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Curvature-Dereasing Maps

are Volume-Dereasing

(on joint work with G. Besson and G. Courtois)

S. Gallot

Abstract. Giving a lower bound of the minimal volume of a manifold
in terms of the simplicial volume, M. Gromov obtained a generalization
of the Gauss-Bonnet-Chern-Weil formulas and conjectured that the
minimal volume of a hyperbolic manifold is achieved by the hyperbolic
metric. We proved this conjecture via an analogue of the Schwarz’s
lemma in the non complex case: if the curvature of X is negative and not
greater than the one of Y, then any homotopy class of maps from Y to X
contains a map which contracts volumes. We give a construction of this
map which, under the assumptions of Mostow’s rigidity theorems, is an
isometry, providing a unified proof of these theorems. It moreover proves
that the moduli space of Einstein metrics, on any compact 4-dimensional
hyperbolic manifold reduces to a single point.
Assuming that X is a compact negatively curved locally symmetric
manifold, and without any curvature assumption on Y, another version
of the real Schwarz’s lemma provides a sharp inequality between the
entropies of Y and X . This answers conjectures of A. Katok and M.
Gromov. It implies that Y and X have the same dynamics iff they are
isometric.
This also ends the proof of the Lichnerowicz’s conjecture : any negatively
curved compact locally harmonic manifold is a quotient of a (noncom-
pact) rank-one-symmetric space.

1. A real Schwarz lemma :
As was remarked by Pick, the classical Schwarz lemma may be rewritten in the
language of the hyperbolic geometry (i. e. on the disk B2 endowed with the
hyperbolic metric go = 4

(1−‖x‖2)2

(

(dx1)
2 + (dx2)

2
)

) as follows :

1.1. Schwarz lemma. - Any holomorphic map f : B2 → B2, is a con-
tracting map from (B2, go) to (B2, go).

Considering now holomorphic maps between compact Kählerian manifolds of
higher dimension, there have been many generalizations of this Schwarz lemma
(due in particular to L. Ahlfors, S. T. Yau, N. Mok, ...). For example, the
following one, which may be found in [Mok] :
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340 S. Gallot

1.2. Proposition.- Let X,Y be compact Kählerian manifolds of the
same dimension whose Kählerian metrics are denoted by gX and gY . If
RiccigY ≥ −C2 ≥ RiccigX , then any holomorphic map F : Y → X satisfies
|JacF | ≤ 1. Moreover, if |JacF | = 1 at some point y, then dyF is isometric.

Let us recall that Riccig is the Ricci curvature tensor of the metric g, and
that the assumption Riccig ≥ −C2 means that Riccig(u, u) ≥ −C2.g(u, u) at any
point and for any tangent vector u at this point.
In its homotopy class, when the target-space has negative sectional curvature, a
holomorphic map is unique ([Ha]) and is a good candidate for contracting the
measure. Holomorphic maps are a particular case of harmonic maps between
Riemannian manifolds. As, by the negativity of the curvature, each C0 homotopy
class of maps contains exactly one harmonic map (J. Eells and J. H. Sampson,
[E-S]), one may ask whether it contracts volumes. Though unsuccessful, this idea
underlies the attempts for a unified proof of the Mostow’s rigidity theorem, where
the method of harmonic maps fits very well to the hermitian cases and moreover
improves Mostow’s theorem (works of Y. T. Siu, K. Corlette, J. Jost and S. T.
Yau, M. Gromov and R. Schoen ..., see for instance [Mok] and [Jo]), but still gives
nothing in the real hyperbolic case. Substituting another canonical map to the
harmonic one, we prove that the contracting property is not particular to complex
manifolds and holomorphic maps :

1.3. Theorem ([B-C-G 3]).- Let (Y n, gY ), (Xm, gX) be complete rie-
mannian manifolds satisfying 3 ≤ dim(Y ) ≤ dim(X), let us assume that
RiccigY ≥ −(n− 1) C2 and that the sectional curvature of X satisfy KgX ≤ −C2

for some constant C 6= 0. Then any continuous map f : Y → X may
be deformed to a family of C1 canonical maps Fǫ (ǫ → 0+) such that
V ol[Fǫ(A), gX ] ≤ (1 + ǫ) V ol(A, gY ) for any measurable set A in Y. More-
over
(i) if Y, X are compact of the same dimension and if V ol(Y ) = |degf | V ol(X),
then Y,X have constant sectional curvature and the F ′

ǫs converge, when ǫ → 0, to
a riemannian covering F (an isometry when |degf | = 1).
(ii) If Y, X are compact, homotopically equivalent, of the same dimension, and
if KgY < 0, then any homotopy equivalence f may be deformed to a smooth
(canonically constructed) map F such that |JacF | ≤ 1 at every point y of Y.
Moreover, if |JacF | = 1 at some point y, then dyF is isometric.

