field of complex
tangencies to the boundary V . See [9] for the discussion of different notions of symplectic
fillabillity.
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a theorem of J. Gray (see [17]) contact structures on closed manifolds have the
following stability property: Given a family ξt, t ∈ [0, 1], of contact structures on

a closed manifold M , there exists an isotopy ft : M → M , such that dft(ξ0) =
ξt; t ∈ [0, 1]. Notice that for contact forms the analogous statement is wrong.
For instance, the topology of the 1-dimensional foliation determined by the Reeb
vector field Rα is very sensitive to deformations of the contact form α.

The conformal class of the symplectic form dα|ξ depends only on the coori-
ented contact structure ξ and not a choice of the contact form α. In particular,
one can associate with ξ an almost complex structure J : ξ → ξ, compatible with
dα which means that dα(X, JY );X,Y ∈ ξ, is an Hermitian metric on ξ. The
space of almost complex structures J with this property is contractible, and hence
the choice of J is homotopically canonical. Thus a cooriented contact structure
ξ defines on M a stable almost complex structure J̃ = J̃ξ, i.e. a splitting of the
tangent bundle T (V ) into the Whitney sum of a complex bundle of (complex) di-
mension (n− 1) and a trivial 1-dimensional real bundle. The existence of a stable
almost complex structure is necessary for the existence of a contact structure on
V . If V is open (see [19]) or dimV = 3 (see [25, 24]) this property is also sufficient
for the existence of a contact structure in the prescribed homotopy class. It is
still unknown whether this condition is sufficient for the existence of a contact
structure on a closed manifold of dimension > 3. However, the positive answer to
this question is extremely unlikely. Similarly, the homotopy class of J̃ξ, which we
denote by [ξ] and call the formal homotopy class of ξ, serves as an invariant of ξ.
For an open V it is a complete invariant (see [19]) up to a deformation of contact
structures, but not up to a contact diffeomorphism. For closed manifolds this is
known to be false in all dimensions, see the discussion below. The main goal of
this talk is the construction of invariants which would allow to distinguish contact
manifolds in the same formal homotopy class.

2 Invariants of open manifolds

We concentrate in this section on 3-dimensional contact manifolds, although some
part of the discussion can be generalized to higher dimensions. First of all 3-
dimensional contact manifolds are orientable, and any contact structure determines
an orientation ofM . IfM is a priori oriented then contact structures can be divided
into positive and negative. We will consider here only positive contact structures.

It is proven to be useful to divide all 3-dimensional contact manifolds into
two complementary classes: tight and overtwisted. A contact 3-manifold (M, ξ) is
called overtwisted if there exists an embedded disc D2 ⊂ M such that its boundary
∂D2 is tangent to ξ (i.e. ∂D2 is a Legendrian curve), while the disc itself is
transverse to ξ along its boundary. A non-overtwisted contact structures are called
tight. D. Bennequin (see [2]) was the first who discovered the phenomenon of
overtwisting. He proved that the standard contact structure ξ0 on S3 is tight
and constructed an overtwisted contact structure ξ1 in the same formal homotopy
class.

As it turned out, overtwisted contact structures on all closed 3-manifolds
are classified up to isotopy by their formal homotopy classes (see [7]). On open
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manifolds one should subdivide furthermore overtwisted contact structures into
overtwisted at infinity and tight at infinity. A contact structure, which is over-
twisted at infinity, is determined up to isotopy by its formal homotopy class (see
[6]). Overtwisted, but tight at infinity contact structure on M \ F , where M is a
closed 3-manifold and F is its finite subset, can always be canonically extended to
M see [6]), and thus an isotopical classification of such structures coincides with
the formal homotopical classification on M (and not on M \ F !).

Let us now restrict ourself to the class of tight contact structures. It is not
so easy to provide non-trivial invariants of tight contact structures on open mani-
folds. The problem is that all standard symplectic invariants (the Gromov width,
capacities, etc.) take infinite values for symplectizations of contact manifolds. One
knows, for instance, that on R

3 any tight contact structure is isotopic to the stan-
dard one (see [6]). However, on the closed half-space R3

+ = {y ≥ 0} ⊂ R
3 there are

non-isomorphic contact structures, which we are describing below. Let us denote
by Ξ0 the space of tight contact structures on R

3
+ which coincide with the stan-

dard contact structure ξ0 near the plane Π = {y = 0} = ∂R3
+. We are interested

in invariants of contact half-spaces (R3
+, ξ), where ξ ∈ Ξ0, up to diffeomorphisms

fixed near Π.

