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Dimension Theory and Large Riemannian Manifolds

A. N. Dranishnikov

Abstract. In this paper we discuss some recent applications of dimension
theory to the Novikov and similar conjectures. We consider only geometri-
cally finite groups i.e. groups Γ that have a compact classifying space BΓ. It
is still unknown whether all such groups admit a sphere at infinity [B]. In late
80s old Alexandroff’s problem on the coincidence between covering and coho-
mological dimensions was solved negatively [Dr]. This brought to existence a
locally nice homology sphere which is infinite dimensional. In the beginning
of 90s S. Ferry conjectured that if such homology sphere can be presented
as a sphere at infinity of some group Γ, then the Novikov conjecture is false
for Γ. Here we discuss the development of this idea. We outline a reduction
of the Novikov conjecture to dimension theoretic problems. The pionering
work in this direction was done by G. Yu [Yu]. He found a reduction of the
Novikov Conjecture to the problem of finite asymptotic dimensionality of the
fundamental group Γ. Our approach is based on the hypothetical equivalence
between asymptotical dimension of a group and the covering dimension of
its Higson corona. The slogan here is that most of the asymptotic properties
of Γ can be expressed in terms of topological properties of the Higson corona
νΓ. At the end of the paper we compare existing reductions of the Novikov
conjecture in terms of the Higson corona.

§1. Dimension theory of compacta

The covering dimension dimX of a compact metric space X can be defined as the
smallest number n such that for any ǫ > 0 there is an ǫ- covering {U1, ..., Uk} of X
of order ≤ n+ 1. The definition does not depend on the metric on X. There are
many equivalent reformulations of this property and not all of them are exactly
obvious. Here we give two of them.

Ostrand Theorem. dimX ≤ n ⇔ for any positive ǫ there exist n + 1 discrete
families Ui of mesh < ǫ such that the union ∪Ui forms a cover of X.

Alexandroff-Hurewicz Theorem. dimX ≤ n ⇔ for every map φ : A → Sn

of a closed subset A ⊂ X there is an extension φ̄ : X → Sn.

The cohomological dimension dimZ X is the smallest n such that Ȟn+1
c (U) = 0

for all open sets U ⊂ X. The notion of cohomological dimension was introduced
by P.S. Alexandroff in late 20s in homology language. Since then until late 80s
there was an open problem on the coincidence of dim and dimZ. In early 30s
Alexandroff, collaborating with H. Hopf, proved the following.
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424 A. N. Dranishnikov

Alexandroff Theorem. For finite dimensional compacta dimX = dimZ X.

In 70s R.D. Edwards connected the Alexandroff problem with the following
more geometric problem: Can a cell-like map of a manifold raise dimension? We
recall that a map f : X → Y is called cell-like if all fibers f−1(y) have trivial
shape. Edwards proved the following

Resolution Theorem [Wa]. For every compactum X there is a compactum Y
of dimY ≤ dimZ X and a cell-like map f : Y → X.

In particular the Resolution Theorem allowed to extend the equality dim =
dimZ on classes of countable dimensional compacta, ANR-compacta and compacta
with C-property [A]. The C-property is a generalization of finite dimensionality
in the direction of the Ostrand theorem. A space X has C-property if for any
sequence {Ui} of covers of X there is a sequence of disjoint families {Oi} such that
Oi is inscribed in Ui and the union ∪Oi forms a cover of X.

The Alexandroff problem was solved by a counterexample [Dr]. That coun-
terexample in view of the Resolution Theorem gives a cell-like map f : S7 → X
with dimX = ∞. The space X is a homology manifold which is locally connected
in all dimensions. Every cell-like map of a manifold induces an isomorphism of
homotopy groups, homology groups and cohomology groups. It turns out to be
that this fails for K-theory.

Theorem 1 [D-F]. For any p there is a cell-like map f : S7 → X such that
KerK∗(f) 6= 0 for mod p complex homology K-theory.

Corollary. The homology sphere X does not admit a map of degree one onto
S7.