1.4 Remarks : (1) Contrary to the above result of J. Eells and J. H. Sampson on
harmonic maps, the theorem 1.3 is not only an existence theorem, but moreover
a direct construction of the maps Fǫ and F .
(2) The property (ii) remains valid when dim(Y ) < dim(X) and when X is
noncompact (however, we must assume that π1(X) acts on the universal covering
X̃ in a ”convex cocompact” way, i. e. that X retracts to a compact submanifold
with convex boundary). In this case, any homotopy equivalence Y → X is
homotopic to some (canonical) map F such that |JacF | ≤ 1; moreover |JacF | ≡ 1
iff F is an isometric and totally geodesic embedding (cf [B-C-G 3]).

Documenta Mathematica · Extra Volume ICM 1998 · II · 339–348



Curvature-Decreasing Maps are Volume-Decreasing 341

2. Applications to minimal (and maximal) volume :
Let M be a compact connected manifold ; its minimal volume (denoted by
MinV ol(M)) is defined by M. Gromov ([Gr 1]) as the infimum of the volumes
of all the metrics g on M whose sectional curvature Kg satisfies −1 ≤ Kg ≤ 1.
Similarly, when the manifold admits some metric with strictly negative sectional
curvature, one may define the maximal volume of M as the supremum of V ol(g),
for all the metrics g which satisfy Kg ≤ −1.

In dimension 2, the Gauss-Bonnet formula gives
∫

M
Kgdvg = 2πχ(M), where

χ(M) is the Euler characteristic of M . When χ(M) < 0, this immediately implies
that MinV ol(M) = 2π|χ(M)| = MaxV ol(M) and that the minimal and the
maximal volumes are achieved for (and only for) metrics with constant sectional
curvature −1.
In the higher even dimensional case, the Allendœrfer-Chern-Weil formulas also
provide a lower bound of the minimal volume in terms of the Euler characteristic,
however this bound is not sharp.
The simplicial volume (denoted by SimplV ol), is defined as the infimum of
‖c‖1 =

∑

|λi| for all the linear real combinations of simplices c =
∑

λiσi which
are closed chains c representing the fundamental n-class. Substituting this notion
to the Euler characteristic, M. Gromov obtained the:

2.1. Theorem (M. Gromov, [Gr1]).- For any compact manifold M, one has
MinV ol(M) ≥ Cn SimplV ol(M), where Cn is a universal constant.

For any compact manifold which admits a hyperbolic metric (i. e. a metric, denoted
by go, whose sectional curvature is constant and equal to −1), an exact compu-
tation of the simplicial volume has been given by M. Gromov and W. Thurston
([Gr1]). By the theorem 2.1, it implies that MinV ol(X) ≥ C ′

n V ol(X, go).
However, this estimate was also not sharp and justifies the

2.2. Theorem ([B-C-G 1,3]).- Let X be a compact manifold with dimen-
sion n ≥ 3. If X admits a hyperbolic metric go, then
(i) MinV ol(X) = V ol(go) = MaxV ol(X).
(ii) A metric g on X (such that |Kg| ≤ 1) realizes the minimal volume iff it is
isometric to go.

(iii) For any other riemannian manifold (Y n, g) satisfying Riccig ≥ −(n − 1).g
and any map f : Y n → Xn, one has V ol(Y, g) ≥ |deg(f)|V ol(X, go)

This theorem answers a conjecture of M. Gromov and provides the first ex-
act computations of (non trivial) minimal volumes in dimension n ≥ 3.

