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Geometry on the Group

of Hamiltonian Diffeomorphisms

Leonid Polterovich

Abstract. The group of Hamiltonian diffeomorphisms Ham(M,Ω) of
a symplectic manifold (M,Ω) plays a fundamental role both in geometry
and classical mechanics. For a geometer, at least under some assumptions
on the manifoldM , this is just the connected component of the identity in
the group of all isometries of the symplectic structure Ω. From the point
of view of mechanics, Ham(M,Ω) is the group of all admissible motions.
It was discovered by H. Hofer ([H1], 1990) that this group carries a nat-
ural Finsler metric with a non-degenerate distance function. Intuitively
speaking, the distance between a given Hamiltonian diffeomorphism f
and the identity transformation is equal to the minimal amount of en-
ergy required in order to generate f . This new geometry has been inten-
sively studied for the past 8 years in the framework of modern symplectic
topology. It serves as a source of refreshing problems and gives rise to
new methods and notions. Also, it opens up the intriguing prospect of
using an alternative geometric intuition in Hamiltonian dynamics. In the
present note we discuss these developments.

1991 Mathematics Subject Classification: 58Dxx (Primary) 58F05 53C15
(Secondary)

1. The group of Hamiltonian diffeomorphisms. Let (M,Ω) be a connected
symplectic manifold without boundary. Every smooth compactly supported func-
tion F on M × [0; 1] defines a Hamiltonian flow ft : M → M . This flow is
generated by a time-dependent vector field ξt on M which satisfies the point-wise
linear algebraic equation Ω(., ξt) = dFt(.), where Ft(x) stands for F (x, t). Sym-
plectomorphisms ft arising in this way are called Hamiltonian diffeomorphisms.
Hamiltonian diffeomorphisms form an infinite-dimensional Lie group Ham(M,Ω).
When H1

comp(M,R) = 0 this group coincides with Symp0(M,Ω) - the identity
component of the group of all symplectomorphisms in the strong Whitney topo-
logy. In general the quotient group Symp0(M,Ω)/Ham(M,Ω) is non-trivial but
“quite small” [Ba]. The Lie algebra A of Ham(M,Ω) consists of all smooth func-
tions on M which satisfy the following normalization condition. Namely when M
is open F ∈ A iff F is compactly supported, and when M is closed F ∈ A iff
F has the zero mean with respect to the canonical measure on M induced by Ω.
With this normalization different functions from A generate different Hamiltonian
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vector fields. The Lie bracket on A is the Poisson bracket, and the adjoint action
of Ham(M,Ω) on A is the standard action of diffeomorphisms on functions.

2. Hofer’s metric. Consider the L∞-norm ||F || = maxM F − minM F on A.
This norm is invariant under the adjoint action, and thus defines a biinvariant
Finsler metric on Ham(M,Ω). This Finsler metric determines in the standard
way a length structure, and a pseudo-distance ρ on the group. More explicitly, let
{ft}, t ∈ [0; 1] be a path of Hamiltonian diffeomorphisms with f0 = φ and f1 = ψ.
Let F (x, t) be its normalized Hamiltonian function, that is F (., t) ∈ A for all t.
Then

length{ft} =

∫ 1

0

||F (., t)||dt,

and ρ(φ, ψ) = inf length{ft}, where the infimum is taken over all smooth paths
{ft} which join φ and ψ.

A non-trivial fact is that the pseudo-distance ρ is non-degenerate, that is
ρ(φ, ψ) 6= 0 for φ 6= ψ (this was proved in [H1] for R2n, then extended in [P1] for
some other symplectic manifolds, and finally confirmed in [LM1] in full generality).
Note that the construction above goes through for any other norm on the Lie
algebra which is invariant under the adjoint action, for instance for the Lp-norm.
However for all 1 ≤ p <∞ the corresponding pseudo-distance is degenerate [EP].

Interestingly enough, the quantity ρ(id, φ) can be interpreted as the distance
between a point and a subset in a linear normed space [P7]. Consider the space F
of all smooth compactly supported functions F onM×S1 such that F (., t) ∈ A for
all t ∈ S1 = R/Z. For F ∈ F denote by φF the time-one-map of the Hamiltonian
flow generated by F . Every Hamiltonian diffeomorphism can be expressed in
this way. Let H ⊂ F be the subset of all functions H which generate loops
of Hamiltonian diffeomorphisms, that is φH = id. Introduce a norm on F by
|||F ||| = maxt ||F (., t)||. It is easy to show that

(2.A) ρ(id, φF ) = inf
H∈H

|||F −H|||.