§2. Novikov Conjecture

Let Gk
n be the Grassmanian space of k-dimensional oriented vector subspaces in n-

space with the natural topology. There is the natural imbeddingGk
n ⊂ Gk

n+1. Then

one can define the space Gk
∞

= lim→Gk
n. The natural imbedding Gk

∞
⊂ Gk+1

∞

leads to the definition of the space BO = G∞
∞

= lim→Gk
∞
. The tangent bundle of

an n-dimensional manifold N can be obtained as the pull-back from the natural
n-bundle over the space Gn

∞
. Let fτ : N → BO be a map which induces the

tangent bundle on N . The cohomology ring H∗(BO;Q) is a polynomial ring
generated by some elements ai ∈ H4i(BO;Q). The rational Pontryagin classes of
a manifold N are the elements pi = f∗(ai) ∈ H4i(BO;Q). Novikov proved [N]
that the rational Pontryagin classes are topological invariants. It was known that
they are not homotopy invariants. Hirzebruch found polynomials Lk(p1, . . . , pk) ∈
H4k(N ;Q) which do not depend on N and such that the signature of every closed
(oriented) 4k manifold N can be defined as the value of Lk on the fundamental
class of N . Note that the signature is homotopy invariant and even more, it
is bordism invariant. For non-simply connected manifolds Novikov defined the
higher signature as follows. Let Γ be the fundamental group of a closed oriented
manifold N , let g : N → BΓ = K(Γ, 1) be a map classifying the universal cover
of N and let b ∈ H∗(K(Γ, 1);Q). Then he defines the b-signature as signb(N) =
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〈Lk ∩ g∗(b), [N ]〉, here 4k + dim(b) = dimN . These rational numbers signb(N)
are called higher signatures. The higher signature are the only possible homotopy
invariants [M]. The Novikov conjecture states that they are homotopy invariant.

Novikov Conjecture. Let h : N → M be an orientation preserving homotopy
equivalence between two close oriented manifolds, then signb(N) = signb(M) for
any b ∈ H∗(K(Γ, 1);Q).

We say that the Novikov conjecture holds for a group Γ if it holds for every
manifold with the fundamental group Γ.

A tangent bundle can be defined for a topological manifold N as well. This
bundle is classified by a map f : M → BTOP where TOP = lim→ TOPn and
TOPn is a topological group of homeomorphisms f : Rn → Rn with f(0) =
0. Since the natural map BO → BTOP induces an isomorphism of rational
cohomology groups, one can define Pontryagin classes and higher signatures for
M . In the TOP category there is a functorial 4-periodic surgery exact sequence:

. . . −→ Sn(N)
η
−→ Hn(N ;L)

α
−→ Ln(Γ) −→ Sn−1(N) → . . . ,

where Γ is the fundamental group of X, Ln(Γ) are Wall’s groups, L is a periodic
spectrum generated by G/TOP , and Sn(N) is the group of manifold structures
on N with possible summand Z. The group Sn(N) can be defined as the group
of classes of homotopy equivalences q : M → N̄ with q |∂M= 1∂N̄ , here N̄ is
a regular neighborhood of N in some euclidean space of dimension n + 4l [We].
This sequence is defined for any finite polyhedron. One can consider the lost tribe
manifolds [B-F-M-W] to avoid possible extra Zs in the definition of S∗(N).

The higher L-genus of an n-manifold N with the fundamental group Γ is an
element g∗(L(N) ∩ [N ]) ∈ H∗(BΓ;Q) = ⊕Hi(BΓ;Q). This notion is dual to the
higher signatures. The Novikov conjecture is equivalent to the statement that for
any homotopy equivalence h : M → N the higher L-genuses of N and M are
equal. Note that Hn(X;L) ⊗ Q = ⊕i=n mod 4Hi(X;Q). The morphism η takes
a homotopy equivalence q : M → N to the difference L(M) ∩ [M ] − L(N) ∩ [N ].
Assume that BΓ is a finite complex i.e. Γ is geometrically finite, then the map
g : N → BΓ and the periodic surgery exact sequence produce the diagram

S∗(N)
η

−−−−→ H∗(N ;Q)
α

−−−−→ L∗(Γ)⊗Q

g∗





y

=





y

H∗(BΓ;Q)
A

−−−−→ L∗(Γ)⊗Q

So g∗ takes the image of the class of a homotopy equivalence q to the difference
of the higher signatures of M and N . Thus, the injectivity of the assembly map
A : H∗(BΓ;Q) → L∗(Γ)⊗Q implies the Novikov conjecture. The opposite is also
true [K-M].