Given a contact structure ξ ∈ Ξ0 let us consider an embedded plane Π̃ ⊂ R
3
+

which coincides with Π at infinity, and which is transversal to ξ0. The 1-
dimensional line field ξ ∩T (Π̃) integrates into a 1-dimensional characteristic folia-

tion Π̃ξ on Π̃. The foliation Π̃ξ coincides with the foliation by lines {z = const} at
infinity, and thus the holonomy along its leaves defines a compactly supported
diffeomorphism hΠ̃ : R → R, where we identify the source R with the line
{x = −N} ⊂ Π, and the target R with the line {x = N} ⊂ Π for a sufficiently
large N > 0. Let us define cξ(z) = sup

Π̃

(
hΠ̃(z)− z

)
, and call the function cξ(z)

the contact shape of (R3, ξ). Of course, sometimes we have c(ξ) ≡ +∞. For in-
stance this is the case for the standard contact structure ξ = ξ0. On the other
hand, the following construction (see [12]) shows that any positive continuous 3

function f : R → R, such that f(z) + z is a monotone function, can be realized as
the invariant cξ for some contact structure ξ ∈ Ξ0.

For a positive Lipschitz function ϕ on R
2 we denote by Sϕ its graph {y =

ϕ(x, z)} ⊂ R
3. If the function ϕ decays sufficiently fast when |x| → ∞ (say,

ϕ(x, z) < C
x2 ), then the holonomy diffeomorphism hϕ : R → R along the leaves

of the characteristic foliation of the graph Πϕ = {y = ϕ(x, z)} is well defined.
It is easy to find a Lipshitz function ϕ with the prescribed continuous holonomy
hϕ(z) = z + f(z). Consider the domain Ωϕ = {0 ≤ y < ϕ(x, z)}. Clearly, the
contact manifold (Ωϕ, ξ0) belongs to the class Ξ0. We have (see [12])

Proposition 2.1

c(Ωϕ,ξ0)(z) = hϕ(z)− z = f(z) .

A similar invariant can be defined for open manifolds (without boundary)
when H1(M) 6= 0. (see [5])

3In fact, it need not to be even continuous.
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3 Invariants of closed manifolds

Until very recently there was known only one result allowing to distinguish contact
structures on manifolds of dimension > 3 within a given formal homotopy class.
Namely, we have

Theorem 3.1 For any n > 2 the sphere S2n−1 has a contact structure ξ1 in the

standard formal homotopy class, which is not isomorphic to the standard contact

structure ξ0.

For odd values of n this was shown by the author in [4], and later extended to
even values of n by H. Geiges (see [15]). 4

We will discuss in this section some new powerful algebraic invariants of closed
contact manifolds, related to Gromov-Witten invariants of symplectic manifolds,
which were recently developed jointly by H. Hofer, A. Givental and the author.
See also Hofer’s talk at the current proceedings for the discussion of other related
aspects of this theory.

Contact homology algebra. To define the invariants of a contact manifold
(V, ξ) let us fix a contact form α and an almost complex structure J : ξ → ξ
compatible with the symplectic form dα. The symplectization M of (V, ξ) can
be identified, as was explained in Section 1, with (V × R, d(etα)). The complex
structure J extends from ξ to T (M) by setting J ∂

∂t
= Rα, where Rα is the Reeb

vector field of the contact form α. For a generic choice of α there are only count-
ably many periodic trajectories (including multiple ones) of the vector field Rα.
Moreover, these trajectories can be assumed non-degenerate which means that the
linearized Poincaré return map along any of these trajectories has no eigenvalues
equal to 1.