Proof : We first apply the theorem 1.3 to the map idX : (X, g) → (X, go).
It implies the existence of homotopic maps Fǫ, of degree 1 (and thus surjective),
such that (1 + ǫ)V ol(g) ≥ V ol (Fǫ(X), go) = V ol(go). Making ǫ → 0, we deduce
the first equality of (i).
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If V ol(g) = V ol(go), the equality case in the theorem 1.3 (i) proves that the F ′
ǫs

converge to an isometry. This proves (ii).
The same proof also gives (iii) if one notices that the integral on Y of the Jacobian
of the F ′

ǫs provides an upper bound for the degree of f .
On the other hand, if Kg ≤ −1, the second equality of (i) is proved by applying
the theorem 1.3 (ii) to the map idX : (X, go) → (X, g). ✸

3. Applications to Einstein manifolds :
An Einstein manifold is a Riemannian manifold whose Ricci curvature tensor
is proportional to the metric. As the moduli space of Einstein metrics on a
given compact manifold Y may also be characterized as the set of critical metrics
for the functional g → total scalar curvature of g, the main problem is thus
to describe this moduli space. In dimensions 2 and 3, it reduces to metrics of
constant sectional curvature, so this problem is relevant only when the dimension
is at least 4. However, in the non Kählerian case, very little is known. Even the
simplest questions :

3.1. - Does every n-manifold admit at least one Einstein metric?

3.2. - If a n-manifold X admits a negatively curved locally symmetric met-
ric, is it the only Einstein metric on X (modulo homotheties)?

are still conjectures in dimension n ≥ 5. In dimension 4, there were some
answers to the problem 3.1, involving the Euler characteristic χ(Y ), the signature
τ(Y ) and the simplicial volume :

3.3. - In the 3 following cases, a 4-dimensional compact manifold Y does
not admit any Einstein metric :
(i) If χ(Y ) < 0 (M. Berger, [Bes2]),
(ii) If χ(Y )− 3

2 |τ(Y )| < 0 (J. Thorpe, [Bes2] p 210),
(iii) If χ(Y ) < 1

2592π2 .SimplV ol(Y ) (M. Gromov, see [Bes2] theorem 6.47).

In dimension 4, nothing was known about the problem 3.2.
If true, the conjecture 3.2 would give a strong version of the Mostow’s rigidity
theorem. In fact, when the sectional curvature is a negative constant, the possible
local models are all homothetic. On the contrary, for negative Einstein manifolds,
the possible local models are not homothetic (see [Bes 2]). Thus, one must
previously find the topological (or global) reason which excludes all the possible
local models except one.

Let us thus assume that (Y, g) is a Einstein 4-dimensional manifold with
Riccig = (n − 1)k.g. The Allendœrfer-Chern-Weil formulas for the Euler char-

acteristic and the signature give 4π2

3

(

χ(Y )± 3
2τ(Y )

)

=
∫

Y
P±(Rg)dvg, where

P± is a quadratic form in Rg, which satisfies P±(Rg) ≥ k2 when g is Einstein,
the equality being achieved when g has constant sectional curvature k (see for
instance [Bes 2] or [Bes 3]). From this comes :
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(3.4) 4π2

3

(

χ(Y )− 3
2 |τ(Y )|

)

≥ k2 V ol(Y, g),

the equality being achieved when g has constant sectional curvature k. This
is the classical proof of the theorems 3.3 (i) and (ii).
Let us now assume that there exists some map f of nonzero degree from Y to some
hyperbolic 4-dimensional manifold X. The corollary 2.2 (iii) and the equality-case
of (3.4) imply

(3.5) Max(0,−k)2 V ol(Y, g) ≥ |degf | V ol(X, go) =
4π2

3 |degf |
(

χ(X)− 3
2 |τ(X)|

)

This implies that k < 0. If χ(Y ) − 3
2 |τ(Y )| = χ(X) − 3

2 |τ(X)| (for example
if Y is homotopically equivalent to X), the inequalities (3.4) and (3.5) are equali-
ties, thus |degf | = 1 and V ol(Y, g) = V ol(X, go). We thus are in the equality case
of the theorem 1.3 (i) and (Y, g) is isometric to (X, go). This applies in particular
to the case where Y = X and f = idX and proves the

3.6. Theorem ([B-C-G 1]).- Let X be a compact 4-dimensional manifold which
admits a real hyperbolic metric, then this is (modulo homotheties) the only Ein-
stein metric on X.

If χ(Y ) − 3
2 |τ(Y )| < |deg f | (χ(X) − 3

2 |τ(X)|), inequalities (3.4) and (3.5)
are contradicted and Y does not admit any Einstein metric (A. Sambusetti,
[Sam]), providing new answers to the conjecture 3.1 : in fact, from theorem 3.3
(ii), one might conjecture that any manifold Y which satisfies χ(Y )− 3

2 |τ(Y )| > 0
(or some other relation between χ and τ) admits an Einstein metric. M. Gro-
mov’s theorem 3.3 (iii) provided some counter-examples ([Bes 2] example 6.48); a
complete answer is the :

3.7. Proposition (A. Sambusetti, [Sam]).- To every possible values k and
t of the Euler characteristic and of the signature corresponds an infinity of (non
homeomorphic) 4-dimensional manifolds Yi which satisfy χ(Yi) = k and τ(Yi) = t

and which admit no Einstein metric.