In the case of geometrically finite Γ it makes sense to ask whether the integral
assembly map A : H∗(BΓ;L) → L∗(Γ) is a split monomorphism. This is called
the integral Novikov conjecture. By Davis’ trick with Coxeter groups, it follows
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426 A. N. Dranishnikov

that every finite aspherical complex is a retract of a closed aspherical manifold. A
diagram chasing shows that in the class of geometrically finite groups for studying
the Novikov conjecture it suffices to consider the case when BΓ is a manifold. In
that case the universal cover EΓ = X is a contractible manifold. Without loss of
generality we may assume that X homeomorphic to the euclidean space.

A special case of the Novikov conjecture is the following:

Gromov-Lawson Conjecture. An aspherical manifold cannot carry a metric
of a positive scalar curvature.

An open n-dimensional riemannian manifold X is called hypereuclidean if there
is a Lipschitz map f : X → Rn of degree one. The Gromov-Lawson conjecture
holds true for hypereuclidean manifolds [G-L]. A metric spaceX is called uniformly
contractible if for every R > o there is S > o such that any R-ball BR(x) centered
at x can be contracted to a point in BS(x) for any x ∈ X. A typical example
of a uniformly contractible manifold is a universal cover of a closed aspherical
manifold with the lifted metric. A positive answer to the following problem [G2]
would imply the Gromov-Lawson conjecture.

Is every uniformly contractible manifold hypereuclidean?
There is also an analytic approach to the Novikov conjecture which reduces

the problem to the question of an injectivity of an analytic assembly map A :
K∗(BΓ) → K∗(C

∗(Γ)), where the right part is an algebraic K-theory of some
C∗-algebra. This assembly map can be defined in terms of a universal cover EΓ
[B-C]. Then the assembly map and the conjecture can be to extended to general
metric spaces [R1], [H-R].

Coarse Baum-Connes Conjecture [R1],[R2]. For every uniformly con-
tractible bounded geometry metric space X the assembly map A : K∗(X) →
K∗(C

∗X) is a monomorphism (isomorphism).

A metric space has a bounded geometry if for any ǫ > 0 for every R > 0 there
is m such that every R-ball contains an ǫ-net consisting of < m points. It is
clear that every finitely presented group has a bounded geometry. Without this
restriction the coarse Baum-Connes conjecture is not true [D-F-W]. A description
of the C∗-algebra C∗(X) can be found in [H-R],[R2]. We note that the coarse
Baum-Connes conjecture implies the Gromov-Lawson conjecture [R1] and the iso-
morphism version of it implies the Novikov conjecture [R2].

A fascinating result in the coarse approach to the Novikov Conjecture was
obtained by Yu [Yu]. He proved the following.

Theorem [Yu]. If a proper uniformly contractible metric space X has a finite
asymptotic dimension, then the coarse Baum-Connes conjecture holds for X.

The definition of asymptotic dimension is given in the next section where we
also sketch the idea how to prove Yu’s theorem.

§3. Coarse topology

A metric space (X, d) is called proper if every closed ball Br(x0) = {x ∈ X |
d(x, x0) ≤ r} is compact. A map between proper metric spaces f : (X, dX) →
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(Y, dY ) is called a coarse morphism [R2] if it is proper and uniformly expansive
i.e. f−1(C) is compact for every compact C and for any R > 0 there is S > 0
such that dY (f(x), f(x

′)) < S if dX(x, x′) < R. Note that every Lipschitz map
is a coarse morphism. Vice versa, for a geodesic metric space there are R > 0
and λ > 0 such that dY (f(x), f(x

′)) < λdX(x, x′) for all x, x′ with dX(x, x′) ≥ R.
Such maps are called coarsely Lipschitz.

In this section we consider a category C of proper metric spaces with proper
coarsely Lipschitz maps as morphisms. The Coarse category is the quotient of C
by the equivalence stating that any two morphisms, which are in a finite distance
from each other, are equivalent. We consider only uniformly contractible metric
spaces. In the case of general proper metric spaces one should consider morphisms
which are not necessarily continuous and the properness should be replaced by
the following: f−1(B) is bounded for every bounded set B. In many cases a
general type metric space (X, d) admits a uniformly contractible filling X ′ ⊃ X
with (X, d′ |X) coarsely equivalent to (X, d). Thus geometrically finite groups Γ
with word metric d have a filling called a universal cover of BΓ with lifted metric
d′.