Thus the set H carries a lot of information about Hofer’s geometry.
We complete this section with the following open problem in the very foun-

dation of Hofer’s geometry [EP]. It is quite natural (see section 7 below) to
consider the “maximum” and the “minimum” parts of Hofer’s length structure

separately. Namely set length+{ft} =
∫ 1

0
maxx F (x, t)dt and length−{ft} =∫ 1

0
−minx F (x, t)dt, and define ρ+(φ, ψ) and ρ−(φ, ψ) as the infimum of positive

and negative lengths respectively over all paths {ft} with f0 = φ and f1 = ψ.
Clearly, ρ(φ, ψ) ≥ ρ−(φ, ψ) + ρ+(φ, ψ). In fact, in all examples known to me the
equality holds. It would be interesting either to prove this, or to find a counterex-
ample.

3. Displacement energy. Consider any norm on A invariant under the adjoint
action, and denote by ρ′ the corresponding pseudo-distance. For a subset U of M
denote by GU the set of all Hamiltonian diffeomorphisms f such that f(U)∩U = ∅.
Define the displacement energy of U as ρ′(id, GU ). We use the convention that the
displacement energy equals +∞ when GU is empty. Clearly this is a symplectic
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invariant. It takes strictly positive values on non-empty open subsets if and only
if the pseudo-metric ρ′ is non-degenerate [EP]. Denote by e(U) the displacement
energy with respect to Hofer’s metric.

Example 3.A Every symplectic manifold of dimension 2n admits a symplec-
tic embedding of a standard 2n-dimensional ball of a sufficiently small radius r.
The supremum of πr2 where r runs over such the embeddings is called Gromov’s
width of the symplectic manifold. Hofer showed [H1] that for every open subset
U of the standard symplectic vector space R

2n holds e(U) ≥ width(U). Later
on it was proved in [LM1] that e(U) ≥ 1

2width(U) for every open subset U of an
arbitrary symplectic manifold. Conjecturally, in the general case the factor 1

2 can
be removed.

Example 3.B Consider the cotangent bundle θ : T ∗Tn → Tn with a twisted
symplectic structure dp ∧ dq + θ∗σ, where σ is a closed 2-form on Tn. Such
structures arise in the theory of magnetic fields. Denote by Z ⊂ T ∗Tn the zero
section. If σ = 0 then f(Z)∩Z 6= ∅ for every Hamiltonian diffeomorphism f (this
is the famous Arnold’s Lagrangian intersections conjecture proved by Chaperon,
Hofer and Laudenbach-Sikorav, see [MS]). Thus e(Z) = +∞. However if σ 6= 0
then Z admits a nowhere tangent Hamiltonian vector field [P2], and thus e(Z) = 0.

4. A paradox of Hofer’s geometry. What does the metric space Ham(M,Ω)
look like? Here we present two results which intuitively contradict one another,
and no convincing explanation is known at present. The first one is the following
C1-flatness phenomenon.

Theorem 4.A [BP1]. There exists a C1-neighbourhood E of the identity in

Ham(R2n) and a C2-neighbourhood C of zero in A such that (E , ρ) is isometric to

(C, || ||).

The isometry takes every C1-small Hamiltonian diffeomorphism from E to its
classical generating function. Some generalizations can be found in [LM2].

The second result, due to J.-C. Sikorav [S] states that every one-parameter
subgroup of Ham(R2n) remains a bounded distance from the identity (see discussion
in §6 below). This can be interpreted as a “positive curvature type effect”.

It sounds likely that in order to resolve this paradox one should understand
properly the interrelation between the topology on Ham(M,Ω) which comes from
Hofer’s metric, and the smooth structure on the group. For instance, paths which
are continuous in the metric topology can be non-continuous in the usual sense,
and there is no satisfactory way to think about them. In what follows we restrict
ourselves to smooth paths, homotopies, etc.