Let P = Pα be the set of all periodic trajectories of Rα. We do not fix initial
points on periodic trajectories, and include all multiples as separate points of P.
Let us first assume that H1(V ) = 0. For each γ ∈ P let us choose and fix a surface
Fγ spanning the trajectory γ in V . This enable us to define the Conley-Zehnder

index µ(g) of γ as follows. Choose a homotopically unique trivialization of the
symplectic vector bundle (ξ, dα) over each trajectory γ ∈ P which extends to ξ|Fγ

.
The linearized flow of Rα along γ defines then a path in the group Sp(2n−2,R) of
symplectic matrices, which begins at the unit matrix and ends at a matrix with all
eingenvalues different from 1. The Maslov index of this path (see [1, 26]) is, by the
definition, the Conley-Zehnder index µ(γ) of the trajectory γ. For our purposes
it will be convenient to use the reduced Conley-Zehnder index γ = µ(γ) + n− 3,
also called the degree of γ. Notice that by changing the spanning surfaces for the
trajectories from P one can change Conley-Zehnder indices by the values of the
cohomology class 2c1(ξ), where c1(ξ) is the first Chern class of the contact bundle

4Although this result sounds similar to Bennequin’s theorem asserting that the standard
contact structure on S3 is not overtwisted, non-standard contact structures on high-dimensional
spheres provided by Theorem 3.1 are quite different: they are symplectically, and even Stein

fillable, while an overtwisted contact structure on S3 is not.
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ξ. In particular, mod 2 indices can be defined independently of any spanning
surfaces, and even in the case when H1(V ) 6= 0.

Next, we consider certain moduli spaces of holomorphic curves in the manifold
M = V ×R, which are essential for all our algebraic constructions. Let us observe
that for each periodic orbit γ ∈ P the cylinder γ×R is a J-holomorphic curve. Let
Dr be the disc of radius r in C centered at the origin. Given any orbit γ ∈ P we say
that a J-holomorphic map f : Dr\0 → M = V ×R converges near 0 to the periodic
trajectory γ at ±∞ if f(z) = (g(z), h(z)), h(z) →

|z|→0
= ±∞, and there exits the

limit ḡ(ϕ) = lim
ρ→0

g(ρeiϕ) which parametrizes the periodic trajectory γ. Notice that

the orientation which is defined this way on γ coincides with the orientation given
by the Reeb vector field Rα at +∞, and opposite to this orientation at −∞.

Let us denote by Ssr, s, r = 0, 1, . . . , the 2-sphere S2 with s+r fixed punctures
y1, . . . , ys, x1, . . . , xr. Given s + r periodic orbits γ1, . . . , γs, δ1, . . . , δr ∈ P we
consider the space M̃A(γ1, . . . , γs; δ1, . . . , δr), which consists of pairs (f, j), where
j is a conformal structure on Ssr, and f : Ssr → M is a (j, J)-holomorphic curve,
such that near each puncture yk, k = 1, . . . , s, the map f converges to γk at +∞,
and near each puncture xl, l = 1, . . . , r, it converges to δl at −∞. As usual we pass
to the corresponding moduli space M(γ1, . . . , γs; δ1, . . . , δr) by identifying pairs
(f, j) and (f̃ , j̃) which differ by a diffeomorphism of the sphere S2 which fixes the
punctures y1, . . . , ys, x1, . . . , xr. The space M can be written as a disjoint union
M =

⋃
A∈H2(V )

MA, where MA consists of holomorphic curves which together with

the surfaces spanning in V the trajectories γ1, . . . , γs, δ1, . . . , δr ∈ P represent the
homology class A ∈ H2(M) = H2(V ). Then we have

Proposition 3.2 For a generic choice of J , and any periodic orbits

γ1, . . . , γs, δ1, . . . δr ∈ P the moduli space MA(γ1, . . . , γs; δ1, . . . δr) is an orb-

ifold of dimension 5

s∑

k=1

γk −
r∑

l=1

δl + (2− 2s)(n− 3) + 2c1(ξ)[A].

Remark 3.3 The additive group R acts on M = V ×R by J-biholomorphic trans-
lations (x, t) 7→ (x, t+c). The moduli spaces M(γ1, . . . , γs; δ1, . . . , δr) are invariant
under this action, and hence, with the exception of trivial spaces M(γ; γ) (which
consist of cylinders γ × R), a non-empty moduli space M(γ1, . . . , γs; δ1, . . . , δr)
always has a positive dimension.