Note that a closed subspace Y ⊂ X of a proper metric space X with the induced
metric is an object of C. We define the notion of an absolute extensor in C as usual:
X ∈ AE(C) if for any Z ∈ C and for any closed A ⊂ Z and a morphism φ : A → X
there is an extension φ̄ : Z → X.

Let Rn
+ denote the halfspace of dimension n with the induced metric.

Theorem 2. Rn
+ ∈ AE(C) for all n.

Note that Rn is not AE.
We define a coarse neighborhood W of Y ⊂ X as a subset of X with

lim dist(y,X \ W ) = ∞ as y ∈ Y approaches infinity. Define a finite open cover
of (X, d) as a finite cover of X by open coarse neighborhoods with the Lebesgue
function λ(x) tending to infinity as x approachs infinity.

Note that, Rn+1 is obtained from Rn by the operation analogous to the suspen-
sion. By analogy with Alexandroff-Hurewicz theorem we define a coarse dimension
dimc(X, d) as follows:

dimc(X, d) ≤ n if and only if for every closed subspace A ⊂ X and any coarse
morphism φ : A → Rn+1 there is an extension to a coarse morphism φ̄ : X →
Rn+1.

Here we use Rn+1 as an analog of Sn in order to have the equality dimc
Rn = n.

By Pontryagin-Nobeling theorem every n-dimensional compactum can be embed-
ded in the cube I2n+1. Then the following problem is quite natural.

EMBEDDING PROBLEM. Does a metric space with dimc(X, d) ≤ n have a
coarse embedding in the space R2n+2

+ ?
M. Gromov defined [G1] the notion of asymptotic dimension using a coarse

analog of the Ostrand theorem. By the definition asdim(X, d) ≤ n if for any
R > 0 there are n + 1 R-disjoint uniformly bounded families Ui such that the
union forms a cover of X. The inequality asdim(X, d) ≤ n means that X is
coarse equivalent to a simplicial complex KR of dimension ≤ n with all simplices
with edges of the length R for an arbitrary large R. This property leads to the
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notion of anti Čech approximation of X by simplicial complexes. Metric spaces
that admit an anti-Čech approximation by finite simplicial complexes are called
spaces of bounded geometry. We note that universal covers of classifying spaces
of geometrically finite groups Γ supplied with a Γ-invariant metric are spaces of
bounded geometry. J. Roe defined coarse homology (cohomology) of a metric
space using anti-Čech approximation. This leads to the definition of asymptotical
cohomological dimension of a metric space. Another approach to the cohomological
dimension is the following. Since we are already have n-cells, one can define
CW-complexes in the coarse category. Coarse homotopy groups we define below.
Then we can construct a coarse Eilenberg-MacLane complexes K(Z, n) and define
asdimZ X ≤ n if every partial map on X to K(Z, n) can be extended.

The following is an analog of Kuratowski-Dugundji theorem.

Proposition 1. Let X be uniformly contractible proper metric space with
asdimX < ∞, then X ∈ ANE(C).

Following Gromov’s idea, we define a homotopy in the coarse category as a
morphism of the set DX = {(x, t) ∈ X × R | |t| ≤ d(x, x0)} where x0 ∈ X
is a based point. Note that the subspaces D+

X = {(x, d(x, x0)} ⊂ DX and

D−X = {(x,−d(x, x0)} ⊂ DX are coarsely isomorphic to X. It is possible to show
that coarse homotopic maps induce the same homomorphism of coarse homology
(cohomology) groups. The next natural notion is coarse homotopy type. Thus, Rn

and H
n have the same coarse homotopy type. It turns out to be that the coarse

Baum-Connes conjecture is invariant under coarse homotopy equivalence [R2]. It
is possible to show that the coarse Baum-Connes conjecture holds for coarse poly-
hedra [R2] and hence for metric spaces which are coarse homotopy equivalent to
polyhedra. Now Yu’s theorem would follow from Proposition 1 and a coarse analog
of the West theorem: ANE-space is homotopy equivalent to a polyhedron. The
following straightforward proposition allows to give a simpler approach.