5. Geodesics. The C1-flatness phenomenon above serves as the starting point
for the theory of geodesics of Hofer’s metric. Indeed, at least on small time inter-
vals the geodesics should behave as the ones in the linear normed space (A, || ||).
This leads to the following definition [BP1]. Consider a smooth path of Hamilto-
nian diffeomorphisms of (M,Ω) generated by a normalized Hamiltonian function
F (x, t). Assume that ||F (., t)|| 6= 0 for all t. The path is called quasi-autonomous
if there exist two (time-independent!) points x+ and x− on M such that for all t
the function F (., t) attains its maximal and minimal values at x+ and x− respec-
tively. For instance, every one-parameter subgroup is quasi-autonomous. A path
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of Hamiltonian diffeomorphisms is called a minimal geodesic if each of its segments
minimizes length in the homotopy class of paths with fixed end points. It turns out
that every minimal geodesic is quasi-autonomous [LM2]. However the converse is
not true in general (see Sikorav’s result above). In [H2] Hofer discovered a surpris-
ing link between minimality of paths on the group of Hamiltonian diffeomorphisms
and closed orbits of corresponding Hamiltonian flows. Numerous further results in
this direction (see [HZ],[BP1],[Si1],[LM2] and [Sch]) serve as a motivation for the
following conjecture. A closed orbit of period c of a (time-dependent) flow {ft}
with f0 = id is a piece of the trajectory of a point x ∈ M on a time interval [0; c]
such that x = fcx. A closed orbit is called constant if it corresponds to a fixed
point of the flow, that is ftx = x for all t.

Conjecture 5.A. Let {ft}, t ∈ [0;T ], f0 = id be a quasi-autonomous path

of Hamiltonian diffeomorphisms. Assume that the flow {ft} has no contractible

non-constant closed orbits of period less than T . Then this path is a minimal

geodesic.

As an immediate consequence one gets that one-parameter subgroups should
be minimal on short time intervals. In 8.A and 9.A below we describe a minimality-
breaking mechanism on large time intervals which together with 5.A allows us to
detect non-trivial closed orbits. In 9.B we give an example of an infinite minimal
geodesic. The study of the breaking of minimality is still far from being completed.
Another step in this direction was made in the framework of the theory of conjugate
points (see [U],[LM2]) which deals with the local behavior of the length functional
under small deformations of quasi-autonomous paths, and where an infinitesimal
version of 5.A plays a crucial role.

6. Diameter. Here we discuss the following conjecture.

Conjecture 6.A. The diameter of Ham(M,Ω) with respect to Hofer’s metric is

infinite.

The conjecture is established at present for a number of manifolds (see
[LM2],[P7],[Sch]). We shall illustrate the methods in the case when (M,Ω) is
a closed oriented surface endowed with an area form. In the case when the genus
ofM is at least 1, the conjecture was proved in [LM2] as follows. One can produce
a Hamiltonian flow on M whose lift to the universal cover displaces a disc of an
arbitrarily large area. For instance, take a flow which is the standard rotation in
a small neighbourhood of a non-contractible curve on M . Inequality 3.A implies
that such a flow goes arbitrarily far away from the identity. There is also a different
proof [Sch] which is based on the analysis of closed orbits (cf. 5.A).

These methods do not work when M is the 2-sphere. This case was treated
in [P7] as follows. Consider the set H of all 1-periodic normalized Hamiltonians
which generate the identity map (see §2). Let L be an equator of S2.

Theorem 6.B [P7]. For every H ∈ H there exist x ∈ L and t ∈ S1 such that

H(x, t) = 0.

Choose now an arbitrary large number c, and a time-independent normalized
Hamiltonian function F such that F (x) ≥ c for all x ∈ L. It follows from (2.A)
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and 6.B above that ρ(id, φF ) ≥ c, and thus the diameter of Ham(S2) is infinite. In
particular, on S2 (in contrast to R

2n, see §4) there are unbounded one-parameter
subgroups. As a by-product of this argument we get that there exists a sequence
of Hamiltonian diffeomorphisms of S2 which converges to the identity in the C0-
topology but diverges in Hofer’s metric. Indeed, choose the function F above to
be equal to a large constant outside a tiny open disc on S2. Note that φF acts
trivially outside the disc and thus is C0-small, while ρ(id, φ) can be made arbitrary
large. Again, in the linear symplectic space R

2n the situation changes drastically.
Hofer showed [H2] that if φi → id in Ham(R2n) in the strong C0-topology then
ρ(id, φi) must converge to 0. The reason is that in R

2n there is enough room to
shorten “long” paths with “small” supports.

The proof of Theorem 6.B can be reduced to a Lagrangian intersections prob-
lem which one solves using a version of Floer Homology developed by Oh (see
[O] for a survey). An important ingredient of this reduction is a detailed knowl-
edge about the fundamental group of Ham(S2). Our method works also for some
four-dimensional manifolds, for instance when M = CP

2.

