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Compa
t Manifolds with Ex
eptional Holonomy

Dominic Joyce

Abstract. In the classification of Riemannian holonomy groups, the
exceptional holonomy groups are G2 in 7 dimensions, and Spin(7) in 8
dimensions. We outline the construction of the first known examples of
compact 7- and 8-manifolds with holonomy G2 and Spin(7).

In the case of G2, we first choose a finite group Γ of automorphisms of
the torus T 7 and a flat Γ-invariant G2-structure on T 7, so that T 7/Γ is
an orbifold. Then we resolve the singularities of T 7/Γ to get a compact
7-manifold M . Finally we use analysis, and an understanding of Calabi-
Yau metrics, to construct a family of metrics with holonomy G2 on M ,
which converge to the singular metric on T 7/Γ.
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In the theory of Riemannian holonomy groups, perhaps the most mysterious are
the two exceptional cases, the holonomy group G2 in 7 dimensions and the holon-
omy group Spin(7) in 8 dimensions. We shall describe the construction of the first
known examples of compact 7-manifolds with holonomy G2. There is a very sim-
ilar construction for compact 8-manifolds with holonomy Spin(7), which we will
not discuss because of lack of space. All the details can be found in the author’s
papers [5], [6], [7] and the forthcoming book [8]. A good reference on Riemannian
holonomy groups, and G2 and Spin(7) in particular, is the book by Salamon [13].

1 Riemannian holonomy groups

Let M be a connected n-dimensional manifold, let g be a Riemannian metric on
M , and let ∇ be the Levi-Civita connection of g. Let x, y be points in M joined
by a smooth path γ. Then parallel transport along γ using ∇ defines an isometry
between the tangent spaces TxM , TyM at x and y.

Definition 1.1 The holonomy group Hol(g) of g is the group of isometries of
TxM generated by parallel transport around closed loops based at x in M . We
consider Hol(g) to be a subgroup of O(n), defined up to conjugation by elements
of O(n). Then Hol(g) is independent of the base point x in M .

The classification of holonomy groups was achieved by Berger [1] in 1955.
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Theorem 1.2 Let M be a simply-connected, n-dimensional manifold, and g an

irreducible, nonsymmetric Riemannian metric on M . Then either

(i) Hol(g) = SO(n),
(ii) n = 2m and Hol(g) = SU(m) or U(m),
(iii) n = 4m and Hol(g) = Sp(m) or Sp(m)Sp(1),
(iv) n = 7 and Hol(g) = G2, or

(v) n = 8 and Hol(g) = Spin(7).

Now G2 and Spin(7) are the exceptional cases in this classification, so they are
called the exceptional holonomy groups. For some time after Berger’s classification,
the exceptional holonomy groups remained a mystery. In 1987, Bryant [2] used the
theory of exterior differential systems to show that locally there exist many metrics
with these holonomy groups, and gave some explicit, incomplete examples. Then in
1989, Bryant and Salamon [3] found explicit, complete metrics with holonomy G2

and Spin(7) on noncompact manifolds. In 1994-5 the author constructed examples
of metrics with holonomy G2 and Spin(7) on compact manifolds [5, 6, 7, 8], and
these are the subject of this article.

We now introduce the holonomy group G2. Let (x1, . . . , x7) be coordinates
on R

7. Define a metric g0 and a 3-form ϕ0 on R
7 by

g0 =dx21 + · · ·+ dx27, (1)

ϕ0 =dx1∧dx2∧dx7 + dx1∧dx3∧dx6 + dx1∧dx4∧dx5 + dx2∧dx3∧dx5

− dx2∧dx4∧dx6 + dx3∧dx4∧dx7 + dx5∧dx6∧dx7.
(2)

The subgroup of GL(7,R) preserving ϕ0 is the exceptional Lie group G2. This
group also preserves g0 and the orientation on R

7. It is a compact, semisimple,
14-dimensional Lie group, a subgroup of SO(7).

AG2-structure on a 7-manifoldM is a principal subbundle of the frame bundle
of M , with structure group G2. Each G2-structure gives rise to a 3-form ϕ and a
metric g on M , such that every tangent space of M admits an isomorphism with
R

7 identifying ϕ and g with ϕ0 and g0 respectively. By an abuse of notation, we
will refer to (ϕ, g) as a G2-structure.