The Yi’s are obtained by gluing, to any compact hyperbolic manifold X (such
that χ(X) > k), copies of ±CP 2, S2 × S2 or S2 × T

2, in order to obtain the
prescribed signature and Euler characteristic. One then apply the above Sam-
busetti’s obstruction to the map of degree one : Yi → X.
These results may be compared to those obtained simultaneously by C. LeBrun
([LeB 1,2]), using Seiberg-Witten invariants, in particular the :

3.8. Theorem (C. LeBrun, [LeB 1]).- Let X be a compact 4-dimensional
manifold which admits a complex hyperbolic metric, then this is (modulo homoth-
eties) the only Einstein metric on X.
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4. Sketch of the proof of the real Schwarz lemma (see [B-C-G 1,2,3]
for a complete proof) :
Rescaling the metrics gY and gX of the theorem 1.3, we may assume that
RiccigY ≥ −(n− 1) gY and KgX ≤ −1.

Let us consider the riemannian universal coverings (Ỹ , g̃Y ) and (X̃, g̃X) of the
compact riemannian manifolds (Y, gY ) and (X, gX), whose riemannian distance
and riemannian volume-measure are denoted by ρỸ , ρX̃ and dvg̃Y , dvg̃X . Let µc

y

be the measure on Ỹ defined by µc
y = e−cρỸ (y,•)dvg̃Y .

The infimum hY of the values c such that this measure is finite is called the

entropy of (Y, gY ). Another definition is hY = limR→+∞

(

1
RLog(V ol B̃(y,R))

)

,

where B̃(y,R) is the ball of (Ỹ , g̃Y ) centered at y and of radius R.

Let us consider positive measures µ on X̃ which are absolutely continuous w. r. t.
the riemannian measure and such that the function Dµ(x) =

∫

X̃
ρX̃(x, z) dµ(z)

is finite. Following an idea of H. Furstenberg ([Fu], see also [D-E]), the barycentre
bar(µ) is defined as the unique point where the function Dµ achieves its mini-
mum (the existence comes from the triangle inequality and the uniqueness from
the convexity of ρX̃). The barycentre is thus given by the implicit equation
(dDµ)|bar(µ)

= 0.

Let f̃ : Ỹ → X̃ be the lift of f , we define F̃c by F̃c(y) = bar(f̃∗µ
c
y), where

f̃∗µ
c
y is the push-forward by f̃ of the measure µc

y. If ρ = [f ] is the induced

representation π1(Y ) → π1(X), f̃ (and thus f̃∗ also) satisfies the equivariance
property f̃ ◦ γ = ρ(γ) ◦ f̃ for any deck-transformation γ ∈ π1(Y ). The invariance
of the distance and of the riemannian measure by deck-transformations implies
that bar (ρ(γ)∗µ) = ρ(γ) (bar(µ)) and µc

γ.y = γ∗µ
c
y. Thus F̃c is equivariant w. r.

t. the same representation ρ = [f ], and goes down to a map Fc : Y → X which is
homotopic to f.
Let c = (1+ ǫ) hY , we want to prove that, when ǫ → 0+, Fc answers theorem 1.3.
Let us define ∆ : X̃ × Ỹ → R by ∆(x, y) = Df̃∗µc

y
(x) and let ∂1 (resp. ∂2) be the

derivatives w. r. t. the first (resp. the second) parameter.
By the definition of F̃c and by the variational characterization of the barycentre,
F̃c is defined by the implicit equation : ∂1∆|(F̃c(y),y)

= 0.

By derivation, we get ∂1∂1∆|(F̃c(y),y)
(dF̃c(u), v) = − ∂2∂1∆|(F̃c(y),y)

(u, v) for any

u ∈ TyỸ and v ∈ TF̃c(y)
X̃. This writes

(4.1)
∫

Ỹ
DdρX̃|

(F̃c(y),f̃(z))

(dF̃c(u), v) dµ
c
y(z)

= c
∫

Ỹ
dρX̃|

(F̃c(y),f̃(z))

(v) dρỸ|(y,z)

(u) dµc
y(z) ≤ c g̃X(Hy(v), v)

1/2 g̃Y (Ky(u), u)
1/2,

where the tensor DdρX̃ is computed by derivation w. r. t. the first param-

eter and where Hy (resp.Ky) is the symmetric endomorphism of TF̃c(y)
X̃ (resp.

of TyỸ ) associated to the quadratic form v →
∫

Ỹ
(dρX̃|

(F̃c(y),f̃(z))
(v))2dµc

y(z) (resp.
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to the quadratic form u →
∫

Ỹ
(dρỸ|(y,z)

(u))2dµc
y(z) ).