7. Length spectrum. Let (M,Ω) be a closed symplectic manifold. For an
element γ ∈ π1(Ham(M,Ω), id) set ν(γ) = inf length{ft} where the infimum is
taken over all loops {ft} of Hamiltonian diffeomorphisms which represent γ. In
principle, Conjecture 5.A above would give a method of computing ν(γ) at least
in some examples. The first step in this direction was made in [LM2] for the case
M = S2, and recently J. Slimowitz informed me about her work in progress in
dimension four. Here we describe a different approach (see [P3-P6]).

The starting observation is that one can develop a sort of Yang-Mills theory
for symplectic fibrations over S2 with the structure group Ham(M,Ω). The role
of the Yang-Mills functional is played by the L∞-norm of the curvature of a sym-
plectic connection on such a fibration (see [GLS] for the definition of symplectic
curvature). As expected its minimal values correspond to the length spectrum on
Ham(M,Ω) in the sense of Hofer’s geometry. The L∞-Yang-Mills functional was
first introduced in the context of complex vector bundles by Gromov [Gr] , who
called its minimal value the K-area.

Further, and this seems to be a specific feature of the Hamiltonian situation,
the K-area of a symplectic fibration is closely related to the coupling parameter.
The coupling is a special construction (see [GLS]) which allows one to extend
the fiber-wise symplectic structure of a symplectic fibration to a symplectic form
defined in the total space of the fibration. The coupling parameter is responsible
for an “optimal” cohomology class of such an extension.

The final step of this approach is based on a powerful machinery of Gromov-
Witten invariants [R] which provides us with obstructions to deformations of sym-
plectic forms in cohomology. One can use it in order to compute/estimate the
value of the coupling parameter in a number of interesting examples. Therefore
one gets the desired information about the length spectrum in Hofer’s geometry.

Let us give a precise statement relating Hofer’s length spectrum to the cou-
pling parameter. Pick up an element γ ∈ π1(Ham(M,Ω), id), and let {ht}, t ∈ S1

be a loop which represents γ. Define a fibration p : P → S2 as follows. Let
D+ and D− be two copies of the disc D2 bounded by S1. Consider a map
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Ψ : M × S1 → M × S1 given by (z, t) → (htz, t). Define now a new manifold
P (γ) = (M ×D−)∪Ψ (M ×D+). It is clear that P (γ) has the canonical fiber-wise
symplectic form, and thus can be considered as a symplectic fibration over S2.
Moreover, homotopic loops {ht} give rise to isomorphic symplectic fibrations. In
what follows we assume that the base S2 is oriented, and the orientation comes
from D+.

The symplectic fibration P (γ) carries a remarkable class u ∈ H2(P,R) called
the coupling class. It is defined uniquely by the following two properties. Its
restriction to a fiber coincides with the class of the fiber-wise symplectic structure,
and its top power vanishes. Denote by a the positive generator of H2(S2,Z), and
by p : P (γ) → S2 the natural projection. Using the coupling construction one gets
that for E > 0 large enough the class u+ Ep∗a is represented by a canonical (up
to isotopy) symplectic form on the total space P (γ) which extends the fiber-wise
symplectic structure. Define the coupling parameter of γ as the infimum of such E.
Finally, consider the positive part of Hofer’s norm ν+(γ) defined as the infimum
of length+{ht} over all loops {ht} representing γ (compare with the discussion at
the end of section 2 above).

Theorem 7.A [P6]. The coupling parameter of γ coincides with ν+(γ).

Combining this theorem with the theory of Gromov-Witten invariants one
gets for instance the following estimate for the length spectrum. Denote by c
the first Chern class of the vertical tangent bundle to P (γ). In other words, the
fiber of this bundle at a point of P (γ) is the (symplectic) vector space tangent to
the fiber through this point. Assume that M has real dimension 2n. Define the
“characteristic number”

I(γ) =

∫
P (γ)

un ∪ c.

It is easy to see that I : π1(Ham(M,Ω)) → R is a homomorphism ([P4],[LMP]).

Theorem 7.B [P4]. Let (M,Ω) be a monotone symplectic manifold, that is [Ω]
is a positive multiple of c1(TM). Then there exists a positive constant C > 0 such

that ν(γ) ≥ C|I(γ)| for all γ ∈ π1(Ham(M,Ω)).