Proposition 1.3 Let M be a 7-manifold and (ϕ, g) a G2-structure on M . Then

the following are equivalent:

(i) Hol(g) ⊆ G2, and ϕ is the induced 3-form,

(ii) ∇ϕ = 0 on M , where ∇ is the Levi-Civita connection of g, and

(iii) dϕ = d∗ϕ = 0 on M .

We call ∇ϕ the torsion of the G2-structure (ϕ, g), and when ∇ϕ = 0 the
G2-structure is torsion-free. If (ϕ, g) is torsion-free, then g is Ricci-flat.

Proposition 1.4 Let M be a compact 7-manifold, and suppose that (ϕ, g) is a

torsion-free G2-structure on M . Then Hol(g) = G2 if and only if π1(M) is finite.
In this case the moduli space of metrics with holonomy G2 on M , up to diffeomor-

phisms isotopic to the identity, is a smooth manifold of dimension b3(M).
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2 A ‘Kummer construction’ for a 7-manifold

It is well known that metrics with holonomy SU(2) on the K3 surface can be
obtained by resolving the 16 singularities of the orbifold T 4/Z2, where Z2 acts on
T 4 with 16 fixed points. This is called the Kummer construction. Our construction
is motivated by and modelled on this. It can be divided into four steps. Here is a
summary of each. For simplicity we will describe the G2 case only, but the Spin(7)
case is very similar.

Step 1. Let T 7 be the 7-torus. Let (ϕ0, g0) be a flatG2-structure on T
7. Choose

a finite group Γ of isometries of T 7 preserving (ϕ0, g0). Then the
quotient T 7/Γ is a singular, compact 7-manifold.

Step 2. For certain special groups Γ there is a method to resolve the singulari-
ties of T 7/Γ in a natural way, using complex geometry. We get a non-
singular, compact 7-manifold M , together with a map π :M → T 7/Γ,
the resolving map.

Step 3. On M , we explicitly write down a 1-parameter family of G2-structures
(ϕt, gt) depending on a real variable t ∈ (0, ǫ). These G2-structures
are not torsion-free, but when t is small, they have small torsion. As
t→ 0, the G2-structure (ϕt, gt) converges to the singular G2-structure
π∗(ϕ0, g0).

Step 4. We prove using analysis that for all sufficiently small t, theG2-structure
(ϕt, gt) on M , with small torsion, can be deformed to a G2-structure
(ϕ̃t, g̃t), with zero torsion. Finally, we show that g̃t is a metric with
holonomy G2 on the compact 7-manifold M .

We will now explain the steps in greater detail.

Step 1

Here is an example of a suitable group Γ. Let (x1, . . . , x7) be coordinates on
T 7 = R

7/Z7, where xi ∈ R/Z. Let (ϕ0, g0) be the flat G2-structure on T 7 defined
by (2). Let α, β and γ be the involutions of T 7 defined by

α
(

(x1, . . . , x7)
)

=
(

−x1,−x2,−x3,−x4, x5, x6, x7
)

, (3)

β
(

(x1, . . . , x7)
)

=
(

−x1,
1

2
− x2, x3, x4,−x5,−x6, x7

)

, (4)

γ
(

(x1, . . . , x7)
)

=
(

1

2
− x1, x2,

1

2
− x3, x4,−x5, x6,−x7

)

. (5)

By inspection, α, β and γ preserve (ϕ0, g0), because of the careful choice of exactly
which signs to change. Also, α2 = β2 = γ2 = 1, and α, β and γ commute. Thus
they generate a group Γ = 〈α, β, γ〉 ∼= Z

3
2 of isometries of T 7 preserving the flat

G2-structure (ϕ0, g0).

Lemma 2.1 The elements βγ, γα, αβ and αβγ of Γ have no fixed points on T 7.

The fixed points of α, β, γ are each 16 copies of T 3. The singular set S of T 7/Γ is

a disjoint union of 12 copies of T 3, 4 copies from each of α, β, γ. Each component

of S is a singularity modelled on that of T 3 × C
2/{±1}.
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Thus the singular set splits into a disjoint union of connected components,
and each component is very simple. This is helpful because we can desingularize
each connected component independently, and simple singularities are easier to
resolve.