Let us consider now a free (super-)commutative graded algebra Θ = Θα over
C with the unit element generated by elements of Pα. In other words, Θ is a
polynomial algebra with complex coefficients of generators of even degree and
an exterior algebra of odd degree generators. Let us recall that we count all

5It is a standard difficulty in the Floer homology theory and the theory of holomorphic curve
invariants in general, that in the presence of multiply-covered curve it is, sometimes, impossible to
achieve transversality needed for this dimension formula just by perturbing the almost complex
structure J . The appropriate virtual cycles technique which works in this case and involves
multivalued perturbations was recently developed by several authors, see [14], [23] et al.
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multiples of a given trajectories as independent generators of Θ. Each monomial
element θ ∈ Θ is graded by its total degree θ̄. Let ΘH2 be the group algebra of
H2(V ) = H2(M) with coefficients in Θ. Thus elements of ΘH2 can be written as
polynomials

∑
A∈H2(V )

θAt
A, θA ∈ Θ.

We define now a sequence of operations ΘH2

⊗ . . .ΘH2

︸ ︷︷ ︸
s

→ ΘH2 , which make Θ

into a L∞-algebra (see, for instance, [22]), or rather a P∞-algebra, where P stands
for the Poisson structure. This is done by an appropriate counting of components
of the moduli spaces MA(γ1, . . . , γs; δ1, . . . δr).

Take any s ≥ 1 periodic orbits γ1, . . . , γs ∈ P and set

[γ1, . . . , γs]s =
∑

A∈H2(V )

∑

∆

aA∆t
A∆,

where aA∆ ∈ C, and the second sum is taken over all monomials ∆ = δj11 · · · δjrr
of (distinct) generators δ1, . . . , δr, . . . ∈ Θ (notice that we allow the case r = 0).

We set aA∆ = 0 if the dimension
s∑

k=1

γk −
r∑

l=1

jlδl + (2 − 2s)(n − 3) + 2c1(ξ)[A] of

the moduli space MA = MA(γ1, . . . , γs; δ1 . . . , d1︸ ︷︷ ︸
j1

, . . . , dr, . . . , δr︸ ︷︷ ︸
jr

) is different from

1. Otherwise, we define the coefficient aA∆ as the sum
∑
C

w(C) of weights w(C)

assigned to 1-dimensional components of the moduli spaceMA Given a component
C of M we set

w(C) = ±
1

r!d
m(δ1)

j1 · · ·m(δr)
jr ,

where m(δl) is the multiplicity of the periodic orbit δl, l = 1, . . . , r; d = 1 if the
curves from C are not multiply-covered and d is the order of the group of deck
transformations of the corresponding branched covering in the multiply-covered
case. Finally the sign ± is determined by an algorithm, similar to the one used in
the traditional Floer theory (see [13]). This algorithm shows, in particular, that
the operations [·, . . . , ·]s are skew-symmetric: a transposition of any two elements
γ1, γ

′
2 in the bracket changes the sign by (−1)γ1γ2 . It is important to point out

that compactness theorems for holomorphic curves (see [18, 20, 11]) garantee that
the operations [ · , . . . , · ]s take values in polynomial functions (and not in formal
power series).

The operation [ · , . . . , · ]s which was just defined on the generators of Θ admits
a unique extension to a skewsymmetric multilinear operation ΘH2 ⊗ . . . ,⊗ΘH2

︸ ︷︷ ︸
s

→

ΘH2 which satisfies the Leibnitz rule:

(−1)t[θ1, . . . , θlθ
′
l, . . . , θs]s = θl[θ1, . . . , θ

′
l, . . . , θs]s + (−1)θlθ′l[θ1, . . . , θl, . . . , θs]s,

where t =
l−1∑
1

θi. Let us now take a closer look to the operation [θ]1 which will

also be denoted by dθ, and called the differential of θ. Notice that it decreases the
grading by 1, i.e. dθ = θ − 1 for any monomial θ ∈ Θ.
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Theorem 3.4 1. d2 = 0.

2. Any homotopy αt, t ∈ [0, 1], of contact forms, together with a compatible homo-

topy Jt of almost complex structures, induces a quasi-isomorphism Φ{at,Jt}

of the corresponding algebras. In particular, the graded contact homology al-

gebra HΘH2 = Ker d/Coker d is an invariant of the contact manifold (M, ξ).

Sometimes it is more convenient to consider the reduced contact homology algebra

H̃Θ
H2

(M, ξ) of a closed contact manifold (M, ξ), which is defined similarly to
HΘH2 , except that instead of contact forms for ξ on the whole M , we use contact
forms on the punctured manifold M \ x, x ∈ M, which are isomorphic at infinity

to the standard contact form dz −
n−1∑
i=1

yidxi on R
2n−1.