In other words, the homomorphism I calibrates Hofer’s norm on the funda-
mental group. The proof of 7.B uses results from [Se]. Recently Seidel obtained a
generalization of this inequality to non-monotone symplectic manifolds.

Let us mention also that there exists a surprising link between Hofer’s length
spectrum and spectral Riemannian geometry (see [P6]).

8. Asymptotic geometric invariants. In applications to dynamical systems
it is useful to consider asymptotic invariants arising in Hofer’s geometry.

8.A. Asymptotic non-minimality [BP2]. Define a function µ : A−{0} → [0; 1]
as follows. Take a Hamiltonian function F in A and consider its Hamiltonian flow
{ft}. Consider all paths on Ham(M,Ω) joining the identity with fs which are
homotopic to {ft}t∈[0;s] with fixed end points. Denote by µ(F, s) the infimum of
lengths of these paths. For instance if {ft} is a minimal geodesic then µ(F, s) =

Documenta Mathematica · Extra Volume ICM 1998 · II · 401–410



Geometry on the Group of Hamiltonian Diffeomorphisms 407

s||F ||. It is easy to see that the limit

µ(F ) = lim
s→+∞

µ(F, s)

s||F ||

exists. This number is called the asymptotic non-minimality of F , and measures
the deviation of {ft} from a ( semi-infinite) minimal geodesic. If F generates a
minimal geodesic then µ(F ) = 1. Consider now two subsets of M consisting of all
points where the function F attains its maximal and minimal values respectively.
One can show [BP2] that if one of these subsets has finite displacement energy,
then µ(F ) < 1, and in particular F does not generate a minimal geodesic. Note
that this method does not allow us to control the length of the time interval on
which the curve {ft} can be shortened.

8.B. Asymptotic length spectrum [P4]. For an element γ ∈ π1(Ham(M,Ω))
set

ν∞(γ) = lim
k→+∞

1

k
ν(γk).

This is an analogue of the Gromov-Federer stable norm in Hofer’s geometry. The-
orem 7.B above implies that for monotone symplectic manifolds ν∞(γ) ≥ C|I(γ)|.

Example. LetM be the blow up of the complex projective plane CP
2 at one

point. Choose a Kähler symplectic structure Ω on M which integrates to 1 over a
general line and to 1

3 over the exceptional divisor. The periods of the symplectic
form are chosen in such a way that its cohomology class is a multiple of the first
Chern class of M . One can easily see that (M,Ω) admits an effective Hamiltonian
action of the unitary group U(2), in other words there exists a monomorphism
i : U(2) → Ham(M,Ω). The fundamental group of U(2) equals Z. Let γ ∈
π1(Ham(M,Ω)) be the image of the generator of π1(U(2)) under i. It turns out
(Abreu - McDuff) that π1(Ham(M,Ω)) equals Z and is generated by γ. The
direct calculation [P4] shows that I(γ) 6= 0. We conclude that the asymptotic
norm ν∞ is strictly positive for each non-trivial element of the fundamental group
of Ham(M,Ω).

I do not know the precise value of ν∞(γ) in any example where this quantity is
strictly positive (for instance, in the example above). The difficulty is as follows. In
all known examples where Hofer’s norm ν(γ) can be computed precisely there exists
a closed loop h which minimizes the length in its homotopy class (that is a minimal
closed geodesic). It turns out however that every loop loses minimality after a
suitable number of iterations. In other words the loop {hNt} can be shortened
provided the integer N is large enough [P8].

9. New intuition in Hamiltonian dynamics. A Hamiltonian flow on a sym-
plectic manifold can be considered as a curve on the group of Hamiltonian diffeo-
morphisms. One may hope that geometric properties of this curve (in the sense
of Hofer’s metric) are related to dynamics of the flow. In this section we present
three examples of such a link, and thus illustrate our thesis that the geometry on
the group of Hamiltonian diffeomorphisms gives rise to a different way of thinking
about Hamiltonian dynamics.