Step 2

Our goal is to resolve the singular set S of T 7/Γ to get a compact 7-manifold M
with holonomy G2. How can we do this? In general we cannot, because we have no
idea of how to resolve general orbifold singularities with holonomy G2. However,
suppose we can arrange that every connected component of S is locally isomorphic
to either

(a) T 3 × C
2/G, for G a finite subgroup of SU(2), or

(b) S1 × C
3/G, for G a finite subgroup of SU(3) acting freely on C

3 \ 0.

In this case we can use complex algebraic geometry to find a natural resolution X
of C2/G or Y of C3/G, and then T 3 ×X or S1 ×Y gives a local model for how to
resolve the corresponding component of S in T 7/Γ.

In case (a), X must have a Kähler metric h with holonomy SU(2) that
is asymptotic to the flat Euclidean metric on C

2/G. Such metrics are called
Asymptotically Locally Euclidean (ALE). They have been classified by Kronheimer
[10, 11], and they exist for every finite subgroup G ⊂ SU(2). The point is that
if X has holonomy SU(2), then the product 7-manifold T 3 × X has holonomy
{1} × SU(2). But {1} × SU(2) is a subgroup of G2, and so T 3 ×X has a torsion-
free G2-structure by Proposition 1.3. Hence, T 3 ×X gives a local model for how
to resolve the singularity T 3 × C

2/G with holonomy G2.
In case (b), Y is a crepant resolution of C3/G, and carries an ALE Kähler

metric h with holonomy SU(3). Such resolutions and metrics exist for all finite
G ⊂ SU(3), by work of Roan [12] and the author [8]. Since {1} × SU(3) ⊂
G2, if (Y, h) has holonomy SU(3) then S1 × Y has a torsion-free G2-structure,
and provides a local model for how to resolve the singularity S1 × C

3/G with
holonomy G2.

Suppose that all the singularities of T 7/Γ are of type (a) or (b). Then we
can construct a compact, nonsingular 7-manifold M by resolving each singularity
T 3 ×C

2/G using T 3 ×X, and resolving each singularity S1 ×C
3/G using S1 ×Y ,

as above. In the example this means gluing 12 copies of T 3 ×X into T 7/Γ, where
X is the blow-up of C2/{±1} at its singular point.

Step 3

For each resolution X of C2/G in case (a), and Y of C3/G in case (b), we can find
a 1-parameter family {ht : t > 0} of metrics with the properties

(a) ht is a Kähler metric on X with Hol(ht) = SU(2). Its injectivity radius
satisfies δ(ht) = O(t), its Riemann curvature satisfies

∥

∥R(ht)
∥

∥

C0
=

O(t−2), and ht = h + O(t4r−4) for large r, where h is the Euclidean
metric on C

2/G, and r the distance from the origin.
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(b) ht is Kähler on Y with Hol(ht) = SU(3), satisfying δ(ht) = O(t),
∥

∥R(ht)
∥

∥

C0
= O(t−2), and ht = h+O(t6r−6) for large r.

In fact we can choose ht to be isometric to t2h1, and the properties above are easy
to prove.

Suppose one of the components of the singular set S of T 7/Γ is locally mod-
elled on T 3×C

2/G. Then T 3 has a natural flat metric hT 3 . LetX be the resolution
of C2/G and let {ht : t > 0} satisfy property (a). Then ĝt = hT 3 + ht is a metric
on T 3 ×X with holonomy {1} × SU(2), which is contained in G2. Thus there is
an associated torsion-free G2-structure (ϕ̂t, ĝt) on T

3 ×X. Similarly, if a compo-
nent of S is modelled on S1 ×C

3/G, we get a family of torsion-free G2-structures
(ϕ̂t, ĝt) on S1 × Y .