The contact homology algebras HΘH2 and/or H̃Θ
H2

can be explicitely com-
puted in several interesting examples. Let us formulate here some of these results.

Theorem 3.5 1. H̃Θ(S2n−1, ξ0) = C; HΘ(S2n−1, ξ0) is a graded polynomial

algebra of generators γ1, γ2, . . . , of degrees γi = 2(n+ i− 1), i = 0, . . . .

2. If ξ is an overtwisted contact structure on a 3-manifold V then HΘ(V, ξ) = 0.

3. For any Stein fillable contact manifold (V, ξ) we have HΘ(V, ξ) 6= 0.

4. Suppose that a contact manifold (V, ξ) of dimension 2n−1 with H1(V ) = 0 has

a subcritical Stein filling W . Then H̃Θ
H2

(V, ξ) is a group algebra of H2(V )
over a free graded commutative algebra with generators γikl, k = 1, . . . , n −
1, l = 1, . . . , dimHk(W ;R), i = 0, . . ., of degree γikl = 2(n+ i− 1)− k.

5. Let ξ1 be a non-standard contact structure on S2n−1, n > 2, which is pro-

vided by Theorem 3.1 above, and the contact manifold (S2n−1, ξk) be the

connected sum of k copies of (S2n−1, ξ1). Then the contact homology alge-

bras HΘ(S2n−1, ξk) are pairwise non-isomorphic for all k, and in particular

S2n−1 has infinitely many distinct contact structures in the standard homo-

topy class.

We thank Yu. Chekanov who pointed out to us the property 3.5.3. The com-
putations in 3.5.4 were done by M.-L. Yau, and the result in 3.5.5 is due to I.
Ustilovsky.

The case H1(V ) 6= 0. For a general contact manifold V with H1(V ) 6= 0 one
may first construct a similar contact homology algebra HΘH2

contr generated by the
subset Pcontr

a ⊂ Pa of contractible periodic orbits, and then for each free loop
homotopy class Γ consider a module ΘΓ over the algebra ΘH2

contr, generated by
elements of P from the homotopy class Γ. The differential d : ΘΓ → ΘΓ on
this module is defined, as above, by counting components of 1-dimensional moduli
spaces M(γ; δ1, . . . , δr) with an extra condition that γ and δ1 belong to the class Γ,
while all the other trajectories δ2, . . . , δs are from Pcontr. Then we also have d2 = 0,
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and thus the homology HΘH2

Γ , which is a module over the contact homology

algebra HΘH2

contr is another invariant of the contact manifold V . For a generic α
HΘH2

Γ is a finite dimensional module over HΘH2

contr, and thus can be effectively

computed, especially when the contact homology algebra HΘH2

contr is isomorphic
to C (or to the group algebra of C[H2(V )]). For instance, let ξ1 be the standard
contact structure on the 3-torus V = T 3 = T 2 × S1 viewed as the unit cotangent
bundle of T 2. For k = 2, . . . , we denote by ξk the pull-back of ξ1 under the
k-sheeted covering T 3 → T 3 which unwinds the fiber S1. Then

Theorem 3.6 HΘH2

contr(ξk) = C[H2(T
3)]; dimC[H2(T 3)](HΘH2

Γ (ξk)) = 2k for any

horizontal 1-dimensional homology class, i.e. a class from H1(T
2 × point) ⊂ T 3,

and HΘH2

Γ (ξk)) = 0 for all other classes Γ ∈ H1(T
3).

As a corollory of 3.6 we get a theorem of E. Giroux and Y. Kanda (see
[16, 21]) which states that the contact structures ξk, k = 1, . . . , are pairwise non-
isomorphic. It seems likely that the algebraHΘH2

contr(V, ξ) is trivial (i.e. isomorphic
to the group algebra ofH2(V ) over C) for any strongly tight contact manifold (V, ξ),
i.e. a contact 3-manifold which is covered by R

3 with a tight, and hence standard
contact structure.

Hamiltonian formalism. It turns out that the the operations [ · , . . . , · ]s for
s > 1 can be viewed as certain cohomological operations on the contact homology
algebra. For instance, we have

Theorem 3.7 The operation [ · , · ]2 is a Poisson bracket on Π(HΘ), where Π is

the operator of changing the parity. The quasi-isomorphism Φ{at,Jt} from 3.4.2,

induced by a deformation of contact forms and almost complex structures, pre-

serves the Poisson bracket.