9.A. Closed orbits of magnetic fields on the torus. This example was born in
discussions with V. L. Ginzburg. Consider the cotangent bundle T ∗Tn endowed
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with a twisted symplectic structure Ωσ = dp ∧ dq + θ∗σ as in 3.B above. Fix a
Riemannian metric g on Tn. The dynamics of a magnetic field is described by
the Hamiltonian flow of the function |p|2g with respect to Ωσ. We claim that if the
magnetic field is non-trivial (that is σ 6= 0) then there exist non-trivial contractible
closed orbits of the flow on a sequence of arbitrary small energy levels. We refer
the reader to [Gi] for a survey of related results. Here is a geometric argument. Fix
ǫ > 0. Choose a smooth function r(x), x ∈ [0; +∞) which equals x− 2ǫ on [0; ǫ],
vanishes on [3ǫ; +∞) and is strictly increasing on [0; 3ǫ). Consider a normalized
Hamiltonian F (p, q) = r(|p|2g). Every non-trivial closed orbit of F corresponds to
a non-trivial closed orbit of the magnetic field whose energy is less than 3ǫ. The
minimum set of F coincides with the zero section and thus its displacement energy
vanishes (see 3.B). From 8.A we see that the asymptotic non-minimality of F is
strictly less than 1, thus F does not generate a minimal geodesic. Finally, using
the assertion of 5.A (which follows in this case from a result in [LM2]) we conclude
that the Hamiltonian flow of F has a non-constant contractible closed orbit.

9.B. Invariant Lagrangian tori (along the lines of [BP2], cf. [Si2]). Consider
T ∗Tn, this time with the standard symplectic structure dp ∧ dq. Let F ∈ A
be a normalized Hamiltonian with ||F || = 1. An important problem of classical
mechanics is to decide which energy levels {F = c} carry invariant Lagrangian tori
homotopic to the zero section. Define a “converse KAM” type parameter K(F ) as
the supremum of |c|, where c is as above. One can show that µ(F, s) ≥ sK(F ) for
all s > 0, and thus µ(F ) ≥ K(F ). The proof is based on an analogue of theorem
6.B above. Suppose now in addition that F is non-negative and its maximum set
L = F−1(1) is a section of T ∗Tn. The estimate above shows that if L is Lagrangian
then F generates a minimal geodesic. If L is not Lagrangian, then its displacement
energy vanishes (cf. 3.B) and thus µ(F ) < 1 (see 8.A). We conclude that in this
case the asymptotic non-minimality of F gives a non-trivial upper bound for the
quantity K(F ).

9.C. Strictly ergodic Hamiltonian skew products [P8]. Let (M2n,Ω) be a
closed symplectic manifold. Given an irrational number α and a smooth loop
h : S1 → Ham(M,Ω), one defines a skew product diffeomorphism Th,α of M × S1

by Th,α(x, t) = (htx, t+α). A traditional problem in ergodic theory is to construct
skew products with prescribed ergodic properties associated to loops in groups (see
e.g. [N] and references therein). The property we are interested in is the strict
ergodicity. In our situation the skew product Th,α is called strictly ergodic if it
has only one invariant Borel probability measure (which is a multiple of Ωn ∧ dt).
One can adjust existing ergodic methods in order to show that for a wide class
of symplectic manifolds (say for simply connected ones) there exist α and h such
that Th,α is strictly ergodic. It turns out that the loops h arising in this construc-
tion are contractible. An attempt to understand this phenomenon gives rise to the
following definition. An element γ ∈ π1(Ham(M,Ω)) is called strictly ergodic if
if there exist a number α, and a loop h representing γ such that Th,α is strictly
ergodic. It turns out that the asymptotic norm ν∞(γ) vanishes for all strictly er-
godic classes γ. Thus the geometry on Ham(M,Ω) supplies us with an obstruction
to strict ergodicity. For instance, it follows from 8.B above that for the monotone
blow up of CP

2 at one point γ = 0 is the only strictly ergodic class.
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10. Does the geometry on Ham(M,Ω) determine (M,Ω)? Here is the
simplest version of this question. Let (M,Ω) be a closed surface endowed with
an area form, and let c > 1 be a real number. Are the spaces Ham(M,Ω) and
Ham(M, cΩ) smoothly isometric with respect to their Hofer’s metrics ? Here an
isometry is smooth if it sends smooth paths, homotopies etc. to the smooth ones.
When M = S2 the answer is negative, since these spaces have different length
spectra. When the genus of M is at least 1, the length spectrum is trivial, and
the answer is unknown. This open problem of 2-dimensional symplectic topology
completes our journey.

Acknowledgments. I thank P. Biran, H. Geiges, V.L. Ginzburg, D. McDuff,
P. Seidel, K.F. Siburg and E. Zehnder for their help in preparation of this paper.
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