The idea is to make a G2-structure (ϕt, gt) on M by gluing together the
torsion-freeG2-structures (ϕ̂t, ĝt) on the patches T 3×X and S1×Y , and (ϕ0, g0) on
T 7/Γ. The gluing is done using a partition of unity. Naturally, the first derivative
of the partition of unity introduces ‘errors’, so that (ϕt, gt) is not torsion-free.
The size of the torsion ∇ϕt depends on the difference ϕ̂t −ϕ0 in the region where
the partition of unity changes. On the patches T 3 ×X, since ht − h = O(t4r−4)
and the partition of unity has nonzero derivative when r = O(1), we find that
∇ϕt = O(t4). Similarly ∇ϕt = O(t6) on the patches S1 × Y , and so ∇ϕt = O(t4)
on M .

For small t, the dominant contributions to the injectivity radius δ(gt) and
Riemann curvature R(gt) are made by those of the metrics ht on X and Y , so we
expect δ(gt) = O(t) and

∥

∥R(gt)
∥

∥

C0
= O(t−2) by properties (a) and (b) above. In

this way we prove the following result, which gives the estimates on (ϕt, gt) that
we need.

Theorem A On the compact 7-manifold M described above, and on many other

7-manifolds constructed in a similar fashion, one can write down the following

data explicitly in coordinates:

• Positive constants A1, A2, A3 and ǫ,

• A G2-structure (ϕt, gt) on M with dϕt = 0 for each t ∈ (0, ǫ), and

• A 3-form ψt on M with d∗ψt = d∗ϕt for each t ∈ (0, ǫ).

These satisfy three conditions:

(i) ‖ψt‖L2 ≤ A1t
4 and ‖d∗ψt‖L14 ≤ A1t

4,

(ii) the injectivity radius δ(gt) satisfies δ(gt) ≥ A2t,

(iii) the Riemann curvature R(gt) of gt satisfies
∥

∥R(gt)
∥

∥

C0
≤ A3t

−2.

Here the operator d∗ and the norms ‖ . ‖L2 , ‖ . ‖L14 and ‖ . ‖C0 depend on gt.

Here one should regard ψt as a first integral of the torsion ∇ϕt of (ϕt, gt).
Thus the norms ‖ψt‖L2 ≤ A1t

4 and ‖d∗ψt‖L14 ≤ A1t
4 are measures of ∇ϕt. So

parts (i)-(iii) say that the torsion ∇ϕt must be small compared to the injectivity
radius and Riemann curvature of (M, gt).
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Step 4

We prove the following analysis result.

Theorem B In the situation of Theorem A there are constants κ,K > 0 depending

only on A1, A2, A3 and ǫ, such that for each t ∈ (0, κ] there exists a smooth,

torsion-free G2-structure (ϕ̃t, g̃t) on M with ‖ϕ̃t − ϕt‖C0 ≤ Kt1/2.

Basically, this result says that if (ϕ, g) is a G2-structure onM , and the torsion
∇ϕ is sufficiently small, then we can deform to a nearby G2-structure (ϕ̃, g̃) that is
torsion-free. Here is a sketch of the proof of Theorem B, ignoring several technical
points. The proof is that given in [8], which is an improved version of the proof in
[5]. For simplicity we omit the subscripts t.

We have a 3-form ϕ with dϕ = 0 and d∗ϕ = d∗ψ for small ψ, and we wish to
construct a nearby 3-form ϕ̃ with dϕ̃ = 0 and d̃∗ϕ̃ = 0. Set ϕ̃ = ϕ + dη, where η
is a small 2-form. Then η must satisfy a nonlinear p.d.e., which we write as

d∗dη = −d∗ψ + d∗F (dη), (6)

where F is nonlinear, satisfying F (dη) = O
(

|dη|2
)

.
We solve (6) by iteration, introducing a sequence {ηj}

∞

j=0 with η0 = 0, satis-
fying the inductive equations

d∗dηj+1 = −d∗ψ + d∗F (dηj), d∗ηj+1 = 0. (7)

If such a sequence exists and converges to η, then taking the limit in (7) shows
that η satisfies (6), giving us the solution we want.