Proposition 2. Let a metric space X be coarse homotopically dominated by a
space Y . Assume that the Baum-Connes conjecture holds for Y , then it holds for
X as well.

Let f0 : R+ → X be a coarse morphism. A coarse loop φ : R2
+ → X is a

morphism such that φ |R+
= f0 = φ |−R+

◦(−1) where R+ is naturally imbedded
in the first factor of R2

+ = R×R+. The product of two coarse loop can be defined
by compression of two R2

+ to quadrants and gluing two quadrants together.
This leads to the definition of the coarse fundamental group and higher dimen-

sional coarse homotopy groups. Since we have the notion of the standard n-simplex
in C we can define singular coarse homology (cohomology) of metric spaces. We
expect that all theorems of classical algebraic topology hold here.

§4. Higson corona

Let (X, d) be a metric space and let f : X → R be a function on X. An r-variation
of f at x ∈ X is the following number Vr(f(x)) = sup{|f(x)− f(y)| | y ∈ Br(x)}.
Let B(X) be the set of all bounded functions f : X → R with limx→∞ Vr(f(x)) =
0 for ant r > 0. We define the Higson compactification of X as the closure X̄ of
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X embedded in IB(X) by the family {fb | b ∈ B(X)}. The remainder νX = X̄ \X
of the Higson compactification is called the Higson corona [H],[R1].

The Higson corona is an invariant of a coarse isometry. Hence the Higson corona
of a discrete finitely generated group Γ is a group invariant, i.e. νΓ does not depend
on choice of a word metric on Γ. Thus, two metric spaces in a finite distance in
the Gromov-Hausdorff metric space have the same Higson coronas. Moreover, the
Higson corona is a functor ν : C → Comp from the coarse category to the category
of compact Hausdorff spaces, taking embeddings to embeddings.

There is a partial order on compactifications of a given (locally compact) space
X. A compactification cX is dominated by a compactification c′X if there is a
continuous map f : c′X → cX with f |X = 1X . A compactification, dominated by
the Higson compactfication, we call Higson dominated.

Many asymptotic properties of metric spaces can be formulated in terms of the
Higson corona. We give two examples of such properties. A notion of small action
of a discrete group Γ at infinity of a universal cover X of BΓ appears naturally in
the combinatorial group theory. Thus, Bestvina takes that property as an axiom
of his Z-boundary of a group [B]. An action of Γ is small at infinity for a given
compactification X̄ of X if for every x ∈ X̄ \ X and a neighborhood U of x in
X̄, for every compact set C ⊂ X there is a smaller neighborhood V such that
g(C) ∩ V 6= ∅ implies g(C) ⊂ U for all g ∈ Γ. We consider a Γ-invariant metric
on X. Since BΓ is a finite complex, the Higson corona of X does not depend on
choice of metric and coincides with the Higson corona of Γ.

Proposition 3. The action of Γ on X is small at infinity for a compactification
X̄ if and only if X̄ is Higson dominated.

Existence of such compactification is crucial in all cases were the Novikov con-
jecture is proved.

Another property is also related to the Novikov Conjecture.

Theorem [R1]. An open n-manifold M is hypereuclidean if and only if there is a
map f : νM → Sn−1 of degree one.

Since a dimension is an important invariant in the coarse theory we establish
the following.

Theorem 3. dim νX = dimc(X, d) for a proper metric space (X, d).

Theorem 4. dim νX = asdimX if asdimX < ∞.

Conjecture 1. dim νX = asdimX for all X.

Note that the inequality dim νX ≤ asdimX always holds [D-K-U]. The proof of
this inequality makes plausible that νΓ has the C-property for geometrically finite
group Γ. This together with Ancel’s theorem (§1), Conjecture 1 and the following
conjecture define another approach to the Novikov Conjecture for all geometrically
finite groups.

Conjecture 2. dimZ νX ≤ asdimZ X.