Other operations [ · , . . . , · ]s, s > 2, define secondary cohomological operations
on the contact homology algebra HΘH2 , which all fit into a structure of a L∞,
or rather a P∞-algebra on ΘH2 . However, the following Hamiltonian formalism
provides a better algebraic framework for all these operations.

Let us associate with each periodic trajectory γ ∈ P = Pα two variables, pγ
and qγ of the same degree pγ = qγ . Let TΘ be the free graded (super-)commutative
algebra over C with the unit generated by variables pγ , qγ associated to each pe-
riodic orbit γ ∈ P, and completed with respect to variables pγ , γ ∈ P. This
means that the elements of TΘ are formal power series in p-variables with coeffi-
cients which are polynomial of q-variables. We will also consider the group algebra
TΘH2 of the group H2(V ) with coefficients in TΘ. Informally, if one thinks about
the algebra Θ as the algebra of polynomial functions on an infinite-dimensional
(super-)space L with coordinates qγ , γ ∈ P, then TΘ is the algebra of functions
on the cotangent bundle T ∗L of L. This infinite-dimensional cotangent bundle is
endowed with an even symplectic form

∑
γ∈P

dpγ ∧ dqγ , which defines, in its turn,

Poisson brackets on algebras TΘ and TΘH2 .
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Next we construct a Hamiltonian function H ∈ TΘH2 which will encode all
the information about the brackets [ ·, · · · , · ]k introduced above. We set

H(p, q) =
∑

[γ1, . . . , γs]spγ1
· · · pγs

,

where the sum is taken over the set of all monomials in variables pγ , γ ∈ P, and
where we assume that the brackets [γ1, . . . , γs]s ∈ ΘH2 are expressed in terms of
the variables qγ , γ ∈ P. Theorems 3.8 and 3.9 below generalize Theorem 3.4 and
formalize properties of all considered above operations.

Theorem 3.8 {H,H} = 0.6

Consider a Poisson subalgebra ZΘH2 = {f ∈ TΘH2 ; {f,H} = 0} ⊂ TΘH2 and
its ideal BΘH2 , generated by functions of the form {g,H}, g ∈ TΘH2 . Then
PΘH2 = ZΘH2/BΘH2 also carries a Poisson structure.

Theorem 3.9 Any homotopy αt, t ∈ [0, 1], of contact forms, together with a

compatible homotopy Jt of almost complex structures, induces an isomorphism

Ψ{αt,Jt} : PΘH2(V, α0, J0) → PΘH2(V, α1, J1) of Poisson algebras.

These results are only the first steps of a bigger story. For instance, a directed
symplectic cobordism between two contact manifolds generate a Lagrangian cor-
respondence between the corresponding Poisson algebras, and the composition of
directed cobordisms generates the composition of Lagrangian correspondences. We
hope that this would provide tools for effective computations of rational Gromov-
Witten invariants of symplectic manifolds by splitting them into compositions of
elementary directed symplectic cobordisms. The larger picture also incorporates
moduli spaces of holomorphic curves of higher genus, as well as higher-dimensional
spaces of holomorphic curves.

Invariants of Legendrian submanifolds. Let us briefly mention here a rel-
ative analog of the contact homology theory, which provides invariants of pairs
(V, L) where V = (V, ξ) is a contact manifold, and L its Legendrian submanifold.
For the case when (V, ξ) is the standard contact (R2n−1, ξ0) this theory produces
invariants of immersed Lagrangian submanifolds in R

2n−2 up to contact isotopy
(see [10]), i.e up to regular Lagrangian homotopy in R

2n−2, which lifts to a Leg-
endrian isotopy in R

2n−1. When n = 2 all the involved holomorphic curves can
be explicitely seen from the combinatorics of the corresponding (Lagrangian) im-
mersion of the curve L into R

2, and thus the theory may be developed via pure
combinatorial means. The first part of this combinatorial theory, parallel to the
theory of the differential d in the absolute case, was independently done by Yu.
Chekanov (see [3]). However, even for n = 2 a (non-commutative) analog of the de-
scribed above Hamiltonian formalism allows us to define many other invariants of
Legendrian curves, which can also be computed and studied by pure combinatorial
means.

6One should remember that in the super-commutative setting the bracket of a function with
itself does not vanish automatically.
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