As the gradient of ρX̃(•, f̃(z)) is a unit vector normal to the geodesic spheres

centered at f̃(z), the second fundamental form of these spheres is equal to
DdρX̃|

(•,f̃(z))
. As KgX ≤ −1, the Rauch’s comparison theorem provides the lower

bound coth ρX̃(•, f̃(z)) for the principal curvatures of these spheres, and thus
implies that g̃X − dρX̃ ⊗ dρX̃ is a lower bound for DdρX̃ .
First plugging this in (4.1), replacing c by its value and then writing the induced
inequality for determinants, we obtain :

(4.2) g̃X

(

(Id−Hy) ◦ dyF̃c(u), v
)

≤ (1+ ǫ) hY g̃X (Hy(v), v)
1/2

g̃y (Ky(u), u)
1/2

,

(4.3) (1 + ǫ)−nh−n
Y

det(Id−Hy)

(detHy)1/2
|det(dyF̃c)| ≤ (det Ky)

1/2 ≤
(

1
nTrace Ky

)n/2

As ‖dρỸ ‖ = 1 = ‖dρX̃‖, we have Trace Ky = 1 = TraceHy. On the other

hand, the function δ : A → det(I−A)
(detA)1/2

(defined on the set of symmetric positive

definite n × n matrices (n ≥ 3) whose trace is equal to 1) achieves its minimum
at the unique point Ao = 1

nI.

Plugging this in (4.3) gives : |det(dyF̃c)| ≤ (1 + ǫ)n
(

hY

n−1

)n

. We end the proof of

the general inequality of the theorem 1.3 by applying the comparison theorem of
R. L. Bishop : i. e. the assumption RiccigY ≥ −(n−1) implies that hY ≤ n−1. ✸

When KgY < 0, one may identify Ỹ with a ball and compactify it by addi-

tion of the sphere, called the ideal boundary and denoted ∂Ỹ . One may then
extend continuously f̃ to a map f̄ : ∂Ỹ → ∂X̃.
Let us fix an origin yo in Ỹ . A sequence of measures (µcn

yo
(Ỹ ))−1µcn

y con-

verges, on the compact set Ỹ ∪ ∂Ỹ (when cn → hY ), to a measure µy, with

support in ∂Ỹ , which is known as the Patterson-Sullivan measure and satisfies
µy = e−hY BỸ (y,•)µyo

, where BỸ (y, θ) = limt→+∞ [ρỸ (cθ(t), y)− t] and where cθ
is the normal geodesic-ray from yo to θ.
Mimicking the previous proof (just replacing ρỸ and ρX̃ by BỸ and BX̃), we

define F̃ by F̃ (y) = bar(f̄∗µy) and prove the inequality of the theorem 1.3 (ii) :

|det(dyF̃ )| ≤
(

hY

n−1

)n

≤ 1.

When |det(dyF̃ )| ≥
(

hY

n−1

)n

, and a fortiori when |JacF̃ | = 1, the analogues of the

inequalities (4.3) are equalities which imply that Ky = 1
nI and that δ achieves

its minimum at the point Hy, which is thus equal to Ao = 1
nI. Plugging this

in (4.2) and replacing v by dyF̃ (u), we deduce that dyF̃ is a contracting map
whose determinant is equal to 1, thus it is isometric (see [B-C-G 2,3] for more
explanations).
On the contrary, when KgY may take both signs, we have to prove that the Fc’s
admit a limit when c → hY , that this limit is a contracting map and that the
property of preserving global volumes implies that it is isometric (see [B-C-G 1]
sections 7 and 8). ✸
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5. Another version of the real Schwarz lemma :
The present version of the real Schwarz lemma is adapted to the case where the
target-space is a compact quotient of a hyperbolic space modelled on the real or
complex or quaternionic or Cayley field (the canonical basis of the field beeing
denoted by {1, J1, ..., Jd}).

5.1. Theorem ([B-C-G 1,2,3]).- Let (X, gX) be a compact locally symmetric
manifold with negative curvature and (Y, gY ) be any compact riemannian mani-
fold such that dim X = dim Y ≥ 3, then any continuous map f : Y → X may

be deformed to a family of C1 maps Fǫ(ǫ → 0+) such that |Jac Fǫ| ≤
(

hY +ǫ
hX

)n

.