The key to proving this is an inductive estimate on the sequence {ηj}
∞

j=0. The
inductive estimate we use has three ingredients, the equations

‖dηj+1‖L2 ≤ ‖ψ‖L2 + C1‖dηj‖L2‖dηj‖C0 , (8)

‖∇dηj+1‖L14 ≤ C2

(

‖d∗ψ‖L14 + ‖∇dηj‖L14‖dηj‖C0 + t−4‖dηj+1‖L2

)

, (9)

‖dηj‖C0 ≤ C3

(

t1/2‖∇dηj‖L14 + t−7/2‖dηj‖L2

)

. (10)

Here C1, C2, C3 are positive constants independent of t. Equation (8) is obtained
from (7) by taking the L2-inner product with ηj+1 and integrating by parts. Using
the fact that d∗ϕ = d∗ψ and ψ is O(t4), we get a powerful a priori estimate of the
L2-norm of dηj+1.

Equation (9) is derived from an elliptic regularity estimate for the operator
d+ d∗ acting on 3-forms on M . Equation (10) follows from the Sobolev embedding

theorem, since L14
1 (M) embeds in C0(M). Both (9) and (10) are proved on small

balls of radius O(t) in M , using parts (ii) and (iii) of Theorem A, and this is
where the powers of t come from.

Using (8)-(10) and part (i) of Theorem A we show that if

‖dηj‖L2 ≤ C4t
4, ‖∇dηj‖L14 ≤ C5, and ‖dηj‖C0 ≤ Kt1/2, (11)

where C4, C5 and K are positive constants depending on C1, C2, C3 and A1, and if
t is sufficiently small, then the same inequalities (11) apply to dηj+1. Since η0 = 0,
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by induction (11) applies for all j and the sequence {dηj}
∞

j=0 is bounded in the

Banach space L14
1 (Λ3T ∗M). One can then use standard techniques in analysis to

prove that this sequence converges to a smooth limit dη. This concludes the sketch
proof of Theorem B.

From Theorems A and B we see that the compact 7-manifold M constructed
in Step 2 admits torsion-free G2-structures (ϕ̃, g̃). Proposition 1.4 then shows that
Hol(g̃) = G2 if and only if π1(M) is finite. In the example above M is simply-
connected, and so π1(M) = {1} and M has metrics with holonomy G2, as we
want.

By considering different groups Γ acting on T 7, and also by finding topologi-
cally distinct resolutions M1, . . . ,Mk of the same orbifold T 7/Γ, we can construct
many compact Riemannian 7-manifolds with holonomy G2. Here is a graph of
the Betti numbers b2(M) and b3(M) of the 68 examples found in [5, 6]. More
examples will be given in [8].
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Betti numbers of known compact 7-manifolds with holonomy G2

On this graph the symbol ‘•’ denotes the Betti numbers of a simply-connected
7-manifold, ‘◦’ denotes a non-simply-connected manifold, and ‘+’ denotes both a
simply-connected and a non-simply-connected manifold.

So far we have discussed only the holonomy group G2. There is a very sim-
ilar construction for compact manifolds with holonomy Spin(7), described in [7]
and [8]. Here are some of the similarities and differences in the two cases. The
holonomy group Spin(7) is a subgroup of SO(8), a compact 21-dimensional Lie
group isomorphic to the double cover of SO(7). It is the subgroup of GL(8,R)
preserving a certain 4-form Ω0 on R

8, and also preserves the Euclidean metric g0
on R

8.
Thus a Spin(7)-structure on an 8-manifold M is equivalent to a pair (Ω, g),

where Ω is a 4-form and g a Riemann metric that are pointwise isomorphic to Ω0

and g0. Riemannian manifolds with holonomy Spin(7) are Ricci-flat. Compact
manifolds M with holonomy Spin(7) are simply-connected spin manifolds, and
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computing the index of the Dirac operator shows that their Betti numbers must
satisfy b3(M) + b4+(M) = b2(M) + b4

−
(M) + 25.

We can construct compact 8-manifolds with holonomy Spin(7) by resolving
the singularities of orbifolds T 8/Γ. The construction is more difficult than the G2

case in two ways. Firstly, it seems to be more difficult to find suitable orbifolds
T 8/Γ, and it is necessary to consider more complicated kinds of orbifold singular-
ities. Secondly, the analysis is more difficult, and one has to try harder to make
the sequence converge. In [7] we find at least 95 topologically distinct compact
8-manifolds with holonomy Spin(7), realizing 29 distinct sets of Betti numbers,
and [8] will give more examples.