The following conjecture is somewhat weaker of the rational Gromov-Lawson
conjecture and it is equivalent to Gromov-Lawson’s for even dimensional manifolds
[D-F].
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Weinberger Conjecture. For every uniformly contractible n-manifold X the
boundary homomorphism ∂ : Ȟn−1(νX;Q) → Hn

c (X;Q) = Q is an epimorphism.

If X is an universal cover of finite BΓ and the homomorphism ∂ in the Wein-
berger Conjecture is equivariantly split, then the Novikov conjecture for Γ holds
true. The following theorem shows that there is a room for a n− 1-cocycle in νX.

Theorem 5. For every uniformly contractible open n-manifold Xn, dim νXn ≥ n.

The exact sequence of pair implies that the Weinberger Conjecture would
hold for Xn if the Higson compactification X̄ has trivial rational cohomology:
Hn(X̄;Q) = 0. The following theorem sets limits to this approach.

Theorem 6 [D-F]. Hn(Rn;Q) 6= 0 and Hn(Hn;Q) = 0 for all n > 1.

Note that Hn(Rn;Q) 6= Hn(Hn;Q) despite on the fact that Rn and H
n are

coarse homotopy equivalent.
The following example gives a negative answer to the integral version of Gro-

mov’s problem.

Example [D-F-W]. There exists a uniformly contractible riemannian metric d on
R8 such that (R8, d) is not hypereuclidean.

This space (R8, d) is coarsely isomorphic to an open cone over a homology
sphere X from Theorem 1 (§1). We note that in this example dim ν(R8, d) = ∞
and dimZ ν(R8, d) < ∞ (see [D-K-U]). Although this example is not of bounded
geometry, the Weinberger conjecture holds for it.

§5 Descent principle

In this section we compare some of the conditions which enable to prove the
Novikov conjecture for certain groups. Let Γ be geometrically finite group and
let X = EΓ be equipped with a Γ-invariant metric. Each of the following four
conditions implies the Novikov conjecture:

(CPI) [C-P]. There is an equivariant rationally acyclic metrizable compactifica-

tion X̂ of X such that the action of Γ is small at infinity.

(CPII) [C-P2]. There is an equivariant rationally acyclic (possibly nonmetrizable)

compactification X̂ of X with a system of covers α of Y = X̂ \ X by boundedly
saturated sets such that the projection to the inverse limits of the nerves of α
induces an isomorphism H∗(Y ;Q) → H∗(lim←N(α);Q).

(FW) [F-W], [D-F]. There is an equivariant Higson dominated compactification

X̂ of X such that the boundary homomorphism H lf
∗ (X;Q) → H∗−1(X̂ \X;Q) is

an equivariant split injection.

(HR) [R1]. There is an equivariant rationally acyclic Higson dominated compact-

ification X̂ of X.

Here H∗ stands for the Steenrod homology or its extension for nonmetrizable
spaces. An open set U ⊂ Y = X̂ \X is called boundedly saturated if for for every
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closed set C ⊂ X̂ with C ∩ Y ⊂ U the closure of any r-neighborhood Nr(C ∩X)

satisfies Nr(C ∩X)∩Y ⊂ U . The homomorphismH∗(Y ;Q) → H∗(lim←N(α);Q)
in CPII is an isomorphism if the system {α} is cofinal. We introduce the condition.

(CPII ′). There is an equivariant rationally acyclic (possibly nonmetrizable) com-

pactification X̂ of X with a cofinal system of covers α of Y = X̂ \X by boundedly
saturated sets.

We denote by CPI ′ the condition CPI without an assumption of metrizability
of X̂. Note that the conditions CPI ′ and CPII ′ imply the Novikov conjecture as
well.

Theorem 7. CPII ′ ⇒ CPI ′ ⇔ CPI ⇔ HR ⇒ FW ⇐ CPII.

Note that CPI ′ ⇔ HR by Proposition 3.
In the integral case one should replace the rational homology by the L-homology.

The conditions CPI, II remain without changes, in FW and HR we have to add
a metrizability of the corona. Then all four would imply the integral Novikov
conjecture. It is not clear whether Theorem 7 holds in the integral case. The
problem is in the implication CPI ′ ⇒ CPI which can be reduced to the following.

Problem. Is a L∗-acyclicity equivalent to a L
∗-acyclicity for compact Haus-

dorff spaces?
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