In particular, one has (hY )
nV ol(Y ) ≥ |degf |(hX)nV ol(X). Moreover, if

(hY )
nV ol(Y ) = |degf |(hX)nV ol(X), then Y is also locally symmetric and f

is homotopic to a riemannian covering F (an isometry when |degf | = 1).

5.2. Remarks.- (1) This theorem proves conjectures of A. Katok and M.
Gromov about the minimal entropy.
(2) When (Y, gY ) has negative curvature and f is a homotopy equivalence, the
following proof provides a direct construction of F : Y → X which satisfies

|Jac F (y)| ≤
(

hY

hX

)n

and dyF is isometric in the equality case.

Sketch of the proof : We already proved the theorem 5.1 and the remark 5.2
(2) when (X, gX) is (locally) real hyperbolic (see section 4). In the other lo-
cally symmetric cases, the proof is exactly the same, except for the fact that,
expliciting the new expression of DdρX̃ , we have to prove that the function

A →
det(I−A−

∑

i
JiAJi)

(detA)1/2
still achieves its minimum at the unique point Ao = 1

nI.

This comes from the log-concavity of the determinant which reduces the problem
to minimizing the previous function δ (see [B-C-G 1]). ✸

5.3. Corollary (G.D. Mostow).- Let (X, gX) and (Y, gY ) be two compact
negatively curved locally symmetric manifolds such that dimX = dimY ≥ 3, then
any homotopy-equivalence f : Y → X is homotopic to an isometry.

Proof : Let g : X → Y such that g ◦ f ∼ idY . By the remark 5.2 (2),

there exist F ∼ f and G ∼ g such that |Jac(G ◦ F )| ≤
(

hX

hY

)n (
hY

hX

)n

. As the

degree of G ◦ F is equal to 1, this inequality is an equality and we are in the
equality case of the remark 5.2 (2), thus F is an isometry. ✸

This provides a unified proof for the Mostow’s rigidity theorem. Moreover,
the isometry F is explicitely constructed (see section 4)

6. Application to dynamics and Lichnerowicz’s conjecture :
Let φY

t : ċ(0) → ċ(t) (for any geodesic c) be the geodesic flow of Y. Two rie-
mannian manifolds Y andX are said to have the same dynamics iff there exists a
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C1-diffeomorphism Φ between their unitary tangent bundles UY and UX which
exchanges their geodesic flows, i. e. Φ ◦ φY

t = φX
t ◦ Φ. The fundamental question

is : two riemannian manifolds having the same dynamics are they isometric?
This is generally false, for there exists non isometric manifolds all of whose
geodesic are closed with the same period (see [Bes 1]). C. B. Croke and J. P. Otal
proved this conjecture to be true for negatively curved surfaces. In any dimension,
we get the

6.1. Theorem ([B-C-G 1]).- Any Riemannian manifold which has the same
dynamics as a negatively curved locally symmetric one is isometric to it.

Proof : As UY ≈ UX and n ≥ 3, the manifolds under consideration Y and
X are homotopically equivalent. As the volume and the entropy are invariants of
the dynamics, the assumption implies that hY = hX and V ol(Y ) = V ol(X); we
thus are in the equality case of the theorem 5.1 and Y and X are isometric. ✸

A riemannian manifold is said to be locally harmonic when all geodesic
spheres of its universal covering have constant mean curvature. Any locally
symmetric manifold of rank one is locally harmonic. A. Lichnerowicz asked for
the converse question : Consider any locally harmonic manifold, is it locally
symmetric of rank one?.

When the universal covering X̃ is compact, this conjecture was proved by Z.
Szabo ([Sz]). In the case where X̃ is noncompact, the geodesics have no conjugate
points ([Bes 1]), and the conjecture is not significantly changed when assuming
the sectional curvature to be negative. A counter-example (admitting no compact
quotient) was given by E. Damek and F. Ricci ([D-R]). Assuming that X̃ admits
a compact quotient, we get the

6.2. Corollary ([B-C-G 1]).- Any compact negatively curved locally har-
monic manifold is locally symmetric of rank one.

Proof : Under these assumptions, P. Foulon and F. Labourie ([F-L]) proved
that the manifold has the same dynamics as a negatively curved locally symmetric
manifold. We conclude by applying the theorem 6.1. ✸
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