Note that compact manifolds with holonomy G2 and Spin(7) are examples
of compact Ricci-flat Riemannian manifolds. In fact, compact manifolds with
holonomy G2 are the only known source of odd-dimensional examples of compact,
simply-connected Ricci-flat Riemannian manifolds.

3 Directions for future research

Here are four areas in which I hope to see interesting developments soon.

• Other constructions of compact manifolds with exceptional holonomy. The
author has extended the constructions of [5]-[7] to include resolutions of more
general quotient singularities, in particular non-isolated quotient singularities
C

m/G for G a finite subgroup of SU(m) and m = 3 or 4, and the results
will be published in [8]. Another promising possibility is to try to replace
the orbifold T 7/Γ by (S1 ×W )/Γ, where W is a Calabi-Yau 3-fold.

• Harvey and Lawson’s theory of calibrated geometry [4] singles out three
classes of special submanifolds in manifolds of exceptional holonomy: asso-

ciative 3-folds and coassociative 4-folds in G2-manifolds, and Cayley 4-folds

in Spin(7)-manifolds. They are minimal submanifolds, and have good prop-
erties under deformation. Compact examples can be constructed as the fixed
point sets of isometries, as in [6].

It would be interesting to study families of compact manifolds of these types,
to understand the way singularities develop in such families, and whether a
compact G2 or Spin(7)-manifold can be fibred by coassociative or Cayley
4-manifolds, with some singular fibres.

• Gauge theory on compact Spin(7)-manifolds. Let M be a compact 8-
manifold with holonomy Spin(7), let E be a vector bundle or principal bundle
over M , and let A be a connection on E. Then the curvature FA of A is a
2-form with values in ad(E). Now the Spin(7)-structure induces a splitting
Λ2T ∗M = Λ2

7⊕Λ2
21, where Λ

2
7,Λ

2
21 are vector bundles over M with fibre R7,

R
21 respectively. We call A a Spin(7)-instanton if the component of FA in

ad(E)⊗ Λ2
7 is zero.

It turns out that Spin(7)-instantons have many properties in common with
instantons in 4 dimensions, that are studied in Donaldson theory. Christo-
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pher Lewis and the author [9] have proved an existence theorem for Spin(7)-
instantons with gauge group SU(2) on certain compact 8-manifolds with
holonomy Spin(7). In 4 dimensions a sequence of instantons can ‘bubble’
at a finite number of points. In 8 dimensions we expect ‘bubbling’ to occur
instead around a compact Cayley 4-manifold, and we construct families of
instantons in which this happens.

• Connections with String Theory. String Theory is a branch of high-energy
theoretical physics that aims to unify quantum theory and gravity by mod-
elling particles as 1-dimensional objects called strings. One of its features is
that it prescribes the dimension of space-time. This depends on the details of
the theory, but the most popular model, supersymmetric string theory, gives
dimension 10. To explain the discrepancy between this and the 4 space-time
dimensions that we observe, it is supposed that the universe looks locally
like R

4 ×M6, where M6 is a compact 6-manifold with very small radius, of
order 10−33cm.

In supersymmetric string theory, M must be a Calabi-Yau 3-fold. So string
theorists are interested in Calabi-Yau 3-folds, and have contributed many
ideas to the subject, including that of Mirror Symmetry. However, if in-
stead we consider R3 ×M7, corresponding to an observable universe with 3
space-time dimensions, then by work of Vafa and Shatashvili M7 must be a
compact 7-manifold with holonomy G2. Similarly, if we consider R

2 ×M8,
so that the observable universe has 2 space-time dimensions, then M8 is a
compact 8-manifold with holonomy Spin(7).

Recently, string theorists have begun to seriously consider the possibility that
the universe may have 11 dimensions (‘M theory’) or even 12 dimensions (‘F
theory’). To reduce to 4 observable space-time dimensions in these theories
will require a manifold of dimension 7 or 8, and it seems likely that compact
manifolds with exceptional holonomy will play a rôle in this.
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